UGA Mathematics Library Copying Service


        Researchers in mathematics at institutions with small libraries are invited to use the following service offered by the department of mathematics at the University of Georgia. You may send us requests for copies of any mathematical article that you need for your research. We will find it in our library, zerox it, and mail it to your address free of charge, or find a digital copy of it and email it to you.

 

     Please address your requests to Dino Lorenzini, Department of Mathematics, University of Georgia, Athens, GA 30602, or send electronic mail to lorenzin@uga.edu.

 

     Some recent scans of papers without digital versions:

 

R. Debremaeker,  Non abelian cohomology. Bull. Soc. Math. Belg. 29 (1977), serie B, no. 1, 57–72.

 

R. Debremaeker, Cohomologie à valeurs dans un faisceau de groupes croisés sur un site. I and II. (French) Acad. Roy. Belg. Bull. Cl. Sci. (5) 63 (1977), no. 10, 765–772, and 758–764.

 

M. Krasner, Sur la primitivité des corps p-adiques. Mathematica (Cluj) 13 (1937), pp. 72-191.

 

M. Krasner, Nombre des extensions d'un degré donné d'un corps 𝔭-adique, Les Tendances Géom. en Algèbre et Théorie des Nombres, 143–169, Editions du Centre National de la Recherche Scientifique, Paris, 1966.

 

F. Bruhat and J. Tits, Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 3, 671–698.

 

J. Oesterle, Thesis, Orsay, 1977.

 

B. Dwork, Thesis, On the root number in the functional equation of the Artin-Weil L-series, Columbia 1954, pp. 1-95, pp. 96-end.

 

M. Spivakovsky, Valuations, the linear Artin approximation theorem and convergence of formal functions, 1989.

 

P. Deligne, Les corps locaux de caractéristique p, limites de corps locaux de caractéristique 0. Representations of reductive groups over a local field, 119–157, Travaux en Cours, Hermann, Paris, 1984.

 

N. Yoneda, On Ext and exact sequences

 

N. Yoneda, On the homology theory of modules