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On Ext and exact sequences.

By Nobuo YONEDA.
(Received March 25, 1960.)

§0. Introduction.

Since H. Cartan and S. Eilenberg have introduced the theory of the functors
Ext,” and satellites of functors [4], it has found great many applications, and
various generalizations have been successful. Among other generalizations ([5, §7],
[6], [8], [9, VII]), Buchsbaum [1] introduced the notions of exact categories, and
showed that the domain of the theory is readily extended from the category of
A-modules to exact categories with sufficiently many projectives or injectives.
A. Heller [7] has further extended the domain to what he calls ‘abelian catego-
ries’ with enough projectives or injectives. Now a paper by the author [10],
giving a 1-l-correspondence between Ext "(4, B) and the collection of n-fold ex-
tensions over A with kernel B properly classified, was suggesting generalizations
in another direction, namely to avoid the use of projectives or injectives, hence
extending the domain of the theory to a much wider class of additive categories.
This is what we aim at in the present paper. In a similar direction we note the
independent works of Buchsbaum [2], [3]. It is perhaps worth mentioning the
confusion that independently of Heller [7] many mathematicians say ‘abelian
categories’ to mean exact categories with the axiom of existence of direct sums,
with or without projectives and/or injectives (cf. [6]). In this paper we shall not
follow the terminology in [7] hoping that the reader of [7] will not get confused.

In trying to classify exact sequences in an additive category so as to get a
good theory of Ext and satellites, one will find that imbeddings of an exact
sequence 0—B—E—A—0 and maps A’—A, B—B’ in commutative diagrams

0— B— E'— A'—0 0—-B—E—A—0
T o L1l
0— B — E— A —0, (=: identity map) 0—B''—E"’"— A —0

with exact rows are the fundamental media. After the preparatory §1, we shall
investigate in §2 what are the consequences of these imbeddings and under what
circumstances these imbeddings are possible, which will make our motivation of
introducing the notions of regular S-categories and quasi-abelian S-categories.
The idea in §3 can be explained as follows: The n-fold extensions over A
with kernel B in an additive category 1 will be considered as some quantity lying
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between A and B, or lying over the pair (4, B), which we want to classify
to get Ext"(A, B). Then the totality of n-fold extensions in 1 is considered
as a sort of web spanning pairs of objects. We have the notions of maps of
n-fold extensions, which make the web a category over the pair (4, 4). In
other words the web gives a certain correspondence between .1 and a copy of A
with functorial multiplicity, which renders the functorial structure of Ext®. In
generalizing this situation we consider a pair of categories (., 3) and a third
category X together with two covariant functors S.: 2—.1, S,: ¥—8, or to
the same effect, a covariant functor S: 2—.7X @, which we call a span over (A4,
B). We then show that under certain conditions the spanning objects can be
classified giving rise to a functor S=S(a, b) of two variables, @ contravariant in
A, and b covariant in . The result is soon applied to the span of n-fold extensions,
and we get functors Ext®. Further the composition product in Ext as defined in
(10] will be presented in a generalized form in terms of spans.

Let M, M’ be functors of a category C with values in .the category it of
additive groups and homomorphism. When M, M’ have the same variance, we
have the additive group Hom¢ (M, M’) of natural transformations M—M’. As an
operation adjoint to Hom¢ we shall present in §4 the tensor product M®cM'.
This is an additive group defined when M is contravariant and M’ is covariant.
Formal properties for Hom, and ®, have remarkable analogues for Hom¢ and
®c. Satellites of functors originally defined using projectives or injectives will
then be redefined, without recourse to projectives or injectives, but in terms of
Home, ®¢, and Extc. This gives us for example the interpretation that

Tor,4(4, B) is the group of natural transformations from the covariant functor
Ext4"(A, z) to the covariant functor 2&®4B.

In the last §5 we shall develop a study on the nature of *similarity > of exact
sequences. In the course of classification of n-fold extensions, we first introduce

a binary relation =~ which is reflexive and transitive, but not necessarily symmetric.

Then we define the similarity ~ as the equivalence relation generated by =.

Thus ~ involves a series of relations =, ==, of which the number may not be

uniformly bounded. In the classification of 1-fold extensions, i.e. short exact

sequences, =5 is already symmetric, and the similarity classification is in a sense
faithful. We shall exhibit certain connections among similar n-fold extensions,

which will show that similar n-fold extensions are not too far away from each
other.

In order to facilitate maneuvering maps and diagrams in a category, we shall
introduce the following convention: A map A—B once written with an arrow in
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the context, whether by itself or in a diagram, shall be designated by AB. The
composition of two (or more) maps A—B, B—C shall be denoted by AB-BC
(AB-BC-CD---) or by ABC (ABCD---). We shall not write AC for ABC unless
having written a direct arrow A—C saying AC=ABC. Otherwise AC shall denote
another map A—C defined in the context. If we want to respect the name given
to a map ¢: A—B, or if we have to distinguish one from several maps from A
to B all expressed by direct arrows A—B, then we shall write A¢B, A¢'B, ete.
In this notation A¢B, the same letter ¢ may be used to denote other maps of
apparently different domains and ranges. For example ¢,: A,—B, (v=1, 2) may
be denoted as 4,¢B,. The identity mapes: A—A will be written as A=>A in
diagrams and as AeA in expressions following this convention. AA may denote

some other map defined in the context.
The above convention is a slightly modified version of that introduced in [10].

It has certain advantages and disadvantages, and will be obeyed when it is more
convenient than the usual convention of naming maps as ¢: A—B and writing

down the composition of maps as ¢o¢. The latter will be obeyed as well.
Our domain of theory will be abstract categories, and no applications are

intended in this paper. They will be found elsewhere. Also metamathematical
preoccupations, such as whether a certain collection is a set or not, are put aside.
Upper asterisques * attached to a category or to a categorical statement will mean
the dual category or the dual statement (cf. [1]).

8§1. Additive categories.

1.0. A preadditive category by definition is a category 1 in which addition is
defined in each collection Hom(A4, B) of maps A—B, subject to the two axioms:
(A1) For any pair of objects A, B the collection Hom(4, B) is not empty and
makes an additive group.

(A2) Composition is bilinear, i.e. for ¢y, ¢.=Hom(4, B), &y, ¢o=Hom(B, C) we
have (¢1+¢2)o(@1+¢e) =¢ro@r+eoPs+Pregetdaods .

Without loss of generality we may assume that there is a unique object ¢
such that Hom(g, #)=zero group, or equivalently es=0. If there are many such
neutral objects, they are connected to each other by unique equivalence maps,
and so can be unified to a single object. If there is no neutral object we can
attach to 7 an object # with Hom(4, #), Hom(g, 4), Hom(g, 0) defined to be trivial.
Now that every object A has unique maps A—9, g—A we may write Af, JA
without ambiguity. AfB is the zero element in Hom(4, B), which we denote

alternatively as 04 or 0.
A mapa: A’—A in A induces a homomorphism
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Hom(«, B): Hom(A, B)—Hom(A’, B)
sending ¢ to ¢oa. This homomorphism will be denoted also as ow. Dually a
map 3: B—B’ induces a homomorphism
N Hom(A4, 5): Hom(A4, B)y»Hom(4, B’)
sendihg ¢ to Be¢. This will be denoted also as fo. Hom(a, b) is a functor of two
variables a contravariant in I, b covariant in .7, and with values in the category
M of additive groups and homomorphisms. It is additive in both variables :

Hom(e, +a;, B)=Hom(«,, B)+Hom(«, B),
Hom(A4, #;+B:)=Hom(4, #;)+Hom(4, 3.).

~ In general by a (left) 4-module we mean a covariant additive functor .4—JJ, and

o by a right A-module (or an *-module) we mean a contravariant additive functor

A~ An additive functor of several variables with values in < will accordingly
,~ be called *-8-module, A-8*-C-module, ete. The Hom functor of the preadditive
category A 18 an J*-Ji-module.
“In the following paragraphs of this section .1 will stand for a preadditive
category. Unless otherwise stated, objects and maps will mean those in .

11. A map¢: A—B is called an injection if Hom(C,¢) is a monomophism for
every object C. This means that for any map C—A4, CAB=0 implies CA=0, or
equivalently for any three mapsC—A, C—C’, and C'—A, CAB=CC’AB implies
CA=CC'A. Dually a map¢: A—B is called a projection if Hom(p,C) is a
monomorphism for every object C. An injection which is also a projection is

called a bijection. By the kermel of a map A—B we mean a map N—A such
that the induced sequence

0—Hom(C, N)—Hom(C, A)—»Hom(C, B)

is exact for every object C. This means that (i) NAB=0, and that (ii) for any
map C—A with CAB=0 there is a unique mapC—N such that CNA=CA. The
latter condition (ii) is equivalent to that for any mapC—A with CAB=0 there
exists a map C—N such that CNA=CA, and NA is an injection. If B—B’ isan
injection, then N—A is the kernel of AB if and only if it is the kernel of ABB'.
This is immediate from the definition. If in the commutative diagram

N—-A—B

N s B
NA, N'A’ are the kernels of AB and A’B’ respectively, then there is a unique

map N—N’ with which the diagram remains commutative. If AA’, BB’ are
equivalence maps, then NN’ ig necessarily an equivalence map. Thus the kernel
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of a map A—B is unique upto equivalence. So we shall write NA=kernel AB
to mean that NA is the kernel of AB, and (N—A)=kernel AB to mean that AB
has the kernal, and N—A is defined as the kernel of AB. The object N determined
upto equivalence will be written as N=Ker AB.

Cokernels of maps are defined dually. Namely A—B has the cokernel B—L
if ABL=0 and if for any map B—C with ABC=0 thereisa unique map L—C such
that BLC=BC. A mapA—B is an injection (projection) if and only if kernelAB
=0 (cokernel AB=0), i.e, Ker AB=g (Coker AB=g). If AB=0, then AeA
=kernel AB, and BeB=cokernel AB. As later examples will show not all maps
may have kernels and cokernels. Even if all maps have kernels and cokernels,
an injection may not be the kernel of any map, and a bijection may not be an
equivalence map.

Given a class S of maps we shall denote by kernelS the totality of kernels
of maps in S, and by kernel-'S the totality of maps which admit kernels in S.
Similarly cokernel S cokernel™'S are defined. Also S:08; will denote the totality
of compositions ¢,o0; (¢;ES;, ¢2ES8,). Suppose A—B belongs to kernel-!(coker-
nel-'.1), and put (N—A)=Kernel AB, (A—>M’)=cokernel NA. Then we have NA
=kernel AM’. Suppose further AB is in cokernel™! (kernel™'. 1), and put (B—L)
=cokernel AB, (M—B)=kernel BL. Then there is a unique map M'—M such that
AM'MB=AB. 1f M'M is an equivalence map, the map AB is called proper.
Thus a map A—B is proper if and only if it can be imbedded in the commutative

diagram

where NA=kernel AM, AM=cokernel NA, BL=cokernel MB, and MB=kernel BL.
This imbedding is unique upto equivalence, and we shall write AM=coimage AB,
MB=image AB, M=Im AB. The totality of proper maps (proper injections, proper
projections) will be denoted by P.1 (PI1, PJ.4). A map is a proper injection if
and only if it has the cokernel and is the kernel of its cokernel. Denote by 1.4,
J1, E the totalities of injections, of projections, and of equivalence maps respect-
ively. We have
Punlanl A=EJ,
P =PI 1-PJ A,
PI.i=kernel cokernel 1=kernel Jincokernel™* .1,
PJ_i=cokernel kernel i=cokernel _inkernel™* ..
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An exact category [1] by definition is a preadditive category .1 in which every
map is proper.

A sequence of maps in a preadditive category is called exact if every map in
the sequence is proper, and if for any consecutive two maps A—B—C in the
sequence we have kernel BC=image AB, or equivalently cokernel AB=coimage BC.
Thus exactness of g-»A—B means that AB is a proper injection, exactness of
B—C—# means that BC is a proper projection, exactness of #—A—A’—f means
that AA’ is an equivalence map, and exactness of §—B—E—A—@ means BE=
kernel EA, EA=cokernel BE. If one exact sequence X starts from §—B—E—---,
and another exact sequence Y terminates in -..—F—B—f—, then the composed
sequence

YOX: oo FE ... (FE:FBE)
is exact.

1.2. We denote by €° the preadditive category given by the following data:

(i) An object X in £€°1 means a map ¢: A—B in .7, i.e. a triple
X=<(A, B, ¢<=Hom(4, B));

(i) A map &: X—X’ in £°1 means a commutative diagram

X: A ->B

=, I

X: Al— B
i.e. a quadruple £={g, ¢’, acHom(4, 4’), B=Hom(B, B’)) such that Bep=¢'oa;
(iii) Composition is given by composing the vertical constituents, namely
@' 9" !, B)dp, ¢, a, By=X9, ¢"', a’oax, B'o8) ;

(iv) Addition of maps ¢—¢’ is given by adding up the vertical constituents,
namely

<s0, SDI1 (247 Bl>+<¢r 90’7 az, BZ>=<?1 ‘ro’y a1+a'2v ﬁl +B2>-

This category is called the category of maps in . E° E? will denote the
covariant additive functors €°.1—.7 defined by

EXA,B,¢)=A, E¥¢, ¢, a,B)=a,

EXA,B,¢>=B, EX¢, ¢, a, B)=4.
In this category a map X—X is the kernel of X—X’ if and only if EYXX) is
the kernel of EXXX") (k=—, +). If 1 is an exact categery, so is &%,

For an integer n=1 we denote by &".1 the preadditive category given by the
following data :

(i) An object X in €"1 means an exact sequence in .1 of the form
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X: 0—->B-—>E'"_; 1"_1—0.--—»E17;A—‘—vg;
(ii) A mapé&: X—X’ in £"1 means a commutative diagram with exact rows

in 4 of the form
X : 0»B—>E,—---—E—A—0

s | | e

X': 0—B'—Ej—- —E—A—0;

(iii) Composition is given by composing the vertical constituents;
(iv) Addition is given by adding up the vertical constituents.

E" A (n21) is called the category of m-fold extensions in 4, in particular
&' is called the category of extemsioms in .4 or the category of short exact
sequences in 1. E* EI will denote the covariant additive functors &"A—A
defined by

ENX)=A, E*®)=a, ENX)=B, EI(§)=5.
Also E (k=0,1,2,--+, n+1) will stand for the covariant additive functors £"A—A,
Ef=E!, EXX)=E, E}NXX)=E.El 1<k<n), Ex,.=E!.

The situation about kernels and cokernels in &". (n=1) is not so simple as

in €%4. For illustration we shall consider the sequence

X: O—BoEiysesimrBy—rA—p

! ) o [
X: 9—»B—E,—---—E—A—0

3 Lol LoL
X: ﬂ—“’B"’En—""'—’El—'A'—'ﬂ

in &"a (n=1).

PROPOSITION 1.1, XX=kernel XX if and only if E{(XX)=kernel E}(XX)
for k=1,-++,n, n+1. XX=cokernel XX if and only if EX(XX)=cokernel B}(XX)
for k=0,1, ..., n.

ProOF. In view of duality we prove the first part. For an object C we shall
denote by C:* (k=1,-.-,n, n+1) the object in &4 having C=>C for EFCE)—
Ezy(CP) and 0's elsewhere. Then Hom(C#, X) is naturally isomorphic to Hom(C,
EX(X)). Therefore, if XX=kernel XX, then the sequence

0—Hom(C, X)—Hom(C¢, X)—Hom(C¢, X)
is exact, and so the sequence
0—Hom(C, Ex(X))—Hom(C, Ef(X))—Hom(C, EX(X))
is also exact. This shows Ef(XX)=kernel Ex(XX) for k=1,---,n, n+l How
suppose the converse, and let
X': 0—B'—Ei—:-—E—A—0

i ]l [
X : 0—B —E---—E—A—0
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be a map in &' with X’XX=0. Then we have E(E.E;=0,---, E}E,E,=0,
B’BB=0, and so there are uniques maps E|—E,---, E{—E,, B'—B such that
E\E\E,=E!E,, -+, E!E,E,=E/E,, BBB=B'B. Since we have B'E.E, E,E,
=B'E,E,=B'BE,=B'BBE,=B'BE, -E,E,,- -, B\E|E,-E\E,=E}E{ E,=E}E,E, =
E\E,E,E,=E}E,E, - E\E;, commutativity holds in the diagram

X': 9—»B'—E|—..-—>E}—E,—A'"—0

. L4 L 4L

X : 0B —-FE,—---—E,—E—A—0.
So there is a unique map A’—A completing a map X’—X in &*4. From EjA’-
A'AA=EE\AA=E|E\E\A=EE\A=EA’-A’A follows A’AA=A’A, and so X'X
is the unique map such that X’ XX=X'X, q.e.d.

From Proposition 1.1, we see that for the map X—X in €4 to admit the
kernel it is necessary and sufficient that every vertical constituent except for
A—A has the kernel and that the kernel sequence —Ker BB—Ker E,E,—---
—Ker E\E, is exact.

In particular the map in &€*.1 (n=3) given by the diagram

Cr 1 —0—-C=>C—0—--—0—0
[ A d
: Chi: 95C=>C—oF—F— . >0—g
admit no kernel unless C=¢. If X—X is a bijection in £".7 (n=2), then kernel XX
=0, cokernel XX =0, and so kernel Ef(XX)=0, cokernel E}(XX)=0 for k=1,---,
n. Therefore if .1 is an exact category, a bijection in &".1 (n=2) is necessarily
an equivalence map. In &7 and in &2 we see easily that all maps have
kernels and cokernels if .1 is an exact category. Thus £2.1 is an exact category
if 1 is an exact category. However, in €7 we have the example of a bijection
which is not an equivalence map, as provided by the left part of the above
diagram.

Another example is presented by the category Ci of commutative algebraic

groups [9, VIII]. This category is not exact unless the characteristic is zero.

1.3. By the direct sum of two objects A;, A, we mean an object A together
with four maps A;,—A, A;—A, A—A,, A—A, such that
A1AA1=A19A1, AzAA2=A29A2, AA1A+AA2A:A3A.

In this case we shall write
(414, A4, A4y, AAr): A=ADA,.

Note that the above three identities imply A;AA,=0, A;AA;=0. The sequences
I—A—A—As—0, 0—A—A—A—0
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are obviously exact.
If we have (B,—B, B.—B, B—By, B—B;): B~B\®B:, then for ecach pair of

maps A4,—B;, A;—B, there is a unique map A—B such that

- A,B,B=A,AB, ABB,=AA,B, (v=1,2).
If further A;B;, A.B. are equivalence maps, then AB is also an equivalence
map. In particular the direct sum of two objects is unique upto equivalence.
An additive (abelian) category by definition is a preadditive (exact) category
satisfying the axiom:

(A3) Any pair of objects has the direct sum.
In the sequel A;®A. will stand for the direct sum A of A, and A, fixed once

and for all with the four maps A;—A, 4.—A, A—A,;, A—A, also fixed once and for
all. These four maps are called the canonical maps for A;®A,, and will be denoted
by Ac(A@Ay), Arc(ADA), (ADAN0A,, (A1®A:)4,. The first two are the ca-
nonical injections and the last two are the camonical projections. For fear
of confusion one may write Ac,(A®A), Ac,(ADA) according as it refers to the
first component or the second. The obvious canonical equivalence maps ADA;
—A®DA;, (APA)DAr— A®(A:DAs) will be designated with insertion of the symbol
ac. For simplicity the direct sums DA, A@F shall be those given, by

(OA, AeA, Ag, AeA): A=0ODA,

(AeA, 0A, AeA, AD): ~A®2.
Otherwise there will be no restriction on the choice of direct sums.

Given two maps A;—B,, Ay—B:, we shall write A,B;®A,B; for the mapA,®A4.
—B,®B; given by (A®A)0A;Bic(Bi®By)+(Ai®DA:)0A:B:c(Bi®By). Direct sum-
ming of maps preserves kernels, cokernels, and therefore exactness of sequences.
For two classes S;, S; of maps in an additive category, we shall denote by SiDS:
the totality of maps which can be presented as the direct sum ¢:@¢: (1 ES:
¢,€8:). Clearly we have PU®P=Pu. If 4 is additive then the categories
& (n=0,1,2,---) are additive. Given a map ¢: A—B we define ¢*: A—>A®B,
2#: A®B—B, ¢,: A—B®A, 2,: BOA—B by

Ac?(A®B)=Ac(A®B)+ABc(ADB),
(A®B)owB=—(ADB)AB+(A®B)B,
Ac,(BDA)= —ABc(BDA)+ Ac(BDA),
(B@A)D¢B=(B®A)oB+(B@A)oAB.
Then we have
(Ac*(A®B), Bc(A®B), (A®B)0A, (A®B)o*B) : ADB=A®B,
(Be(BDA), Acy(BOA), (BOA),B, (B®A)A): BOA=~B®A,

and Ac?(A®B)oB=Ac(B®A)2,B=AB.



516 Nobuo YONEDA

In the special case ¢=e4, the maps ¢#, 9, reduce to the diagonal map As: A
—A®A and the codiagonal map V,: ADA—A.

o A map A—B is called direct if it is proper and if there is a map B—A such
that ABAB =AB. The totality of direct maps (direct injections, direct projections)
"will be denoted by Dot (DI.t, DJo7). Clearly we have

DDEA
e DA®D A=D1, DI 1oDI4=DI.1,
DJADIA=DJA,  DIADIA=D.A.
The four maps in the direct sum AzA1®A2 are all direct. Conversely, in an
! exact sequence
' X: §—B—E—A—9,
suppose EA is direct. Then we have a map A—E such that AEA=AecA.
“Since (EeE—EAE)-EA=0, there is a unique map E—B such that EBE=EeFE
—FEAE. From BEBE=BE—BEAE=BE follows BEB=BeB, and so we get

(AE, BE,EA,EB): E~A®B.

In this case the short exact sequence X is said to be direct. Also BE is
direct if and only if X is direct. From this we see easily the identity.

kernel-'D.incokernel ! D i=D.1.

Note that we have DJ.1oDILi=.4, for any map ¢: A—B can be decomposed as
AB=Ac?(A®B)>B.

14. In what follows the commutative diagrams

A:9—A>A— A0
Bx2) '
B: 9—~B—B—B—y,

A" g B—A'—A—9
(8x2) 3

B: 0—B—>B—B—yg
with the sequences A, B, A’ exact or not, will appear frequently. These will be
referred to as the (8x2)-diagram, (8x2’)-diagram respectively.

LEMMA 8X2. 1. In the (3X2)-diagram suppose AA=kernel AA and BB, AB
are injections.

(i) If BBB=0 and if AB is the kernel of a map B—C, then AB=kernel
BBC.
(i) If AB has the kernel N—A, then NAA=kernel AB.

(i) If AB has the kernel N—A, then there is a unique map N—A with
NAA:NA, and we have NA=Xkernel AB.
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(iv) AB is an injection if and only if AB is an injection.

Proor. Ad (i): Firstly we have ABBC=AABC=0. Secondly AB is an injec-
tion, since ABB=AAB is an mJectxon Let D—B be any map with DBBC=0.
Then there is a map D—A such that DAB= —DBB. From DAAB=DABB= =DBBB
=0 follows DAA=0, and so there is a map D—A such that DAA=DA. This
map gives DAB=DB, for 3 v.e have DABB=DAAB=DAB=DBB. So we get
AB=kernel BBC. ,,

Ad (ii): Firstly we have NAAB NABB=0. Secondly NAA is an injection,
because NA, A4 are injections. Let D—A be any map with DAB=0. From
DAAB=DABB=0 follows DAA=0, and so there is a map D—A such that DAA
=DA. Next DABB=DAAB=DAB=0 implies DAB=0, and so there is a-map
1?—.»1\7 such that DNA=DA. This map gives DNAA=DAA=DA, which proves
NAA=kernel AB.

Ad (iii): Because of NAAB=NABB=0 we get NAA=0, and so there is a
unique map N—A such that NAA=NA. Applying the part (i) to the commuta-
tive diagram

N=>N-0

[
A—A-A

we obtain NA=kernel AAB. Since BB is an injection we get kernel AAB=
kernel ABB=kernel AB, and so NA=kernel AB.

Ad (iv): The ‘if’ part is obvious, while the
case N=g of (ii). This completes the proof.

LEMMA 3x2. 2. In the (3x2)-diagram suppose A’ is exact and BB =kernel
BB. Asumme there is « map A'—B with A'BB=A'B. Then there exist maps
A'—B, A'—A' such that A’BB=A'B—A’A'B, (A'4’, BA!, A4, A'B): A’
~A'®B, and A’A'B=A'B.

PROOF. Becauee of (A’B—A’A’B)-BB= —A’BB—A'A’B=0, there is a map A’
B such that A'BB=A'B—A’A'B. Further from BA’BB=BA'B—BA'A'B=
BA'B—0=BB follows BA’B=BeB. Thus BA’ being direct, the short exact se-
quence A’ is direct, and so we have a map A’— A’ completing ths direct sum (4'A’,
BA’, ATA!, A'B) A'~A’®B. Finally we have A’A'B=A'A'-(A'BB+A’A'B)=
A'A’BB+ A'A'A'B=0+A'A’A'B=A'B, which completes the proof.

‘only if’ part is the special

LEMMA 3x2. 2. In the (8X2)-diagram suppose A’ is direct exact, and BB
—kernel BE. Then A’B is an injection if and only if A'B is an injection
PROOF. The ‘if’ part is obvionus by Lemma 3X2. 1, (iv). For the ‘only if’

part let C—A’ be any map with CA’'B=0. By assumption we have a map Al—A’
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such that A’A’A’=A'eA’. Thus because of CA’A’B-BB=CA'A’A'B'=CA/B'=0
there is a map C—B with CBB=CA’A’B. If now A’B is an injection, then from
CA'A'B=CBB=CBA'B follows CA’A’=CBA’, and so we get CA'=CA’A’A'=
CBA’/‘i’ =0, completing the proof.

L5. In the (3x2)-diagram suppose A, B are exact and AB, AB, AB are proper
prpje'qtio'ns with respective kernels N—A, N—A, N—A. Then we get the com-
_ mutative diagram

> 2
=
Loy
D= W= o= -
Ll
Qe b e Pes
L. 1
Qe e e e
Lol
S

&
S
l
l
i
!

: . where rows and columns are exact except for the top row N. By Lemma 3X2.
1, (i) we have NN=kernel NAA=kernel NNA=kernel NN. As stated in [1] we
have:

'LEMMA 8%38.1. N is exact if A is an exact category.

Perhéps the shortest proof is as follows. Firstly N is exact if NN is a pro-
jection. For in an exact category a projection is always a proper projection, and
so it is the cokernel of its kernel. By duality, if in the above diagram rows and
columns are exact except for the third column, and if NA is an injection, then
the third column is also exact. Secondly NN being proper, we take (N—M)
=coimage NN =cokernel NN and (M—N)=image NN. Define M—A by MA=MNA.
Then MA is an injection, and so by the above result the sequence g—M—A—B—0
is exact. Therefore MN must be an equivalence map. Hence N is exact.

< It is clear from Lemma 8x3.1 that in the category &”.1 of n-fold extensions in
an exact 4 a map X—X’ is a proper projection (proper injection) if all the vertical
constituents are projections (injections). It is not difficult to see that in &'4 the
converse holds. Note that the converse does not hold in €24, as illustrated by
the following short exact sequence in &2.1:

0—>0—>0—>C=>C—0
: | ¥ |

0—>0—>C=>C—0—0
| ¥ $ !

0>C=>C—0— 08—

Suppose 7 is an exact category. Let X: §/—B—E—A—g be an exact
sequence, and let A—A be a direct injection with the cokernel A—A. Then
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taking the kernel E—E of the projection EAA, we get by Lemma 3x3.1 (or by
Lemma 3x2.1, (iii) and Lemma 3% 2.3) the commutative diagram
"X =B o E — A0

g L
Xt §—=B — B A ==f
with exact rows. We now introduce the following conditions to be imposed on an
additive category. ‘ .
(Ql) Any short exact sequence X : §—B—E—A—@ and any direct injection A—A
can be extended to a'map X—X in &' such that ENXX)=BeB.
(Q1*) Any short exact sequence X : §—B—E—A—f and any direct projection B
—B can be extended to a map X—X in &' such that ENXX)=AeA.
(Q2) Any short exact sequence X: §—B—E—A—g and any map A’—A can be
extended to a map X’~X in &'4 such that ENX'X)=DBeB.
(Q2*) Any short exact sequence X: §—B—E—A—# and any map B—B’ can be
extended to a map X—X’ in &' such that EXXX')=AeA.

Obviously (Q2) implies (Q1). We assert the converse. In fact given X and
a: A'—A we take the direct sum sequence X : f—B—A’®E—A'®A—0 of X and
g—0—A'=>A'—g. Since A’c*(A’®A) is a direct injection we have by (Ql) a map
X'—X in &' extending A’c*(A’®A) and BeB. This composed with the canonical
projection X—X gives the required map in (Q2). Dually (Q2*) is equivalent to (Q1%).

An exact category satisfies (Ql), (Q1*), and therefore an abelian category
satisfies (Q2), (Q2*). However, (Q2) and (Q2*) are not exclusive properties of an
abelian category. In fact if 1 is abelian, then the non-abelian category &LA
satisfies (Q1), (Q1*), and so (Q2), (Q2*). Also the additive category Ca satisfies
(Q2), (Q2%) (cf. [9, VIII].)

In proving Lemma 3x3.1 in the category 4 of A-modules, one would
usually proceed by picking up elements of A-modules and by checking whether a
certain element of a A-module lies in the image of a certain A-homomorphism.
For any map A’—A and any epimorphism E—A in 4&, the image in 4 of
an element of A’ can be ‘lifted’ to an element of E. This type of ‘elementary’
argument is not allowed in an abstract additive category. In 4% we can avoid
such an elementary argument in covering A’ by an epimorphism F'—A’ from a
A-free module F’, whence A’—A can be lifted to a map F'—FE. In an exact
category with sufficiently many projectives a projection F’—A’ from a projective
object P’ will do the work. The use of projectives can also be avoided in an
additive category satisfying the following conditions :

(Q2.1) Any short exact sequence X: /—B—E—A—¢ and any map A’—A can be

extended to a map X'—X in &'
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(Q2.1*) Any short exact sequence X : 0—B—E—A—¢ and any map B—B’ can
be extended to a map X—X’ in &1,

These are weakened forms of (Q2), (Q2*) respectively, where again to the
same effect we may restrict A’—A to direct injections and B—B’ to direct pro-
jections. Note that (Q2.1) ((Q2.1*)) holds in an additive category with sufficiently
many projectives (injectives). We shall illustrate the use of (Q2.1) in proving the
following generalization of Lemma 3x3.1*, namely :

LEMMA 3X3.2. Assume A satisfies (Q2.1). In the commutative diagram

X: X: X:
/] g g
| l d

B: 9—-— B B —- B -9
L & 1

E: 9o FE >E —>FE —9¢
i) ! L

A: 0> A > A —>4A->9
l | |
g g g

suppose rows and columns are exact except for the bottom row A. Then A is
necessarily exact.

ProoF. We know AA=cokernel AA by Lemma 3x2.1, (i)*. So we shall prove
AA=kernel AA. Let C—A be any map with CAA=0. Extend it to a commuta-
tive diagram )

Y: 0>D —F —C—g

. : 1 U

X: 9> B —>E - A —9g
with exact rows. Because of FEEA=FEAA=FCAA=0, there is a map F—B
such that FBE=FEE. Then from FBBE=FBEE=FEEE=0 follows FBB=0,
and so there is a map F—B such that FBB=FB. Further from FBEE=FBBE
'=FBE=FEE follows FBE=FE. Therefore we get FCA=FEA=FBEA=0,
and so CA=0. Thus AA is an injection. Next let C—A be any map with CAA
=0. Again extend it to a commutative diagram

Y: 9D —-F >C -0

| ! !

with exact rows. Because of FEEA=FEAA=FCAA=0, there is a map F—B
such that FBE=FEE. Extend this map to a commutative diagram

F: g F - F - F o 17}

S
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with exact rows. Since we have (FFE—FBE)-EE=FFBE—~FBBE=0, there is
a map F—E such that FEE=FFE—FBE. Then from FFEAA=FFEEA
=FFFEA—FFBEA=0 follows FFEA=0, for AA is already shown to be an in-
jection. Consequently there is a map F'—A such that FFA=FEA. Finally ex-
tend the map DF to a commutative diagram

D: 0—-D—D—D—0
1] ! !
F: g F >F —>F -9

with exact rows. Then we have DDFAA=DFFAA=DFEAA=DFEEA
=DFFEA—DFBEA=DFFEA=DDFCA=0, and so DFA=0. Hence there is a
map C—A such that FCA=FA. For this map we have CAA=CA because of
FFCAA=FFPAA=FEAA=FEEA=FFEA—FBEA=FFEA=FFCA. Thus AA
=kernel A4, and the proof is completed.

§2. S-categories.
2.0. In §1 we met with examples of non-abelian additive categories. Let A stand
for one of the categories €".® (n=1, & is abelian), Ca. We shall say for the
time being that a short exact sequence #—B—E—A—f in A is ‘special’ if for
A=E" 2 the n-+2 constituents I—EXB)—ENE)—EIA)—0 (k=—,1,2, "1, )
in 2 are all exact, and if for JI=Ca the sequence is “strictly exact’ (cf. [9, VII]).
We shall also say that a proper injection B—E in A is special if the short exact
sequence §— B— FE—Coker BE—g is special, and that a proper projection E—A in
A is special if the short exact sequence #—Ker EA—E—A—0 is special. Then a
common feature of 1=&" 4, and A=Ca is that in A the following conditions
hold :
(Q0) (special projection)o(specialoprojection)=(special projection).
(Q0*) (special injection)o(special injection)=(special injection).
(Q2) Any special exact sequence X: #—B—E—A—0 and any map A’—A can be
imbedded in a commutative diagram
X: g—-B - E A —0
i i l
X: 9B —-E—-A—90
with special exact rows.
(Q2*) Any special exact sequence X: §—B—E—A—# and any map B—B’ can
be imbedded in a commutative diagram
X: B —-E—-A—7J
{ | l
X: B —-FE —-A—0
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with special exact rows.

In generalizing those additive categories we introduce the following :

DEFINITION. An S-category is a pair (A,S) of an addive category A and
a class S of maps in A, subject to the following four conditions:
S1) PuoSNE..
82) sPscs.
(S3) kernel ScsS, cokernel SC.S.

(84) " SIeST=S (where SI=8nlA, SJ=5nJ).

.‘k‘k‘Maps belonging to S will be called special (or S-special) maps. Am exact
. sequence in A is called special (or S-special) if every map in the sequence 1is
special. A regular S-category is an S-category satisfying (Q2), (Q2%). A quasi-
abelian S-category is an S-category satisfying (Q0), (Q0*), (Q2), (Q2%).
'i_The conditions (S3), (S4) can be unified to the condition that in an exact
i sédue'née A—B—C—D if AB, CD are special, then BC is also special. Among
S-categories attached to an additive category 2, the pair (4, D) is the smallest,
and (4, P) is the largest. For any number of S-categories (7, S;) the inter-
section (1, NS;) is again an S-category. Clearly (7, D) is quasi-abelian. An
additive category 7 is called quasi-abelian if (.1, P.?) is regular. In this case
(4, PJ) is quasi-abelian, as will be shown later. The author does not know
whether a regular S-category is always quasi-abelian. Note that the argument
in §1.5 shows that (Q2) is equivalent to its weakened form (Ql) where we restrict
A'—A to be a direct injection. Dually (Q2*) is equivalent to its weakened form
(Q1*) where we restrict B—B’ to be a direct projection. For an abelian category
A the S-category (.1, P.i) satisfies (Q0), (Q0*), while (Q2), (Q2*) have been verified
in §1.5. Thus an abelian category is always quasi-abelian.

2.1.° We prepare some lemmas on the (3x2)-diagram

A: 9> A > A Ay

Lol
B: 9> B —B —B —g,

and the (83x2’)-diagram
A 9 - B > A > A -y

ool
B: 4> B —~B —B 9.

LEMMA 3x24. Assume (Q2). In the (3x2)-diagram suppose A’ is special
exact and BB=Xkernel BB,

(1) A’'B is an injection if and only if A'B is an injection.

(ii) If A'B is the kernel of a map B—C, then A’B=Kkernel BBC.

(i) If A’B is an equivalence map, then A’B is an equivalence map, and
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B is special exact. .
PrRoOF. Ad (i): The ‘only if ’ part is in cluded in Lemma 3x2.1, (iv). For the

“if’ part let D—A’ be any map with DA’B=0. In virtue of (Q2) we can imbed
A’ and DA’ in a commutative diagram

D: 90— B—>D—D—0

% vooLod

A 0> B — A= A =0
with special exact rows. Because of DA'BB=DA’A'B=DDA’B=0 there is a
map D—B such that DBB=DA’B. Since A’B is assumed to be an injection,
from DBA’B=DBB=DA'B follows DBA'=DA’. Therefore we get DDA’
=DA’A’=DBA’A’=0, and so DA’=0. Thus A’B is an injection.

Ad (ii): Firstly we have A’BBC=A'A'BC=0. Secondly A’B inan injection,
since A’B=Kkernel BC is an injection. Now let D—B be any map with DBBC=0.
Then there is a map D—A’ such that DA’B=DBB. Extend A’ and DA’ to a
commutative diagram D—A’ as above. By composing the vertical constituents
in D—A’ with those in the (3x2’)-diagram we obtain the commutative diagram

D: 99— B—D—D—/
T T
B: 9 - B— B — B —/0.

Since we have DBB=DA'B=DB, Lemma 8x2.2 can now be applied, and we obtain
a map D—D such that DDB=DB. So the map D—A’ defined by DA'=DDA’
gives DA’B=DDA’B=DDB=DB. This shows A’B=kernel BBC.

Ad (ifi): We now have A’B=kernel Bg, and so by the above part (ii) we get
A’B=kernel Bs. Thus A’B is an equivalence map, and so, being at all equivalent

to the special exact A’, the sequence B is special exact.

LEMMA 3x2.5. Assume (Q2). In the (8x2")-diagram suppose B is special
exact. Suppose further that A’B is the kernel of a map B—C. Then there
is a unique map B—C such that BBC=BC. Moreover A’ is special exact if

and only if A’B=Xkernel BC.
PROOF. The first part is obvious from BBC=BA'BC=0. Suppose A’B’

=kernel BC. Since this is an injection we get BA’=kernel A’A’ by Lemma 3x2.1,

(iii). Now in virtue of (Q2) we can imbed B and A’B in a commutative diagram

Al: 0—»B—>A1—*.ﬂi’—>0
v o i
B: 9—>B—-B—>B—0
Because of A;BBC=A,A’BC=0 there is a map A—A

with special exact rows. nay
A’A'B=A,A’BB=A,BB=AA'B follows

such that A;A’B=A,B. Then from A
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A;A’A’ A;A’, and from BA,A’B=BA,B= BA’B follows BA;A’=BA’. Thus
commutativity holds in the diagram
Al: g — B S A1 — A — g

¢ L
A: 0> B A A0

and so by Lemma 3x2.4, (iii) the sequence A’ is special exact.
LEMMA 3X2.6. Assume (Q2). In the (3x2)-diagram and (3X2)-diagram
. with the same B suppose AAA=0, BB=kernel BB, and A’ is special exact.

. Further assume that AB is decomposed as AB=AA'B by a map A—A'. Then
there is a unique map A—A’ such that commutativity holds in the diagram

A Z\
a~!—;}3-l*—-1 '——lf*}i'm-o

Proor. Consider the direct sum sequence B—A'®B—A'®B of §—A'=>A’ and
B—B—B. We have B(A'®B)=kernel (A’®B)(A’®B). Naming the map A’B as
¢, we have the direct exact sequence —A'—— A'®@B-".B—p. Define now a map
A'—A'®B by A/(A'®B)=A'A'c(A'®B)+A’Bc(A’®B). Then commutativity holds
in the diagram

A': 9> B - A" - A" -9
ST S
B—-A'"®B—A'®B,
and so by Lemma 3x24 we get A’(A’®B)=kernel(A’®B)(A’'®B)o*B. On the
other hand we have
{AAA'c(A’®B)+ABc(A'®B)}-(A'®B)A'E B)oB
=—AAA'B+ABB=—AAB+ABB=0,
and so there is a unique map A—A’ such that
AA(X'®B)=AAXo(A'®B)+AB(A'GB),
i.e., AA’A'=AAA’ and AA'B=AB.

Thus it remains only to show the commutativity AAA’=ABA’. This follows from
AAA(A®B)=AAAA'(A'®B)+ AAB(A'DB)
=0+ABBc(A'®B)=AB(A'®B)=ABA/(A'®B),
for A/(A’®B) is an injection.

LEMMA 3x2.7. Assume (Q2%). In the (8X2)-diagram suppose A’A’
=cokernel BA’, BB=cokernel BB. If A’B is a special injection, then A'B is
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also a special injection. -
Proor. Let B—L be the cokernel of the special injection A’B. Then by

Lemma 3x2.1, (iii)* we obtain the commutative diagram
B =B
] |
g —-A'—-—B—-L—0
X! 1 N

A-’ — L ’
where BL=cokernel A’B. Thus by Lemma 3x2.5* the sequence g—A'—B—L—p
is special exact.
LEMMA 3x28. Assume (Q2) and (Q2*). In the (8x2)-diagram suppose
A’A’=cokernel BA’ and B is special exact. Then A’ is spectal exact.
Proor. Imbed B and A’B in a commutative diagram
A: 9> B > A - A -0
¥ L4
B: 9o—-B—~B—-B—/0
with special exact rows. Then by Lemma 3X2.6 we obtain the commutative
diagram
B — A - A
¥ ! ¥
A: 69— B - A - A — 0.
In virtue of (Q2*) we can now apply Lemma 3X2.4, (iii)* to conclude that A’ is
special exact.
COROLLARY. If ¢op is a special injection and if ¢ admits the cokernel,
then ¢ is a special injection.

2.2. In continuation to the preceding paragraph we prove some more lemmas on

special exact sequences. The following commutative diagrams will be referred to
as the (3x38)-diagram and the (8x8—1)-diagram respectively :

B: E: A: E: A:

g '} g 7} g

. Lol . L 4
X:9> B —>E—A—90 X:9—>B—> E—A—0

] ] i) J I} !
X:9—- B—-E—> A—90 X:9—»>B— E—A—0

- I L, &
X:9—- B —-FE — A — 9, A=>A .

i) ! i !

g g /] g g

where the rows are special exact, and the columns may or may not be exact.
The S-category (.4, S) is now assumed to be regular.
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LEMMA 3%X3.3. In the (3x3—1)-diagrem we have:

(i) E 1s exact if and only if A is exact.

(ii) If A 1is direct exact, E is special exact.

(i) If E 1s special exact, A is special exact.

(ivv)k_F",‘The converse of (iii) holds if (.1, S) is quasi-abelian.

PR:OOF. Ad (i): Suppose E is exact. Then we have AA=cokernel AA by
Lemma 3x2.1, (iii)*, AA=kernel AA by Lemma 3x2.5, and so A is exact.
. Likewise the converse follows from Lemma 3x2.1, (ii)* and Lemma 3x2.4, (ii)
Ad (ii): Firstly E is exact by (i). Let A—A, A—A be maps giving (44,
" AA,AA,AA): AxADA. Then the direct sum sequence of g—f—A=>A—0 and
E can be written as
_ E: 9-E—ADE—A—p,

' ifwhere E(AGL)E) EEc(ADE) and (ADE)A=(ADEYAA+(ADE)HEAA. We now
deﬁne E—-»(A@E') by E(A®E)=EAAc(ADE)+Ec(ADE). Then we get BE(A®E)
-—BEAAc(A@E)—{-BE'c(A@E) 0+BEE(A®E)=BE(A®E) and
E(A®E)A=EAAA+EAA=EA-(AAA+AAA)=FEA. Thus the diagram

X: 9>B—E—A—90

3. au ¥

E: 9 - F—>ADPE— A — 0
is commutative, and so E is special by Lemma 3x2.8*. Then Lemma 3X2.8
applied to the canonical injection E—E shows that B is also special.

Ad (iii): This is an immediate consequence of (i) and Lemma 3X2.8*,

Ad (iv): If A is special exact, then EA=FAA is a special projection by (Q0).
Being exact by (i), E is then special exact. Q.E.D.

Since the (3xX3—1)-diagram can be reconstructed from any special projection
E—A and any proper projection A—A4, we get:

. COROLLARY. PJAe8J=PJa,  SI-PI.i=PIl.,
‘ DJaeSI=81, SIeDI =3I,

In particular if the S-category (.1, P_i) is regular, then it is automatically quasi-
abelian.

LEMMA 3X29. In the commutative diagram

X: 9-BLAESAoy
BrXx)

5
Xi 0B m kA
suppose X, X' are special exact. Define B—B'®E, B'®E—E’' by B(B'QE)

=—BB'¢(B'®E)+BEc¢(B'DE), (B'®E)E'=(B'®E)oB'E'+(B'®EEE'. Then
commutativity holds in the diagram
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BAY: 0§ - B—>B®E—E — 0
$ o 4
X g—-B—FE — A—0
and the sequence (BA¢) 1s special exact. .
Before giving the proof we shall give a few remarks.
3% 2.4, (iii) the special exeact sequence X’ is (upto equivalence) uniquely determined
by X and 5. This is why we have designated the first diagram as B X).
The notation (3A¢) comes from the same reason. We shall often write SOX
for the sequence X’. Similarly XOa, (X_la), ¢V 8 are defined for a: A'—A.
PROOF OF LEMMA 3x2.9. Take the direct sum sequence X : /—~B'®B—~B'®F
—A—f of )—B'=>B'—g—g and X. Recall that the sequence ﬂ-—»BiB’@B—ﬁB’—*ﬂ,
given by Becsy(B'®@B)=—BB’¢(B’®B)+Bc(B'®B) and (B’®B)ogB'=(B'®B)oB’
+(B’®B)oBB’, is direct exact. Since commutativity holds in the diagram
BAY:
g g
i |
B

- B

By Lemmas 3X2.6%,

les 1

X: 0 —»B’@B—*B’@E—*A-—» g
128 ] 4

X: 9 —B — E—A-9,

the sequence SA¢ is special exact by Lemma 3x3.3, (i)*. Commutativity in the

second’ diagram is obvious.
LEMMA 3x2.10. In the commutative diagram

X: 0-BAE—-A—0
5, L ¥
X: 6 oBS5E—-A—0
with special exact rows suppose BB is a proper injection with the cokernel B
—B. Then there is a unique map E—B such that BEB=BB, EEB=0. More-
over the sequence §—E—E—B—p is exact. If BB is a special injection, then
EE s also a special injection.
PrROOF. Firstly commutativity holds in the diagram
£
BAy: 0> B—>BOE—E—0
‘U’ —8 la
9 -B— B — B— ﬂ
Hence there is a unique map E—B with which the diagram remains commutative.
This commutativity (B®E)EB=(B®E)>BB means that on the two components
B, E we have BEB=BB and EEB=0. So the first part is proved. Next Lemma
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3><‘.f‘?., (i)* applied to the so completed diagram shows EB=cokernel EE. To prove
"EE=kernel EB, let C—E be any map with CB=0, and use (Q2) to obtain the
commutative diagram

g-B—C—C—0

. ¥ .4
BAY: 0 = B—-BOE—E— ¢
v o5 o |

g —-B— B—B—y
where the first two rows are special exact. Since CEB=0, we take 0: C—B, and
. apply Lemma 8X2.2 to obtain a map C—C such that CCC=CeC, CC(B®E)oB=0.
i Define C—E by CE=CC(BO®E)E. Then we get CE=CCCE=CC(B®E)E
=CC(BOE 0BE+CC(BOE)EE=04CEE. On the other hand EE is an injection
by Lemma 3x2.1, (iv). This together with EB=cokernel EE shows that the
sequence §—E—E—B—g is exact. Finally in view of the commutative diagram

0 -B—B—B—yg
L4
g -E—~E—B—yg

the last part is obvious from Lemma 3X2.8*.

LEMMA 3X2.11. Assume (A, S) is quasi-abelian. In the commutative diagram
X: 9oB>E—A—y
] | e
X: 9>-B->E—-A—9 .
with special exact rows suppose AA, BB are special injections. Then EE is
also a special injection.
Proor. Consider the commutative diagram (X_la);
XOa: 0 > B—E —A—9
v | |
X: 9>oB—>E—->A—g.
By Lemma 3X8.3, (iv) E'E is a special injection. On the other hand by Lemma
8X2.6 there is a unique map E—E’ such that the diagram
X: 0-B—-E—A-y
l Iy
XOa: 6 > B—>E —>A—9g

is commutative and EE’E=EE. By Lemma 3x2.10, EE’ is a special injection,
and so EE is a special injection by (Q0*).

LEMMA 3x3.4. Assume (A, S) is quasi-abelian. In the (8% 3)-diagram suppose
B is special exact.

(i) If E is special exact, A is specsal exact.

@) If A is special exact and EEE=0, then E is special exact.
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ProoF. Ad (i): Consider the commutative diagram (E_BE):
E: 9—-E—-E—-B—0
" v Ll
E: 9-FE—-FE—-FE—9J.
By Lemma 3x3.3, (iv) the sequence §—E'—E—A—p (EA=EEA) is special exact.
By Lemma 3x2.6 there is a unique map B—E’ such that the diagram
B: 99—~ B—>B—B—Jg
- Lo ¥
E: 9 -FE—-E —-B—90
is commutative and BE’E=BE. Further by Lemma 8XZ2.10 there is a unique
map E'—A such that EE'A=EA, BE’A=0. Moreover the sequence §—B—E'—
A—p is special exact. We now assert that commutativity holds in the diagram °

!

g >B—E A0

¢ !

g -B—FE —-A—40,
{ L
f|1=>A
b

from which will follow exactness of A by Lemma 3x3, (ili). We have already

BE'E=BE and EA=EEA=EAA. So it remains only to prove E'EA=E'AA.
Now that the two rows in the diagram are exact, there is a map a’: A—A with
E'Aa’A=E'EA. Then we get EAa’A=EE'Aa’A=EE'EA=EFEA. Since the
commutative diagram E—A determines the map A—A, we get Aa’A=AA, and
so the above diagram is commutative. Hence A is special exact.

Ad (i): By Lemma 3x2.11, EE is a special injection. Let E—E’ be the
cokernel of EE. Then by the part (i) we get the (3x3)-diagram with E replaced
by E’, where rows and columns are all special exact. Since EEE=0, there is a
map E'—E such that EE'E=EE. From BBE'E=BEEL'E=BEE=BBE follows .
BE'E=BE, and from EE'EA=EEA=EAA=EE’A follows E'EA=FE'A. Thus
commutativity holds in the diagram

0 -B—-E —->A—-9
j ' ¥
9 -B— E —A— 0,
and so E’E is an equivalence map by Lemma 3X 2.4, (iv). Hence E is special exact.
2.3. In this paragraph we shall give some remarks on how to check whether a

given S-category (4, ) is regular (or quasi-abelian). Out of the lemmas hither-
to established we get necessary conditions for the S-category to be regular (or
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quasi-abelian). Some combinations of them will constitute criteria. For example
the following two conditions make clearly a criterion for the S-category to be
quasi-abelian :
(Q Any special exact sequence §—B—E—A—f and any special injection A
—A can be imbedded in a commutative diagram
S 9—>B—>E—A—0
gl g v 1|
TR g—-B—->E—>A—0
~ where rows are special exact and EFE is special (it is a fortiori an injection).
(Q*): The dual of (Q).
If (4, ) is regular then by the corollary to Lemma 3% 3.3 we have the com-
position rules:
7(Q0.1)  DIAesI=sI.
;(Q0.1%)  SI-DIA=4I.
‘ Sﬁppose (A, S) satisfies (Q0.1). Given any special exact sequence X : g—B—E—
A—g and any direct injection A—A with the cokernel A—A, we take the kernel
E—E of the special projection EAA. This gives rise to the commutative diagram

l

d

Qe— de— e De—s
|

D — D e ey
!
D

4

D

!

=
l

N2

whére BE=kernel EA by Lemma 3x2.1, (iii), and EA is a projection by Lemma
3X2.3. Hence (Q0.1) and the following weakened form of Lemma 3x3.3, (iii)*
imply (Q2), namely : _
(Q3) In the commutative diagram

0 >E—~E—>A—g

Ll

suppose the first row is special exact, second is direct exact, and EA is a special
projection. Then EA is special.
Thus the combination (Q0.1), (Q0.1%), (Q8), (Q3*) gives a regularity criterion, and

the combination (Q0), (Q0*), (Q3), (Q3*) gives a quasi-abelian criterion.

There are other ways to guarantee special exactness of §—B—E—A—g. Con-
sider the following weakened form of (Q2*), namely :

(Q2.1%) Any special exact sequence X: §—B—E—A—0 and any map B—B’ can
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be extended to a map X=X’ in &' .
This condition implies exactness of g—B—E—A—p. Infactlet E—C be any map

with BEC=0. Imbed the spec1al exact sequence §—E—~E—A—p and ECin a
commutative diagram

E: 9 ~E—E—-A—9

f 1 &

C: 0 -C—-C—-C—90
with exact rows. Because of BEC=BEEC=BECC=0 there is a map A—C such
that EAC=EC. Then from EAACC=EEACC=EECC=ECCC=0 follows AACC
=0, for EA is a projection. Consequently there is a map A—C such that Ace
— AAC. Finally from EACC=EAAC=EEAC=EEC=ECC follows EAC=EC,
and so we get EA=cokernel BE. We now add to this the following weakened
form of the corollary to Lemma 3x2.8, namely :
(Q4) If ¢, ¢oo are special injections and if ¢ is a proper injection, then ¢ is a

special injection.

This condition guarantees that the exact sequence E is special.
implication (Q0.1)n(Q2.1)n(Q4)—(Q2). Note that (Q4) is trivial for the S-category
(A, PA). Note also that (Q2.1%) holds if there is a regular S-category (A, Sy) such
that &2, in particular if 1 is a quasi-abelian category. (Q2.1*) holds also when

<1 has enough injectives.

So we get the

PROPOSITION 2.1. If (4, S;) are regular (quasi-abelian), then the S-category

(A, NSy) is also regular (quasi-aberian).
In fact the conditions (Q0.1), (Q0.1%), (Q0), (Q0*), (Q3), (Q3*) are hereditary to
intersections.

Let (1, S), (A, S') be S-categories, and let f: A—" be an additive functor.
We denote by f*S’ the class of maps in .1 consisting of proper maps ¢: A—B
such that the exact sequences #—Kerp—A—Im¢—g, F—Im ¢—B—Coker ¢o—F
are carried over by f to S’-special exact sequences. Obviously (A, f¥s"), (A,
Snf*s’) are S-categories. We shall say that f is half S-exact if for any S-special

exact sequence g—B—E—A—g the sequence f(B)—f(E)—f(A) (arrows reversed

if f is contravariant) is exact. The following proposition provides us with various

examples of quasi-abelian S-categories :

PROPOSITION 2.2. If (A, S), (A, S') are regular (quasi-abelian) and tf f s
half S-exact, then the S-category (A, SnftS’) is regular (quasi-abelian).

PrOOF. We shall only prove the quasi-abelian case, since the regular case is
proved similarly. Without loss of generality we may assume f is covariant. Let
X: 0—B—E—A—f be an Snf*S’-special exact sequence, and let A—A be an
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Snfis’-special injection. Since (.7, S) is quasi-abelian these can be imbedded in a
commutative diagram

2
B

!
!
l

X: 90—

ety

X: 00—

l
&(—}ﬂ——-bﬁ—@(—&
y !
S e s P
!
Lo [

’

where X, E are S-special exact. Since f(EA), f(AA) are S’-special projections,
so is f(EA). On the other hand f(BEE)=f(BE) is an &'-special injection and
by hypothesis f(B)—f(E)—f(A4) is exact. Therefore the proper map f(BE) is
an &’-special injection by the corollary to Lemma 3x2.8, and it is the kernel of
f(EA). Then by Lemma 8x2.1, (iv) f(EE) is an injection. Now the sequence
FE)—-f(E)—f(A) being exact and f(EA) being an S'-special projection, the
sequence f(E) is &'-special exact. Consequently f (X) is S’-special exact by Lemma
3x3.3, (il)*. This shows that E, X are Snf%S’-special, and so (A, Snf X%
satisfies (Q). Dually (Q*) is verified, and the proof is completed.

§3. Similarity classification and composition product.
3.0. Let (2, S) be an S-category. We shall denote be S&" (n=1) the full sub-
category of the additive category &1 consisting of special exact sequences. Namely
an object X in S&"4 means a special exact sequence in 4 of the form
X: 9-B—E,~E, —--—E—A—0,
a map £: X—X' in S&" 4 means a commutative diagram

X: 9oB—E,——E—-A—0
18 ! i

X: § B —-E,—-->E/—A'—> g0
with special exact rows, and the composition (addition) of maps in S&*.1 is given
by composing (adding) the vertical constituents term by term. Direct sums in
SE™ A are given by the direct sum of special exact sequences, and thus S&"J is
an additive category. We define additive covariant functors SE?, SE?: S€*A—A
by SEMX)=A, SE'f)=a, SEMX)=B, SE}&)=8. Also SE" will denote the
obvious covariant functor S&"4—AX A having the first component SE™ and the
second component SEF. For a pair of objects (4, B) in 4, EXT*(4 s5)(4, B)
will stand for the totality of objects X in S&"1 such that SE"(X)=(4, B). For
two objects Xj, X, in EXT" (4, 5)(A4, B) we shall write X,~X, if there exists a map
§: Xi—X; in S€"J such that S&€"(&)=(e4, €s). The binary relation ~ is reflexive
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and transitive. It generates an equivalence relation ~ in EXT"(z,s5)(4,B), which
we shall call similarity. Namely X~X’ if there is a finite series of relations

XXX S XX

The objects X in EXT" (4, s)(4, B) now fall apart into a collection Ext" (4, 5)(4, B)
of similarity classes [X]. For the case (1, S)=(41H, +H4) we have established in
[10] a certain 1-1-correspondence between Ext"(A4, B) and Ext" 4.5)(4, B) using
projectives or injectives. We shall now give functorial and additive structure
directly to Ext" (4, 5)(4, B) without recourse to projectives or injectives, but under
the assumption that (.4, S) is regular.

In what follows, putting an eye on the situation SE™: S€"A—AX A, we con-
sider a more general similarity classification. Namely we consider the situation

defined as follows:

DEFINITION. A span over a pair of categories (A, B) consists in a covariant
Sunctor S: X¥—AXB from a category X.

S.: %=, S,: ¥—3 will stand for the components of S. For a pair (4, B)
of objects A in .7 and B in B we write S"(4, B) for the totality of objects X
in x with S(X)=(4, B). For two objects X;, Xz in S™}(4, B) we write Xi=X;
if there exists a map £: X;—X; in & such that S(&)=(es, €5). Similarity in X
is the equivalence relation ~ generated by =5, by which S-}(4,B) is divided into

a collection S(4, B) of similarity classes.

3.1. Let S: ¥—.X3® be a span. Let X be an object in S~(4, B), and a: A’
—A a map in . By the cotranslation of X by a we mean an object
X*&8-}(A’, B) together with a map &% X°—X in X with the following properties:
(i) S()=(a,ez); (i) For any maps a’: A”—A’ in A and §’: X'—»Xin X
with S_(X"")=A", S_(£"")=aoa’ there is a unique map &: X”’—X* in X such that
§7o8'=¢", S_(¢N=a'. ‘

Also by the translation of X by B: B—B’ we mean an object ;1 XS4, B')
together with a map ;6: X—3X in X with the properties: (i*) S(s8)=(es B ;
(ii*) For any maps #: B’'—B’ in @ and §’: X—X" in X with S.(X'"=B",
S.(£")=f'oB there is a unique map £&’: ;X—X'’ in X such that 'os=¢£", S.(&)=F"
(N. B. The author [10] once used the term ‘translation’ in a different sense. In
fact the present concept is motivated by consideration of universal completions
of partly given ‘translations’ in a ‘translation category %)

These two notions are dual to each other. Thereby the dual of a span S:
¥— 1% 3 should be understood as the obvious span S*: X*—@* X * and the duality
principle on spans should be interpreted accordingly. The following properties



534 . Nobuo YONEDA

of translations and contranslations are more or less obvious; We shall only supply
the proofs to some of them:

_(3.1,1.) Let X°—X, X,°*—X be the cotranslations of XS YA, B) by a: A'—A.
Then there is a unique map X,*—X* in X such that X,°X*X=X°X, S(X;°X=)
=(A’eA’, BeB). Moreover X;°X* is an equivalence map.
In fact the first part is immediate from the definition. For the second part we
have also a unique map X*—X;* in & such that XX,"X=XX, S(X*X,9)=(A’eA’,
BeB). Then the composition X*X*X* gives XeX°X*X=X*X, S(X*X;°X?)
- =(A’eA’, BeB). Since X%eX also gives X*eX“X=X"X, S(X*X*)=(A’¢A’, BeB),
“"and since such a map X*—X* must be unique, we get X°X;°X*=X%X¢" Simi-
larly we obtain X*X*X 2 =X %eX,*.
-(8.1.2) If X*—X is an equivalence map in X with S(X°X)=(a, ep) (a 18
'-fnecessarily an equivalence map in JA), then it is the cotranslation of X by a.

In particular XeX is the cotranslation of X by AeA. The cotarnslation of X
by AeA 1is mecessarily an equivalence map in X.

(8.1.3.) If X°—X 1is the cotranslation of XeS (A, B) by a: A'—A, and if
(X2 —X<* 13 the cotranslation of X* by a’: A"—A’, then (X)*'X*X is the
cotranslation of X by aca’.

In fact let A’’”—A’’ be any map in 4, and let X'”/—X be any map in X with
S.(X'")=A"", S(X'"X)=A""A""A’A. Then there is a unique map X"’—X¢ such
that X"’ X X=X""X, S(X'"X*)=A'""A""A’, and further there is a unique map
X" —(X*)* such that X"(X*) Xe=X""Xe, S_(X'"""(X*)*)=A'"A". So we have
XXy XeX=X""XX=X"""X. Uniqueness of X'/—(X*)* under the conditions
XX XeX=X"X, S(X'"(X*)*)=A'"A" is obvious.

(8.1.4.) Let X—pX be the translation of XS A, B) by B: B—B’, and let
X'“—X' be the cotranslation of X'€S-YA’, B’) by a: A—A’. If there exists a
map §: X—X' in X with S(§)=(a, B), then we have p X=X’

In fact there is a unique map X—X’* such that XX"*X'=XX’, S(XX"*)=(AeA,
BB’), and then there is a unique map sX—X’* such that X;XX'*=XX"*, S(:XX'?)
=(Aed, B'eB’).

(8.1.5.) If cotranslations always exist in the span, then the cotramslation X<«
—X of X&S-Y(A, B) by an equivalence map a: A'—A in J is necessarily an
equivalence map in .

In fact let X;—X* be the contranslation of X« by a™!: A—A’, and let X*—X;
be the contranslation of X; by @. Then by (3.1.3), X,X°X is the contranslation
of X by es and X,*X,X* is the cotranslation of X= by e,. Therefore X;X°X,
X,°X: X« are equivalence maps in . Let X—X;, X*—X,* be the respective inverse
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maps, and define X—X7 by XX°=XX,X* Then we obtain XX X=XX; XX
=XX;- X, X°X=XeX and ' XXX =X"X," XX XeeXexxe=XX "X, X X°X-
XX XlX“'—X"XI“XleXlX“—X“Xl XX, X*=XeX". Thus X“X is an equiva-
lence map with the mverse map XXe,

In the cotranslation X“——»X of XeS-YA4, B) by a: A’—A the object X° is
unique upto equivalence over (ear, en). If (1, S) is a regular S-category, then in
the span SEU S€'—AX A the map (X_Ja): XOa—X is the cotranslation of X
by @, because of Lemma 3x2.6. Dually (57 X): X—BOX is the translation of X
by 8. So in general we shall write XOa for X<, and fJOX for sX in the translation
X—;X of X by 3. Further we shall say that a span S: Xx—AX B is regular if
translations X—30X and cotranslations XOa—X always exist. Clearly we have:

ProrosiTION 3.1. For an S-category (A, S) the span SE': S€'A—AXA 18

regular if and only if (A4S is regular.
The same symbol O was employed also for the composed sequence YOX:
«+—F—E—... of two exact sequences X : g—B—E—--- and Y: ... —F—B—/.

The reason is that as will be shown later these operations under the symbol O

can be treated in a unified manner. Here we note the followings: Firstly O

gives a pairing

O: EXT%4, (B, C)XEXT?w, 5)(4, B)‘-'EXT"“’M (4, 0C),
which is associative, namely for Xe€EXT?, (4, B), YeEXTy, s)(B, C), and
WEEXT" (4, 5)(C, D) we have WO(YOX)=(WOYO)X. On the other hand for X
€EXT! (1, s)(4, B), YEEXT" (1, 5)(B, C), and acHom(A4’, A) the cotranslation XOa
—X joined with YeY gives a map YO(XOa)—YOX, which is clearly the cotrans-
lation of YOX by «. In other words upto equivalence over (es,ec) we have
YO(XOa)=(YOX)Oa. Dually for X€EXT"(1,5)(4, B), YEEXT!(s,5)(B, C) and
reHom(C, C") we have (FOY)OX=yO(YOX) upto equivalence over (e, €cv). In
particular we have:

PROPOSITION 3.2. For a regular S-category (A, S) the spans SE": S€A—
AXA (=2, 38,---) are also regular.
3.2. Let S: —.1X3 be a span such that contranslations XCa—X always exist.

PROPOSITION 3.3. For each map a: A'—A in J and for each object B in

B there is a unique mdpping
ca: S(4, B8, B)  (we write [X]ea for calX])

such that for XS Y4, B), X’eS (4, B) we have [X]Jea=[X"] if there exists
a map &: X'—X with S(&)=(a, es). Moreover we have
(8.21) [X]ee,=[X],
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8.2.2) [XIo(aoa)=([X]oa)ocr.

Proor. For XS A, B) and a: A’—A we take the cotranslation XOa—X
of X by a. Since the cotranslation is unique upto equivalence over (ey, ¢z), [XOa]
does not depend on the choice of the cotranslation. If there exists a map X'—X
over (a, ep), then we have a map X'—»XOa over (ey, ez), and so [X']=[XOal].
Now if a map X—X; gives X~ X;, then the composition of XOa—X and X—X;
is over (a, ep), and so [ XOa]=[X,;0Oa]. This shows that[ XOa]eS(A’, B) depends
only on [X] and «. Thus it is obligatory and legitimate to put [X Jea=[XOa].
~ (3.2 and (3.2.2) follow from (3.1.2) and (3.1.3). This completes the proof.
= The dual of Proposition 3.3 will be for a span S: X—IX® such that trans-
lations X—B0OX always exist, asserting that each map 8: B—B’ induces a unique
mapping

Rt Bo: S(4, B)—S(4, B')
'“such that existence of a map X—X’ over (e4, A) implies B[ X]=[X’]. We have
:“only to set Bo[X]=[BOX1], and we get the for_mulas H
8.2.1% ep[X]1=[X].

(3.2.2%) (B'oB)e[ X ]=p"(B[X]).

Let now S: X—JX B be a regular span, so that we have the mappings o«,
Bo defined by [XJea=[XOa], B[ X]1=[BOX].

PrROPOSITION 3.4. For Xe8S-1(4, B), X’eS-Y(A’, B') and for maps a: A—A’,
B: B—B' we have Bo[X]=[X'Joa if there exists a map £&: X—X' in X such
that S(§)=(a, B). Moreover for [ X184, B), a: A—A’, 3: B—B’ we have
(3.2.3) Bo([X Joa)=(Bo[X])onr.

ProoF. The first part is an immediate consequence of (3.1.4). As for the
second part let XOa—X be the cotranslation of X by «, and let X—pOX be the
translation of X by . Then the composed map XOa—BOX is over (a,B), and
so by the first part we get B[ XOa]=[SOX Joa. This verifies the formula (3.2.3).

Combining Propositions 8.3, 3.3%, 8.4 we get:

CLASSIFICATION THEOREM. Let S: X— X3 be a regular span. Then the
system of collections S(A, B) is extended to a functor S(a,d) of two variables
a contravariant in A, b covariant in B, and the values are collections and
element-wise mappings. Thereby the functorial structure is characterized by
the property that for XeS-Y(A, B), X’eS-Y(A’, B') and for maps a: A—A’,

B: B—B' we have S(4, HLX =S, B)[X'] if there evists @ map &: X—X' in
X such taat S(&)=(x, p).

33. By an additive span we mean a span S: X—AX B where J, B, X are
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additive categories and the covariant functors S., S, are additive. For an S-
category (A, S) the spans SE": S&€"A—AX A are additive. Moreover in SE'" the
direct sum of X,€EXT"(4 s)(4,, B,) (+=1,2) can be so chosen that it covers any
preassigned direct sums A;®A., B,®B.. Formally this may not hold in an
arbitrary additive span. One could have modified the definition of additive spans
in postulating the above ‘Iiftibility of direct sums, but it is not difficult to see that
the liftibility of direct sums holds in any regular additive span. Take any direct
sum X of X; and X.. Then we have canonical equivalence maps a: A:®A4,—~S_(X)
B: S.(X)—B,®B., and it will suffice to replace X by BO(XOa) noticing (3.1.5).
In speaking of direct sums in 2 in a regular additive span S: X—JIX3, we shall
mean those which cover the preassigned direct sums in 1 and in 8. Namely
for X,eS%(4,, B,) (+=1,2) and the direct sums A,®4., Bi®B:, the direct sum
Xi®X, is required to be such that

X, ®X, €S Y(A,DA:, Bi®By),
S(X.c(Xi® X)) =(A,c(A1DA:), B,o(BiDB)),

S(X,®X)0X,)=((A1DA:)04,, (B:DB:)oB.) (=1,2).

We aim at the following :

ADDITIVE CLASSIFICATION THEOREM. Let S: X—AXB be a regular additive
span. Then every collection S(A, B) is mot empty, and addition in each S(4,
B) can be uniquely defined so that the functor S(a, b) is additive either na (ie
S(ay+az, BLX 1=8(ar, B X 1+S(cts, B)LX]) or in b. It is automatically additiife
in both variables, and S(a, B), S(4, f) respect the addition. The addition 18
realized by _

(3.3.1) [Xi]+[X:]=Vzo[ X\DX:]0A4

where Xy, X,eS Y4, B), X:®X,€S (A®A, BO®B), Ay 1s the diagonal map
Aci(ABA)+Acy(ABA), and Vi is the codiagonal map (B®B)o B+ (B®B)o;B.
S(A, B) becomes an additive group with

(8.3.2) [(BO09®(0,Cn)]=0€S(4, B),

(3.3.3) —[X]=(—ep)[X]=[X]o(—ea),

where 9=S1(g, #) is the neutral object in X, 04 is the trivial map Af in A,
and 0y is the trivial map 9B in 3. S(a,b) becomes thus an A*-@-module.

COROLLARY. Let (4, S) be a regular S-category. For n=1 the system of
collections Ext™(s s)(4, B) of similarity classes [X] of special exact sequences
of the form

X: go>B—E,—E, ——E—A—0

is made into an A*-A-module, i.e. an additive functgr of two variables mn A
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contravariant in the first entry, covariant in the second entry, and with values
in the category i of additive groups and homomorphisms. The functorial
structure is characterized by that the existence of a commutative diagram
X: 4-B—E,—--—E —~A—0
I 1
X: 0B —E|—>-—E —-A'—0
implies Ext"(a, s)(4, AIX]1=Ext", sy, B)[X’]. The additive structure is

characterized by that the functor is additive in both variables. The zero element
“in Ext®o, 5)(4, B) is represented by the trivial exact sequence

0"(4, B): §—B5A®BH>A—0 (n=1),
0—-B=>BL A>A—0 (n=2),
g—>B=>B—g—--mg—A>A—0 (n=3).
: The negative —[X] of [X] is represented by changing the sign of any odd
¢ nmumber of maps ameng B—E,, E,—E,, --+, Ei—A. Addition in Ext® 4, s5)(4,

-B) 1s realized by (3.3.1).

Note that for &£, the addition (3.3.1) reduces to the ‘ Baer multiplication’
in [4, p. 290].

3.4. PROOF OF ADDITIVE CLASSIFICATION THEOREM. Firstly (#004)®(0z00) should
be an object in S-1(4, B), and so S(4, B) is not empty. To prove uniqueness
.of addition it suffices to show that (3.3.1) is obligatory if S(a, b) is additive in a.
Denote the cononical maps Ac,(ADA), (ADA),A, Be,(B®B), (B®B)s, B by a,,
@&, B, F. (v=1, 2) respectively. Then we must have

Vo[ Xi®X3]0A,=Vo[ XiDX,]o(ay +az)

=Vpo[ Xi®Xs]oay + V5o [ X1 DXz ]oars .

Now the canonical injection X,—X,®X, is over (a,, 8,) (v=1,2), and so we get
B[ X,]1=[Xi®X,]oar,. Hence by (3.2.1%), (3.2.2%) we get

Ve[ Xi®X,]eA4=V5ofiof X, 14 Vpopso[ Xy 1=epo[ X1 ] +epe [ Xo]=[ X1 ]+ [ Xz].
Thus uniqueness of addition is verified.

Next we assert that addition is well defined by (3.3.1). First we fix the direct
sums A®A, B®B. Then X{~X? implies X{®X,~X2®X,, and so [X;®X,] does
not depend on the choice of the representative X; from [X;]. In the same way
[Xi®X;] does not depend on X,, but on [X,]. This shows also that [X,®X:]
does not depend on the choice of the direct sum X,®X; (as long as it covers the
direct sums A®A, BOB). Next we fix Xi, X; and take any direct sums (af, a3,
ai, @)1 A~ A®A, (8, B}, Bi, By) : B2~B®B. Let (&, &, &1, &) : X~ X,®X; be the
direct sum over these direct sums. The canonical equivalence map £: X*—X,®X;
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is obviously over the canonical equivalence maps a: A*—A®4, 3: B*=B®B. So
we get Bo[X]=[X,®X:]e, and therefore [X2]=8"'1[X,©X:]oa. Because of a
=a;od]+ayoals, B“:ﬁ;oﬁ,-f-ﬁéoﬁg we obtain wo(a]+ab)=a1+a:=34 (3145587
=§1+5:=Vs Consequently we have
51+ ﬁg’){[‘xﬂ] o(ct}+ad) =V o[ Xi®X:]oAu,
which shows that V‘,,o[X@X-;]oAA does not depend on the choice of the direct
sums A®A, BOB. Hence (3.3.1) is legitimate.
We now give some preparatory formulas.

cotranslations of X, X.€S-YA, B) by ay, a;Hom(4’, A). Then the direct sum
£08: (X, 0a)D(X:Oa)—X:®X: is over (a@ay, esop). (In fact it is the cotrans-
lation of X;®X: by a;®a..) This proves

Let & : X,Ca,—X, (v=1,2) be the

(3.4.1) [(X:0a)®(X:0az)]=[Xi®X:]o(;Das).

For X&S-Y(4, B) the codiagonal map Vy: X®X—X is over (V4, V). So we have
(3.4.2) [X]oV, =Va[XBX].

The next two formulas are obvious:

34.3) it ay=Vio(a@a)edy  (a, axEHom(4",A);
3.4.4) Agoa=(a@a)e Ay (acHom(4’, A)).
Using those formulas the distributivity formulas are checked easily :

(8.4.5) [X Jo(ay+as)=[X Jear+[X Joaz;

(8.4.5%) (B1+B2)o[ X 1=Bro[ X 1+Beo[ X ].

In fact we have [X Jo(ay+as)=[ X JoVala:@az)eAyx (3.4.3)
= Vo[ XDX Jo(a:@as)oAw (3.4.2)
= Vo[ (XOa)D(XOaz)]oAs (3.4.1)
=[XOa,]+[XOa:] @.1.3)
=[X Joar+[X Joatz -

(3.4.6) [(Xi]+[XeDea=[XiJear+[X]oaz;

(3.4.6%) Bo([ X 1+ [ Xe])=Bo[ Xi]+B[ Xz].

In fact we have

(X4 [ Xe])ea=Va[ X1®X:]oAsr0a (8.3.1)

=VB°[X1@X2]°(£Y@“)°AA’ (3.4.4)
— Vo [(X0a)®(X:0a) 1oA (3.4.1)
=[X,0a]+[X;0a] 3.3.1)
=[XJoa+[X:]oa .

Now the commutativity and associativity of the addition in S(4, B) may be
checked directly starting from (3.3.1), but these can also be derived from the dis-
tributivity formulas. Consider for example the associativity. With the canonical
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equivalence maps counted for, there will be no ambiguity in writting
XiDX:DX:eSAPADA, BOBDB) (X3, X, X.€S57Y(4, B)).

v Let ay, @y, a3 stand for the canonical injections A—ADADA, B, Be, Bs for the

canonical injections B—~B®B®B, and B for the sum of the three canonical pro-

jections. Since fo3,=ep we have [X,]=f8,°[X.] (+=1,2, 8). On the other hand

in virtue of the canonical injection X,—X,®X,®X; over (a,, 5,) we have B,o[X,]

=[Xi®X:DX;]oax,, and so we get
\ [X,]=5-[ X O XD Xi]oa, (~=1,2,3).

Thus in view of (3.4.5), addition of [X;], [X:], [X3] in S(A4, B) corresponds to
. addition of ay, as as in Hom(4, A©A®A), and so the associativity

B4 X+ XD+ [ Xs]=[ X I+ Xe1+[X5])
. is obvious. Likewise the commutativity
" (34.8) [X0+[X]=[X]+[X:]

is verified.

Finally put #4=0001, 0,=0500, 4= (000)®(000). 0 =0,°0* (=0 Hom(4, A4)).
Since the canonical injection #4—g4% is over (e4, 05) we have 0zo[#4]=[04]. Further-
more for any XS Y4, B) we have [ X ]-04=[#1], for the trivial map #49 in ¥,
being over (04, 05), gives 0zo[#4]=[X1004. Therefore using (3.4.5), we obtain

[X]1+[03]1=[X1o(esa+04)=[X],
(X 1+[XJo(—~es)=[X105=[03],

whereas the map —ex: X—X over (—e,, —ez) gives (—eg)o[ X ]=[X Jo(—e.). This
completes the proof of the theorem.

3.5\.'“ Let (A4, S) be a regular S-category, and let
X: §-B—E,—>--—E—A-0,
Y: 9-C—F,—--+—F,—B—y

be special exact sequences in 1 representing [X]eExt?4, ) (4,B) and [Y]e
Ext?(4,5)(B, C). Then the composed sequence

YOX: ¢—C—Fy>+ - —F—E,—~.—E—A—§ (F,E,=F,BE,),

being special exact, represents an element [YOX]€Ext?*?(4, 5)(4,C). It is

readily seen that [YOX ] depends only on [X] and [Y], so that O induces a
pairing

(3.5.1) o Extl(s,5)(B, C)XExt?(4, 5)(4, B)—Ext?*%(4, s)(4, C),

[Y][X]=[YOX],
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which we call the composition or the composition product. We now interpret this

product in terms of regular spans, in generalizing the product to a pairing
(3.5.2) . o: T(B,C)xS(4, B)— T*5(4,0),

where S is a span over (1, 8), T a span over (3, (), and T%S is a span over
(4, C) constructed in a certain way from S and T. It turns out that the opera-
tions so far defined under the symbol o are unified in this generalized composition
product (3.5.2). Then naturality, balancedness, and associativity of (3.5.1) are
merely special cases of associativity of (3.5.2). Also bilinearity of (3.5.1) will be
derived from bilinearity of (3.5.2) where S, T are additive regular spans. Note that
the product defined in [10] was written in the reversed order. We have changed
it to the present order to comply with the usual notation ¢og of composition.
Let .4, B, ¢ be categories, and let S: X—AX38, T: Y—BXC be spans.
Denote by 4% the subcategory of @XxX consisting of pairs (¥, z) (of objects
or of maps) such that S,(z)=T-(y). We define a covariant functor TxS: Y%*X
—JXC, i.e. a spanover (A, C), by setting T*S(y, 2)=(S-(@), T.(y)). This span
T%S will be called the composed span of S and T. If X2—X is the cotransla-
tion of XeS-1(4, B) by a: A’—A with respect to S, then for any YeTYB,C)
the map (YeY, X*X) gives clearly the cotranslation of (¥, X) by a with respect
to T%S. In other words up to equivalence we have (Y, XOa)= (Y, X)Oa. Thus
if cotranslations always exist in the span S, then the same holds also in Tx*S.
In view of the duality (7%S)*=S**T*, the dual result is that if translations always
exist in T, then the same holds in 7%S. In particular the composed span T*S
is regular if both S and T are regular.
Let X be an object in S-!(4, B), and YT (B, C). Then the pair (Y, X)
is an object in (T%S)-'(4, C). Obviously X;~X: in S implies (¥, X)=(Y, X2)
in T%S, and Y,~Y; in T implies (¥, X)=5(Y?, X). Therefore the similarity class
[Y, X1e T%S(4, C) of (Y, X) depends only on [X1€S(4, B) and on [Y]€T(B, 0).
So we obtain a pairing
(3.5.2) o: T(B,C)xS(4, B)— T*S(4, C),

[Y]e[X]=[Y, X].

This will be called the (generalized) composition product. For an S-category

(A, S) the composed span SE*SE?: SEIAN SEPAAX A is not quite identical
with SE?*1: 5eP*9 31— aXA. There the only difference is that the middle term
B which is considered as specified in (Y, X) is hidden in YOX, and it can be re-
stored only upto equivalence. Then it is clear that the obvious covariant functor
SEIA%SEPI—SeP* ] sending (Y, X) to YOX induces a 1-1-correspondence
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it

SE™%SE™(4, C)—SE¥i(4, C), through which we shall identify SET¥SEXA, C)
with SE?*%(A,C). If (4, S) is regular, then this identification preserves the
functorial and additive structure, and the functor SE"%SE?(a, ¢) is thus idendified
with Ext?*?(4, s)(a, ¢). In this sense (3.5.1) is a special case of (3.5.2).

Let S: X—>Ux3, T: Yy—3xC, U: Z—C XD be spans. In the obvious manner
we may consider (U%T)%S as identical with U%(T+S), so that we may write
U*T*8S : %9y x— X D, where Z¥*Y*X is the subeategory of ZXYXX con-

sisting of triples (2, , x) such that S.(x)=T_(y), T.(y)=U-(z). For XS (A4, B),
 YETYB,C), and ZeU-C,D) both [Z]e(YI[X]) and (Z][YDe[X]E
U%T%S(A, D) are represented by the same object (Z, Y, X) in Z¥y%*x. So
we have the general associativity

f,_f<3 5.3) [Z1o([YIo[XD=(ZT-[ Y ][ X].

» We now consider the span E°: £%°7— X1 of maps in 4. An object X in &%
“over a palr (A, B) in X! means a map ¢: A—B in 1. Let a: A'—A, 8: B
—B’ be maps in 4. Then the maps in &£°%4 given by the commutative diagrams

¢oax: A'— B ¢: A— B
le  y v o8
¢: A— B , Bop: A — B’

are clearly the cotranslation of ¢ by « and the translation of ¢ by [ respectively.
Thus the span E° is regular. On the other hand in this span we have ¢ ~¢, if
and only if ¢1=¢s, and so the similarity class [¢] of ¢ consists of ¢ alone. Since
[¢lea= [¢Oal= [eea] and Bo[¢]=[BO¢]=[Ro¢] the functor E° associated to this
regular span E° may be identified with the Hom functor of 2. Thus for E°:
E'A-AX A and S: X— X B the composition product (3.5.2) can be written as

(3.5.4) o: S(A, ByxHom(A’, A)~S*E%A’, B).

Suppose cotranslations always exist in S. An object in (S*E°"1(A’,B) means
a pair of an object XS (4, B) and a: A’—A for some A in 1. A map &': (X,
a)—(Xz, ap) in X% means a map &: X;—X, in ¥ paired with a commutative
diagram

ar: Al — A=8. (Xy)
la la=5_t5)
(243 A2 el Ag—S (Xz),
where we have S% E%(&")=(a’, f) (B=8.(8)). If B=ep, then we have [X,Joa=[Xi],
and 80 [X;Joazea’=[X;Joa;. This shows firstly that [X JoaweS(A’, B) depends only
on the similarity class [X, a]eSXEYA’, B) of (X, «), and so we get a mapping

0: S¥XE%A’, B)— S(A’, B),
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O X, a]l=[XJea=[XCa].

The above relation shows secondly that O([X, o)=L X, al)ea’. Next to X’

€S A’, B) we aésociate the pair (X’, e4)E(S*E%) (A", B). Clearly the similarity
class [ X", e4]€S¥EY(A’, B) depends only on [X’]1€5(A’, B), and so we get a

mapping
..'{1’: S(A’, B)— S¥E%A’, B), O'[X']=[X" ex].
Then we have ([ X'])=0[X", ex]=[X'Jecs=[X'], and 0'(O[X, a])=0'TXOa]

=[XOa, e4]=[X, «], for the map XOa—X paired with the commutative diagram
‘ s AN > A
e {(, la
a: A — A

gives the relation (XOa, e4)~3(X, a). This proves that through ¢ and its inverse

¢’ we may identify S¥E%A’, B) with S(4’, B). Since for the product (3.5.4) we
have ([ X Jo[a])=0[X, a]=[X Joa, the product (3.5.4) coincides with the product
(Proposition 3.3)

o: S(A, B)xHom(4’, A) — S(4', B).

In this sense [X Joa is a special case of the composition product (8.5.2). In par-

ticular the usual composition
o: Hom(A’, A)xHom(A", A’)— Hom(A’, A)
slations always exist in S, then the

is also a special case of (3.5.2). Dually if tran
£93—BX B reduces to the product

composition product for S and the span E°:
(Proposition 3.3%)
o: Hom(B, B")xS(4, B)—S(4, B).

Thus when S, T are regular spans, the general associativity formula (3.5.3) leads

to the folloWing formulas on the composition product (8.5.2):
Naturality : [Y]o([Xea)=([Y Jo[X Deoa; (oL Y Do[ X 1=ro([Y Io[X])

((X1€5(4, B), [Y1€T(B,C), a: A'=4, 1: C=C).
Balancedness: [Y']o(Bo[X1)=([Y"JoR)[X]
_' (X154, B), [Y'1€T(B",C), B: B—B.
These formulas can also be verified directly with little defficulty.

3.6. We now study the additive case. For an additive category I the regular
span E9: &0 01— X is additive, and addition in E%A, B) defined by (8.3.1) as
[ei]+ [ ]=Vzo[¢1@gs]oAs coincides with the addition in Hom(4, B). In other
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3

words thé"identiﬁcation E°(A, By=Hom(A, B) respects addition. Let S: ¥—JX3,
T:“:’a;—»_'tgxc be regular additive spans. As was shown earlier the direct sum in
2 and in 4 can be and shall be so chosen that they cover preassigned direct
sums in 4, in 8, and in ¢. Namely for X,eS!(4,, B,), Y, e T !(B,, C,) (v=1, 2)
~and direct sums A,®4,, Bi®B;, C,®C;, we have X;@X.eS Y (A:DA:, BiDBy),
V@Y. T-Y(B®B:, C,&Cy), and so (Y:®Y, X;®X:) is an object in (T%S)™
(Ax@Ag,' C],('BCz), which is the direct sum of (Y3, X;) and (Y, X.). The subcate-
gory QJ*.'.E‘ of the additive category ¢yX %, being closed under addition of maps,
" is thus an additive category. Therefore the composed span T%S: Y%¥X—AXC
is additive regular, and T*8(4,C) is an additive group. We now show that
_for regular additive spans S: X—JX38. T: y—3BXC the composition product
7,(3.5.2) is bilinear. Namely we have

E
IS
¥

Bilinearity : [Y 1o X1+ [XoD)=[Y Jo[ X, ]+ [ Y ][ X:],
P Y I+ YD [X1=[Yi1o[ X 1+[Y:1o[X ],
(X1, [X:], [X:1€5(4, B); [Y], [ Y], [ Y:1€T(B, C)).
In fact we have
Y1 X4 XD =[ Y 1oV [ Xi®Xe oA =Veo[ YO Y 1o [ X, @ X ]0A 4
=Voo[ YOV, X,®X;JoA4=Veo[(Y, X)B(Y, Xo)1oA4
=[Y, X,1+[Y, X1=[Y Jo[ X ]+[ Y Jo[ Xz],

and the second bilinearity follows by duality. Summarizing we have:

¥

CoMPOSITION PRODUCT THEOREM I. For regular additive spans S : X—AX B,
T: y—BXC the composition product

o: T(B,C)xS(A, B)— T%*5(4,C)

18 natural, balanced, and bilinear.

COROLLARY. For a regular S-category (., S) the composition product
ot Ext?,s)(B, C)XExt?(4, 5)(4, B) — Ext?*?(4, 5)(4, C)
s assoctative, natural, balanced, and bilinear.
We set Ext (4, 5)(4, B)=Hom(4, B)®3'=.1Ext" (4, 5)(4, B). Then the conclusion
of the corollary may be restated as follows: Witk Hom(A, B) replaced by
Ext(, (4, B) and with composition given by the composition product, the

additive categyry A is extended to an additive category S-Extd having the
same objects as .

§4. Tensor product and satellites of functors.

4.0. Let C be a category. By a (left) Cc-group we mean a covariant functor M
of ¢ with values in the category # of additive groups and homomorphisms. For
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amap r: C—C’ in ¢ and for an element meM(C) we denote by rom the element
M)meM(C"). Also by a c*-group (or a right C-group) we meana contravariant
functor K: c—, and for r: C'—C, k€K(C) we denote MnNkeK(C') by ker.
Functors of several variables with values in % will accordingly be called 3-C-

groups, @*-C-groups, ete.

Let H be a ¢*-c-group, and G an additive group. By a balanced homo-
morphism pt: G—H we mean a system of homomorphisms #(C) : G—H(C, C) defined
for all objects C in ¢ such that for every map7:C—C’ inC commutativity holds

in the diagram

GO G, ©)

s o lre
H(C,C) —H(C, C").

Also by a balanced homomorphism 2: H—-G we mean a system of homomorphisms
AC): H(C, C)—G defined for all objects C in ¢ such that for every map I Cc—C’
in ¢ commutativity holds in the diagram

HC,C) = HC,C)

H(({',té') z(C)_*g.(C)
An additive group I together with a balanced homomorphism ¢: H—I is called
integration of C*-C-group H if it is universal among balanced homomorphisms from
H, ie., if for any balanced homomorphisin 1: H—G there is a unique homo-
morphism ¢: -G such that £o#(C)=A(C) for every object C in C. Eimilaxly an
additive group J together with a balanced homomorphism z: J—H is called
cointegration of H if for any balanced homomorphism u: G—H there is a unique
homomorphism ¢ : G—J such that =(C)e=(C) for every object C in C.

Clearly the integration and cointegration of H is unique upto equivalence.

When the totality of maps in C is a set, they are legitimately given as follows:
For a map r: C—C’ in ¢ we put H()=H(C",C), H(*)=H(C, C’), and define

homomorphisms ‘
8,: H@)— HEC, C)®H(C', '),
8,: H(C,C)®H(C,C)— H({™),

| (h' € H(),

8,(h")=h'r@®(—Th)
3,(h@®h'")=Th—h'"or (heH(C, C), k' H(C", C').

Denote by 3, and Z7° the direct sum STH(C, C) and the direct product ITH(C, C)
(C running over all objects in C) respectively. Also denote by 5, and I7* the direct
sum S)H() and the- direct product ITH(*) ( running over all maps in C)
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respectively. Then @,, 6, are extended to homomorphisms
9: I—3, é: ITI°-I,

where if C=C’, @, should be followed by the codiagonal map H(C, C)®H(C, C)
—H(C, C) and 6, should be preceded by the diagonal map H(C, C)—H(C, C)®H(C, C).
We set I=Cokerd, J=Kerd, and define 6(C): H(C, C)—I as the canonical injection
H(C, C)—2, composed with the natural projection ¥,—Cokerd, =(C): J—H(C,C)
as the natural injection J—I17° composed with the canonical projection I7°—H(C, C).
Then ¢: H—I, r: J—H give the integration and cointegration of H respectively.
" We shall write LH for the integration I of H, and S;H for the cointegration J
“ of H When the totality of maps in ¢ is not a set, we have to impose certain
conditions for a legitimate existence of integration and cointegration. We shall
.put aside those metamathematical preoccupations. The reader should thus under-
‘,"‘vstand that, in this paper, an additive group may have the underlying collection
whlch is not a set. The above explicit presentation of SCH and SZH may then

be considered as valid regardless of whether the totality of maps in ¢ is a set or
not. -

By merely interchanging the variables we also define the integration and
cointegration of a C-C*-group. In dealing with functors of more variables, we
shall often inscrible = (or y, z) to indicate the two entries to be considered in the

(co)integration, namely we write S H(--+,&,++-,2,-++). This is based on the
zeC

following fact: Let H, H’ be C-C*-groups, and let #: H—»j H, 0 H’—»ch’ be
4
the integrations. Then a natural transformation 7: H—H’ induces a unique

homomorphism Sc»;: LH—»SCH’ such that (S ‘9)00(C)=0’(C)o77(C, C). Thus if H
2 * 4
(€3]

is_”a B-C*-C-group, then 5 CH(b, xz,x) is a @-group. On this account, for an
e
A-B*-P-C*-C group H we have

4.0.1) S g H(a, y, vy, x, :v)=j S H,y, v,z x)
vEB Jzel zeC Jye 3

%
Thereby the S’s can be replaced by j . Next for a #-group M and a C-group N,
MRN=N®BRN(c) is a 3-C-group, and Hom(M, N)==Hom(M(b), N(c)) is a B*-C-
group. For an i-group M and a B-C~C*-group H we have:

(4.0.2) Lec M(a)®H(b,x,x)=M(a)®j . H@, 2, 2),

f4=3

(4.0.3) 5;0 Hom(M(a), H(, z, :c))=Hom<M(a), j:ec H, «, a:)),
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(4.0.4) j:c‘. Hom(H(b, z, ), M(a)):HomG _ Hb ) M(a))-

Verifications of these formulas are all straightforward, and so will be omitted.

Let M, M’ be ¢-groups and let ay, a2 M’'—M be natural tranformations. We

set
(a1 +a)C)m=a(C)m+ax(C)m  (m eM(C)).

Then (s;4+0:)(C) is a homomorphism M(C)—M'(C). Since Te: M(C)-M(C"),

(r: C—C") is a homomorphism, we have reo((o1+a)(C)m)=T o(a1(C)m)+7o(a:(C)m)
;_—"I(C')(r"m)'*'”:(c’)(ﬂm)=(m+o'g)(C’)(rom), and so a,+0: is a natural transforma-
tion M—M’. For natural transformations 7, 7:: H—H' of c-c*-groups H, H',

and for the intggrétions g: H—-»j H,0' H'_..j H’, we have
¢ ¢

([, 5+ 7)otcr=(] m)etrcr+ ([ 7)-t1@r=0C)o0C. 1476 O

Therefore we have S A +7l‘2)=§ 7;1+j 7.. In this sense (co)integration is additive.
¢ ¢ ¢

41. Let M, M be C-groups. Then Hom(M, M’)=Hom(M(), M) is a C*-C-
group. We denote by Homc(M, M’) the additive group of natural transformations
M—M, which we call c-homomorphisms. Let o be a C-homomorphism M—-M.
Then by definition o assigns to each object Cin ¢ a homomorphism o(C): M(C)
—M'(C) such that for any map 7 : C—C’ we have 7o(a(C)m)=a(C")(Tom) (meM(C)).
We now define a system of homomorphisms =(C) : Home (M, M?)—Hom(M(C), M'(C))
by 7(C)o=0(C). Then we have (((To)or(C))a)m=(T°(T(C)d))m=7’°(ﬂ(C)m)=U(C/)(r°
m)=(a(C")or)m=((x(C’)o(o7))s)m (c=Home (M, M), meM(C)), and so r is a balanced
homomorphism Hom¢ (M, M')—Hom(M, M').

Let u: G—Hom(M, M’) be a balanced homomorphism. For an element g€G
we put ¢,(C)=p(C)g=Hom(M(C), M'(C)). Then g, is a C- homomorphism M—M’,
and putting ¢(g)=o, we obtain a homomorphism (: G—Home(M, M) This is
clearly the unique homomorphism such that «(C)°{ =u(C), and so =: Home(H, M)
—Hom(M, M") is the cointegration of the C*-C-group Hom(M, M’). Namely we

have
(4.1.1) r " Hom(M(x), M'(%))= Home (M, M').

Any system o of homomorphisms
direct product I7°
f 60=0, and so

This formula can be reviewed also as follows:
a(C): M(C)—~M'(C) can be considered as an element in the
=ITHom(M(C), M'(C)). Then s isa ¢-homomorphism if and only i
we get Homo(M, M")=Kerd. Note that (4.1.1) holds also for c*-groups M, M, in



548 Nobuo YONEDA

which case Hom(M, M’) is a ¢-C*-group. If M is an 3-C-group, and if M’ is a
C*-B-group then Hom¢(M(a, z), M'(z, b)) is an i*-B-group.
We now consider ®, the adjoint operation of Hom. Let M be a C*-group,

and M’ a C-group. Then MM’ being a C*-C-group we define the tensor product
-of M and M’ over C by

M®cM’=S E% M) M ().

If M is an J-C*-group, and if M’ is a C-B-group, then M(a, 2)QcM'(x, b) is
an J-@-group. Let M be an 4-@*-group, M’ a $-C*-group, and M"’ a C-D-group.
Following [4] this situation will be designated as (xMg, sM'c, cM''g). Obviously

the J-B*-B-C*-C-D-groups MM QM'") and MRM'®M'’) can be identified with
. each other. From this we get the associativity :

412 (MR M@ M= MR s(M'®@c M), (1Ms, sM'c, cM"a).

" In fact we have

M@, 9)®@s(M'(z, y)RcM''(y, d))=Ma, x)@mj ec Mz, y)@M"'(y, d)
=j (M(a, x)@j Mz, )M (Y, d)
zE3 ‘ yeC
=s 5 M(a, 2)QM'(x, y)QM''(y, d) 4.0.2)
zEB Jyel 5
=§ § M(a, 2)QM'(z, y)QM''(y, d) (4.0.1)
vel JxeB

=[ (.., Ma m@Me v)erw ) @02
yel rEB
=(M(a, 2)QsM'(x, y))Qc(y, d).
Similarly using (4.0.1), (4.0.3), (4.0.4) we get the following formulas:
4.1.3) Hom s(MQM’, M'")=Hom¢ (M, Homs(M’, M""),
(aMe, c M’ 4, M 5).
Homg(M®c M, M'"Y=Hom¢ (M, Homg(M, M'")),
(Me, c M g, s M 3).

@“.1.4)

As was remarked in §4.0, integration is realized as Coker(d: ¥;—%). This
now means that in the situation (M¢, cM’) the tensor product MM’ is the
factor group Xo/R¢, where 3 is the direct sum SIM(C)QM/(C) and R is the
subgroup of X, generated by elements of the form mor@m’—m®rom’ (meM(C"),
m'eM'(C), r: C—C'). Thus M®;M’ is also represented as the factor group
F/RVUR:UR¢, where F is the free additive group generated by the pairs
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. (m, m") (meM(C), m'eM(C), CEC),

R, is the subgroup generated by elements of the form
(my+ma, m')—(my, m')—(mz, m’),
R, is generated by :
(m, m{+mi)—(m, m})—(m, my),
and R¢ is generated by
(moy, m")—(m, rom’).

Remark. A monoid = can be considered as a category with only one object.
Then r-groups and =*-groups mean the usual left z-groups and right =-groups.
The tensor product over the category = coincides with the tensor product over
the monoid =. Thus the range category i can easily be replaced by the categories
43, My, ete. The full subcategory A= of S, consisting of the objects 0, .,
A®A, ADADA,--- is an additive category. Left (right) A-modules are then inter-
preted as left (right) .{~-modules, i.e. additive covariant (contravariant) functors
A*—H. Here again the tensor product over the category A= coincides with the
tensor product over the ring A4 with unit. Moreover additive functors A—4H
are interpreted as f-4=-modules (or i*-A=-modules), and in this way our range

category 5 can readily be replaced by 5.

4.2. We now suppose 1, B, C,--- are additive categories, and restrict our atten-

tion to -modules (i.e. additive covariant functors A—H), @-c*-c-modules, ete.
For an -@*module M and a @-c*-module M’, M(a, )®@sM'(z, ¢) is primarily an
A-C*-group. However, since MM’ is an A-B*-B-C-module, and since integration
is additive, M®sM’ is actually an 4-C*-module. Similarly for an J-®-module M
and a 3-c-module M’, Homg(M, M’) is an A*-C-module. '
PROPOSITION 4.1. Let M, M’ be Ji-modules and let a(A): M(A)—M'(4) be a
system of mappings (not mecessarily homomorphisms) such that for every map
@: A—A’ we have the naturality as(o(A)m)=a(A)aom) (meM(A)). Then the
mappings o(A) are necessarily homomorphisms, and so o is an JA-homomorphism
M-M. : '
PROOF Let my, m; be elements in M(4). Take the direct sum (an, as, @1, @2):
A2= ADA, and set V,=a,+a. Then we have
'ml+mz=VA°a'1°’m«1+VA°LY2°m2=V4°(ﬂ’1°m1+a'2°’m2),
and so we obtain

o(A)(my+msz)=V 400(A)(aroms+azomy)
=51°U<A2)(a’x°7n1+(¥z°mz)+&2°U(Az)(a1°m1+0f2°m2)
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"U(A)(a1°a1°’m1+a1°112°’m2)+0(A)(a2°d1°m1+a2°d2°’m2)
—a(A)(’nh +0)+a(A)0+ms2) v

PROPOSITION 42 Let M be an Jl*-module, and M’ an JA-module. With
regard to the expresswn M®AM, = /RIURzuR A as gwen in §4.1, let Rg be
the subgroup of F generated by elements of the form i

(mx, m1)+(mz, mz) (m1°a1+mz°az, ax°m1+a2°m2),

where mvEM(Au), MV’EM’(A) (y-—l 2) and (arl, s, al,az) A2~A1@A2 Then we
have '
RluRzuRﬂ—R@uRﬂ——RluRﬂ =R,UR 1.
Proor It will sufﬁce to verlfy the mclusmns (1) R@CRIUR As (n) R;c RgUR ;.

.7

Ad (i):  (myo@;+maods, a1°m1+a'2°m2) B L 58
=(myody, arom}-+azomp)+(Mmyods, a1°m1+a2°’m2) (mod Ry)
=(my, & oatyom|+azoayoms)+(ms, a2°a10m1+a2°a2°mé) (mod R »)
=(my, mi+0)+(ma, 0+mb)=(my, mf)+(mz, m2).

Ad (i)): We first note the identity 'm,+m2=VAo(alom1+azom2) (A;=A.=A4,
V.=a;+a; mj, mieM'(A)). Then we get

(m, i mi)=(moV 1, cromi+azemi) . " (modRy)
=(mo@;+mods, ajomj+azom})
=(m, mp+(m, my) . - ~ (mod Rg).

COROLLARY. Ewery element in M@ M'=F/RUR VR can be represented
by one of the generators (m, m’) (meM(4), m'€M'(A)) of F.
In fact we have e

(my, M)+ (Mg, mb)=(Mio@1+maods, ayomi+azoms) (mod Rg),
0 =(0srcay, M') (mod R;)
(Oxcay=2ero elemente M(A), m' = M'(A)),

—(m, m") =(—m, m’) (mod Ry).

We shall denote by m®_m’ the element of M® AM.I=F/R1URZUR}! represented
by (m, m’).
Let K be an i*-@-module. We denote by K(, 8) the preadditive category
given by the following data:
(i) An object in K(A, 3) means a triple (4, B, k) of an object 4 in 4, an
object B in 4, and an element k= K(4, B).
(ii) A map {4, B, k)—<A’, B, k') in K(J4, 3) means a quadruple {a, B3, k, k')
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of a map «: A—A’, a map B: B—B’, and elements keK(A, B), k'eK(A' ,B')
such that fok=k'oa.
(iiiy Compositioh of maps is given by
', B K, K yola, By e, BTy =L oat, BB, K, E'').
(iv) Addition of maps <4, B, k)—<(A’, B, k') is given by
Lay, By, k, k"> +<az, Bey b, k'Y ={as+atz, Bu+Be, i, k7).

In this category (7, 0, 0> ({0} =K(g, 0)) is the neutral object. Given two objects
(4,, B, k,> (v=1, 2) in K(1, B), we take the direct sums (a1, as, @1, @)1 A=A @A,
Bi, B, B, f2): B~Bi®By, and put k=pyok;od;+BookecizE K(4, B). Then (4,B,k)
is an object in K{(.1, #), and we have

(<(¥1, ﬁl: kb k)y <(¥2, 629 kz, k); <a-ly 511 ky kl); <d21 52’ k) k2>):
<As By k>z<Aly Blr kl>@<A2r BZ’ k2>-

In this way K(.1, B) becomes an additive category. We define a covariant functor
(KY: K, B)— X 3 by <K){A, B, ky=(4, B), {KXa, B, k, k'y=(a, B).

The additive span ¢(K) thus obtained is regular, for the cotranslation of
(A, B, k> by a: A'—A and the translation of <4, B, k) by 8: B—B’ are given
respectively by

{a, ez, koat, k) : (A, B, kea) — {4, B, k),
ea, B, k, Bok) : (A, B, k) — (A, B, Bok).

In this span the similarity class of <A, B, k) consists of <4, B, k) alone, and the
A*-g-module K 5(a, b) derived from this span is identical with the A*-@-module
K. For the _i*-_-module Hom of .4 the associated span (Hom) is just the span
E°: &% 0— XA of maps in .

Let K be an i*-@-module, and let H be a $*C-module. Then the composed
span (H>%(K) being regular and additive, we have the a*-c-module (Hy*(K>
together with the composition product.

o: H(B,C)xX K(4, B)— (HY*K)(A, C).

Take the tensor product H(z, C)®sK(4, 2)=F/RUR,UR 3, and define an epimor-
phism 5: F— {HY*<K (A, C) by E(h, k)y=hok=[{B,C, k), (A, B, k)]. Now in
the span {HY>*<(K> over (,C) the relation (B, C, b, (4, B, k)= (B, C, h'),
(A, B’, k’>) means that there exists a map 8: B—B’ such that h=h'oB8, Bok=k'.
Therefore E(h, k)=5(k’, k') implies (&, k)=(', k') (mod Rg). On the other hand,

since the composition product is bilinear and balanced, £ annihilates the subgroups

Ry, Ry, Rs. Thus in virtue of the corollary to Proposition 4,2 we get Ker §=R,U
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RRg, and so & induces an isomorphism H(z, C)®sK(A, x)—~(H)*(K)(4, C)
sending h® gk to hok. This isomorphism is natural with respect to the entries
A, C, and so we may identify the .*-c-modules H(z, ¢)® sK(a, %), Hy*<K)(a, c).

Let S: X axX®, T: y—3xC be regular additive spans. The similarity
classification in the composed span T%S can be divided into two steps, first
classifying with the middle term B fixed, and then reclassifying with the floating

middle term B. Therefore we have T%S(a, c)=<T)>%{S)(a,c). This establishes
the following :

CoMPOSITION PrRoODUCT THEOREM II. For regular additive spans S: X—J
XB, T: Y—BXC we have the natural identification

T%S=T®3S.
Rewriting the composition product as
o: T(B, C)xS(4, B~T®sS(4, C),

we have. [Y1o[X]=[Y]I®s[X].

The above argument shows also that (k, k)=(k’, k') (mod RUR;URg) implies
(h, K)=(h', k') (mod Rg). This statement does not contain any material concerning
the variables in 4 and in ¢. Actually we have:

PROPOSITION 4.3. Let H be an _i*-module, and M’ an J-module. With regard
to the expression M® M'=F/RURUR , we have the congruence (my, mp)=(me,
mj) mod RURUR 1 if and only if the congruence holds mod E 1.

PrOOF. We convert M’ to an H*-J-module M'(z,a) by setting Mz, a)
=Hom(z, M’(a)), and M to an 1*-H-module M(a,z) by setting M, 2)=M(@)Rz.
Then we have M(a, Z)=Ma), M'(Z, a)=M'(a), and so M(x)@ M (x)=M'(z, Z)
®4M(Z, ). Since these tensor products have the same F, Ry, R., R4 and since
the proposition is true for Mz, Z)RiM'(Z, z), it is also true for M(z)® M (%),
g.e.d.

In virtue of Propositions 4.2, 4.3 the tensor product M® sM’ can be redefined
as follows. Consider the pairs (m,m’) (meM(A), m' e M'(4A), AeA). For two pairs
(m,, m)') (m,eM(4,), m,/’eM(4,), v=1,2) we write (my, m}{)=3(ms, m}) if there
exists a map a: A;—A,, such that m;=msoa, aom!=mj. This relation = generates
an equivalence relation ~ (similarity) among the pairs (m, m’). We denote the
similarity class of (m,m') by [m,m’], and define M® M’ as the totality of
similarity classes [m, m']. Given two pairs (m,, m,/) (v=1,2) as above, we take
the direct sum (ay, ap, @, @): A~A,DA,. Then [myo@y+Mmaols, Ayom}+asomb]
depends only on [my, m{] and [m., mj]. Addition in M® 1M’ is then defined by
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[m1, mi]+[me, mil=[myo@&+meo@s, ayom}-+azoms]. Note that F/R, is the free
additive group generated by M® M.

The above proof of Proposition 4.3 shows also that m®,m’ can be treated
as though it were the composition product of m and m’. Thus general associa-
tivity of composition product applies also in situations involving both regular
additive spans and modules.

4.3. Let A be an additive category and let M be an .Z-module. It is clear that
the system of homomorphisms o : Hom(A’, A)QM(A’) — M(A) gives

(4.3.1) Hom(z, a)® 1 M(x)=M(a).

In rewriting the above homomorphisms as M(A’)— Homz(Hom(A4’, A), M(A)), we
easily get

4.3.2) Hom ;(Hom(a, x), M(z))=M(a).

Dually for an _7*-module M we have

4.3.1% M(x)® Hom(a, x)=M(a),

(4.3.2%) Hom s(Hom(z, a), M(z))=M(a).

Let now (4, S) be a regular S-category. In §3.5 we have verified the identity
SE™SE?(a, ¢)=SE**%(a,c). In view of Composition Product Theorem II, this
now leads to

4.3.3) Exte(4, s)(®, )Q1Ext? (4, 5)(a, x)=Ext?*?(4,s)(a, ¢),

where [Y]®4[X] corresponds to [Y]o[X]1=[YOX]. Then because of the asso-
ciativity (4.1.2) we get
4.3.9) Ext™ 4, s)=Ext!(4, s_)®,qEXt1(,a, 5)®a+ @ 1Bxtla,s) (n times).

Thus the ‘graded’ 1*--module Ext(:,s)=Hom® 3. Ext*(1,s) may be called
the ‘tensor algebra’ of Ext!(s,s). In the sequel we shall understand that
Ext%4, sy means Hom.

DEFINITION, The n-th right S-satellite of an JA-module M 1is the J-module
S"M(a)=Ext" (4, 5)(x, a)®@ 1 M(2).
The n-th right S-satellite of an A*-module M is the Ji*-module
S"M(a)=M(x)Q sExt" 4, s)(@, @).
The m-th left S-satellite of an JA-module M is the J-module
SM(a)=Hom 4(Ext" (4, s)(a, ), M(x)).
The n-th left S-satellite of an A*-module M is the A*-module
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SaM(@)=Hom z(Ext" (s, 5)(%, a), M(x)).
In virtue of (4.1.2~4), (4.3.1~4) the following formulas are readily verified:

SM=8SM=M, S*S*PM=8*1M, S;SpM=3Sp.qM,
STExt?(4,5)(4, a)=Ext?*?(41,5(4, a),
SPExti(a, (@, C)=Ext?1(s,5)(a, ).

In view of duality principle we shall suppose in the sequel that M is an -
module. In connection with S-satellites we note the following products arising
from the composition product (p, ¢=0):

o: Extl4,s)(B, C)RSPM(B) — S**1M(C),
Vo(UPQ gm)=(vTou?)& sm
(me M(A), u?Ext? 4, s)(4, B), v1eExt?, s)(B, C)).
\: Ext?(1,5(4, B)®Sp:M(A) — S, M(B),
(UP\G s VI =0 po(VI0UP)
(0p1eE SpreM(A), u?€Ext? (1, 5)(4, B), v'€Ext? (4, 5)(B, C)).

These satisfy the associativity formulas:
(4.3.5) W o(viom?)=(w v om?

(m?eS?M(B), v'€Ext (4, 5)(B, C), w" €Ext" (4, 5)(C, D)).

(4.3.6) VA UP\Opsg4r) =(VToUP T pigur
(psq1r ESprqerM(A), u?€EXt? (41, 5)(4, B), v1€Extl (4, 5)(B, C)).

Note that for pExt%, s)(4, B)=Hom(A4, B) we have ¢\o=¢o0.

4.4. Satellites of functors [4] are originally defined using projectives or injectives.
We shall now show that our definition of satellites is a suitable generalization.
This will mean in particular that our definition of Ext” is also suitable. We
persist in speaking of regular S-categories.

Let (4, S) be a regular S-category. An object P in .1 is called S-projective
if every special projection —P is direct. Dually an object @ in 1 is called S-
injective if every special injection @— is direct. Our assertion consists in the
following :

SATELLITE THEOREM 1. Let n be a positive integer.
(i) Let

P: 0-4,53P,—P, 1> —P—A—0

9e a special exact sequence with P’s S-projective. Then the sequence of additive
groups
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0— S M(A) Vs M(A) 2" M(P,)

s exact for every JA-module M.
(ii,) Let
Q: 0-B—Q@—@——QBB g

be a special exact sequence with Q's S-injective. Then the sequence of additive
groups
m En arpm [QF o
MQ™— M(B™)———S"M(B)—0

is exact for every A-module M.

The proof will be completed later in §4.6. Here we remark the implications
(1), () —=(@ns1) ; (i), ({i)—(@iass). Suppose (i) holds. We note first that SM(P)=0
if P is S-projective. In fact applying (i;)) to M and the trivial sequence F—g—
P=>P—g, we obtain the exact sequence 0— S;M(P)— M(#). Since M is additive,
M(@)=0, and so S;M(P)=0. Next let

P: 90— A, -5 Py — Py oo Pr A—0

be a special exact sequence with P’s S-projective. This can be decomposed as
P=P!OP’, where
P’ ﬂ'—'An"’Pn—’ AT -—»Pl-—>A-——»ﬂ,

Pl 0 Apoy—"" Py — An—0.
We now suppose (i) holds, and apply it to S;M and P’. We also apply (i) to
M and P!. We obtain exact sequences
0= St M(A) -2 SLM(An) — SM(P),
0— SIM(AD) L2 M(Ap )22 M(Pr).

Since S M(P,)=0, [P’]\ is an isomorphism. On the other hand by (4.3.6) we
have [PYI\([P'I\)=([P*J-[P’J\=[P]\, and so the sequence
0= S 1 M(A) 22N M(A,1) 222 M(Ps )

is exact. Similarly the implication (iiy), (ii,)—(iis.1) is verified using (4.3.5) Thus.
the theorem is reduced to (iy) and (iiy).

Remark. In the above reduction we have not referred to S-projectivity of
the P’s. Thus in (i,) the S-projectives can be replaced by any other class of
objects with which (i) remains valid for every .-module M. As for (ii,), the
validity of (ii,) for every M requires @ to be S-injective. The lack of full duality
between right S-satellites and left S-satellites is due to the fact that we have
fixed the range category # which is not self-dual. As will be seen later, the
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proof of (ii;) is more involved than that of (i;), whereas we have certain theorems
on right S-satellites, on which anologues for left S-satellites are not established.

4.5. In the regular additive span SE: S&€'A— X A a map X;—X, giving X;5X,
is, by Lemma 3x2.4, necessarily an equivalence map. Therefore the relation =
being thus symmetric, we have X;~X; if and only if there exists an equivalence
map giving X, X;. The zero element in Ext!(s, s)(4, B) is represented by the
direct exact sequence OY4, B) : —~B—A®B—A—#g, and so a special exact sequence
X: p—»B—E—A—0 represents 0 if and only if X is direct. Let a: A’—A be a
map, and suppose [X Jea=0. Then in the diagram (X _Ja)

XOa: 9> B—-E'— A'—9
4 | .
X: 09-B—-oFE—-A—0
XOa is direct, and so there exists a map A’—E’ such that A’E'A’=A'eA’.
Thus the map A’—FE defined by A’E=A’E'E satisfies A/EA=A’A. Conversely

suppose in the diagram (X _la) there exists a map A’'—FE with A’/EA=A’A. Then
XOw is direct by Lemma 3x2.2. So we get:

ProPOSITION 4.4. For a special exact sequence X: §— B—FE—A—g and o
map a: A'—A we have [X]oa=0 if and only if there exists a map A'—E
such shat A’EA=A'A.

COROLLARY. For any special exact sequence A: ﬂ—»AiAi/i—vﬂ we have
[AJoa=0, @-[A]=0.

We say an J-module M is half S-exact if for every special exact sequence
A: 9—A—A—A—p the sequence of additive groups M(A)—M(A)—M(A) is exact.
Proposition 4.4 is generalized in the following :

PrROPOSITION 4.5. Let M be a half S-exact A-module, and let X; §—B—E
540 be a special exact sequence. For an element meM(A) we have [X]om
=0 (in SIM(B)=Ext'(4, s)(z, BI® 1 M(%)) if and only if the pair (X, m) satisfies
the condition :

(L) There exists an element 1€ M(E) such that ¢ol=m.

ProoF. If (X, m) satisfies (L), then we have [XJom=[X]o(gol)=([X Jop)ol
=0. Now (X, m) satisfies (L) if X is direct. So it will suffice to prove that the
property (L) is invariant under similarity (X, m)~(X’, m’), i.e., to show that for
the commutative diagram

X: 90— B—E% Al—yp

y n, la
X: g-B—EBLH A8
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and elements meM(4), m’€M(A’) such that aom/=m, the pair (X, m) satisfies
(L) if and only if (X’, m') satisfies (L). In one direction this is obvious. In fact
if there exists I’ M(E") with ¢/ol’=m’, then l=70l’ gives pol=m. We now suppose
conversely that le M(E) gives ¢ol=m. Take the direct sum sequence

X: 0—>BoA'OE-HA®A—0

of 0'(4’,0) and X. Define 7: E'—A’®F to be the sum of ¢’ and 7. Then we
obtain the commutative diagram

~G\

' g

A
g
|

X: 9-B—FE 5 A
75 |

X: B> AOE—->A'®A—0,

|

A— A

|
g
where E=(¢Va) is special exact by Lemma 3%x29*. We denote by Te M(A'®E)
=M(A")DM(E) the sum m'®!, and by meMA'@®A)=M(A"YDM(A) the sum m'©Om.
Then we have @ol=1h, c*om’=7. Because of (0%0@) ol =%t =0%0c%om’=0, there
exists an element I’eM(E’) such that 7ol’=[, for M is half exact on E. Since

¢ A'—A'@A is a direct injection, so is also ¢®o=M(c*). Consequently from ¢%s(¢’l’)
Pofjol’ =Fol=m=c%m’ follows ¢’ol’=m’. This shows that (X', m') satisfies (L),

—

i

Ne—

and the proposition is proved.
PROPOSITION 4.6. Let M be a half S-exact J-module, and let
B: 0-85B%E-0
be a special exact sequence. Then the sequence
ME) B P M By Lo s B

18 exact.
ProoF. The sequence is exact at M(B), because M is half S-exact. Exactness

at M(B), i.e., Ker[Blo=Im jo is a mere restatement of Proposition 4.5. Because
of fo[B]=0, we have Im[BlocKer4o. Now every element of S'M(B) is of the

form [XJom, where X is a special exact sequence ﬂ—+B—>E—>A—»ﬁ and meM(A).
Imbed X and # in the commutative diagram (fX)
X;g@?ﬁ?aﬁqg
B
X: 0-B-ESA—o0.
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By Lemma 3Xx2.9 this gives rise to the special exact sequence
BAg: #—B—BOE—E—0
and the commutative diagram
X: 9oB— E—A—yg
R R T "
BNY: §— B— BOE—~FE—(
= [ |7
B: 9—-B— B-—B—o0.
Suppose Bo([XJom)=0. Then [XJom=0, and so by Proposition 4.5, there exists
an element !€M(E) such that ¢ol=m. So we get [X]om=[).(]°g.9°l=[[§/\¢.]°l
=—[B]e%cl which shows [XJemeIm[Ble. This establishes the proposition.
COROLLARY Let B: 0—BEBEBg be o special exact sequence. Then for
every object A the sequences

0—Hom(4, B)-">Hom(4, B)-"-Hom(4, B)ZLExt! 1, 5)(4, B)L5Ext! (4. 5)(4, B),
0—Hom(B, A)-"-Hom(B, A)~"-Hom(B, A)"ZIExt! (1. 5)(B, A)~"-Exti(z,5)(B, A)

are exact.

4.6. Let P be an S-projective object. Then every special exact sequence X:
#—-B—E—P—g is direct, and so Extl(s, (P, B)=0 for every object B. If
Extl(4,s)(P, B)=0 for every object B, then by the corollary to Proposition 4.6
the covariant functor Hom(P, b) is exact on special exact sequences, and in parti-
cular P must be S-projective. Let P: g—A,~5P—A—0 be a special exact sequence
with P S-projective. Then by the same corollary we have for every object B
the exact sequence

4.6.1) Hom(P, B) =*, Hom(4,, B) " Ext! (4, 5)(4,B) — 0

for we now have Ext'(s,s)(P, B)=0. Let M be any 4-module. We shall prove
the assertion (i;) that the sequence

0 — S:M(A) B arcay) 2, M(P)

is exdet. Let o be an element of &;M(A), i.e. a natural transformation o:
Extl(a,5)(4A, 2)—>M(zx). We have aio([P\o)=ajca(A))[P]=0a(P)a:°[P])=0, and
so Im[P]\cKera;o. Now be (4.6.1) any element [X]=Ext'(1,5)(4, B) can be
written as [X]=¢,o[P] for some ¢;EHom(4;, B). Thus if [PN\o=a(A4,)[ P]=0,
then we get [X\o=a(B)[X 1=0(B)(¢1°[P])=¢1°(s(A1)[P))=0, and so ¢=0. This
proves that [P]\ is a monomorphism. Finally let m,eM(A4,) be such that aom,
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=0. For each element [X]€Ext!(s,s)(4, B) we take ¢1€Hom(4,, B) such that
[X]=¢o[ P]. Then ¢iom;cM(B) does not depend on the choice of ¢, because
if @o[Pl=¢jo[P], there exists ¢=Hom(P, B) such that ¢j—¢i=¢ea;, and so
@lom—gromy=goasomy=0. We put o(B)[X]=¢iomi. Then for any map B: B
—B’ we have Bo(a(B)[X])=Bopiomy, Bo[X]=(Bog1)o[P], and so Be(e(B)XT)
=o(B')(B-[X]). Therefore by Proposition 4.1 we get s=Hom 4 (Extl(4,s)(4, 2),
M(z))=8:M(A). Since [PI\o=0(A)[PI=0c(A)(es,c[PI)=€4,0m1=m1, We get my
eIm[P]\, and so Kerajo=Im[P]\. This completes the proof of (iy), and thus
Satellite Theorem I, (i,) is established.

Let Q be an S-injective object. Then Ext!(a,s)(4, @)=0 for every object A4,
and so a special exact sequence @Q: @—»B—»QﬁB‘—ﬂ gives rise to the exact sequence

4.6.2) Hom(4, Q)2 Hom(4, BY L Ext! (4, 5)(4, B)—0.
We shall prove the assertion (ii;) that the sequence
Q) 22 By 1 st(B) — 0

is exact. Firstly ImpBlocKer[@Q]o because [@Jof'=0. Secondary [@]e is an
epimorphism. In fact every element in S'M(B)=Ext!(s,s)(z, B)® 1 M(x) is of the
form [X]® sm=[X]Jom ([X]EExt!(s 5)(4, B), meM(A)) for some object A. In
virtue of (4.6.2) we have [X]1=[QJo¢' for some ¢'=Hom(4, B'). Therefore we
get [X Jom=[Q]e(p'om), and so [Q]o: M(B)—S'M(B) is an epimorphism. Finally
let m'eM(BY) be such that [@lom!=0. This means that for some k=0 there

exist a commutative diagram.

Xy: —B— E, — Ay — 0

S S
I ] [
Xoro: 0— B — Ey_o— Agyo — 0

Jl ’ la'Zk—Z
Xor1: §—>B— Eyoy — Aggy —0

Pl Jawa

Xox ¢ g— B—> Ez/; — Ay —0
B]_ laﬂ:
Q : §— B—s Q —» B! — 9

with special exact rows, and elements m,eM(4,) (v=0,1,---, 2k) such that
0=m,, @goMoy=mM1=0a1°Mz,***, Aox_20Max-2= M2k 1= A2r-1°Mor, agomy=m'.

We shall prove m!=0 (mod Im ') by induction on k. If k=0 then we have m!
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=azome=0. Suppose k=1. Since Q is S-injective, the functor Hom(a, Q) is
exact on special exact sequences. Therefore there exists a map Eu_;—@Q such
that BEy._1Q=BQ, and so we get a commutative diagram

sz-1 : —-B— ESL--I =2 A2L‘-! —g

|1

Q: -B—> @ — B' —y.

Since we have BEjy:(EnQ—ExwEy_1Q)=BQ—BQ=0, there is a map ¢: Ay —Q
such that By A0Q=FE%Q—ExwFy_1Q. Then from Ey A QB'=FE, QB! — Eo Esr._ QB!
=E27cA2kBl_EZkEZE—IAZk-lBl:EzkAZk'(AZkBl_AZkAZIc-lBl) follows A;:QB!'=A, B!
—Ands1B', i.e. flop=am—aoan._1. Consequently we have Blogomg,=arsroma
— oy, _1Mar=M'—aodtar_30Maz3, and 50 M'=aoasr_z0Mor_o(mod ImpBLo). Since the
composition of Xy 2— Xz 1 —Q gives the commutative diagram
Xoks: OB Ey g— Ay o —0
ﬂ 1 oy _2
Q: 9-B— @ — B'—y9,
we get aoag;_somax_2=(0 (mod Im o) by induction hyphothesis. Hence we obtain
m!=0 (mod Im f'), and so Ker[@Jo=ImpB'., Thus (ii;), and therefore (iin), is
verified. This completes the proof of Satellite Theorem I.

4.7. Let A: 0—>AE*AE>A—>ﬂ be a special exact sequence, and let M be any -
module. By successive application of do, @, [A]\ we get the unbounded sequence
of left S-satellites
S.M(4): - ﬁ, S M(A)
LN o M(A) 22 sy 2 sup(d)
M\ ardy 2 M) X md.

This sequence S.M(A) is of order 2, for we have @oa=0, ao([AN\o)=a\([A]\o)
=(a°[AD\o=0, and [A]\(@a)=[A]\(@\o)=([4]°a)\c=0. Similarly by successive
application of do, @, [A]o we get the unbounded sequence of right S-satellites
S=M(A) : M(4) _"‘i, M(4) ﬂ. M(4)
U stmcd) 25 s‘M(A) 2, SM(A)
M emdy = e

Again the sequence S*M(A) is of order 2, for we have @od=0, [AJea=0, and
@°[A]=0. In view of [4, III-3] it would be desirable to have exactness of SM(4)
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and S*M(A) whenever M is half S-exact. On this point we have we have the
following theorems :

SATELLITE THEOREM II. For a half S-exact A-module M the right satellite
sequence S™M(A) is exact if (4, S) 1s quasi-abelian.

SATELLITE THEOREM III. For a half S-exact JA-module M the left satellite
sequence S.M(A) is exact if (A, S) s quasi-abelian and if every object in J

admits a special projection from an S-projective object.
As a corollary to Satellite Theorem II and its dual we get the result that

the sequences
Extes,5)C, 4): 0— Hom(C,A) - Hom(C,4) -oHom(C,4)
[—QExtlu,s)(C, A)E:Ext‘u, s)(C, A)ﬁ»Ext‘u,s)(C, 4)
ﬁEthu,s)(C, A)E: oeey
Ext(s,s)(4,B): 0— Hom(4, B) LA Hom(4, B) iHom(}i, B)
LA bt x5 (A, B) % Extha, )(A, B) S Extta,51(4, B)
AL Fit a, ) () B)—bore
are exact if (4, S) is quasi-abelian.

. IfROOF OF SATELLITE THEOREM II. For convenience we replace A by B: 9—B
£> ﬁl’?—»ﬂ. Because of S'S"=s"*! it will suffice to show exactness in the first
two rows of S*M(B). In virtue of Proposition 4.6 we have already the exact
sequence M(B)E»M(B)—IS—L)—»M(E)[—BllslM(B) ﬁ.o S'M(B). So it remains only to
prove Ker focIm fo in the sequence SIM(B)—O—»SiM(B)E-»S‘M(B). Now every
element in SIM(B)=Ext!(4. 5)(&, B)® 1 M() is of the form [X Jom ([ X 1€Ext!(1,5)(4,
B), meM(A)) for some A. Suppose fo[XJom=0. Then in the commutative

diagram (3 X)
X: 9—B—FE—A—90

B,

fox: 0—B—E-X A0
we have [fOX Jom=0, and so by Proposition 4.5 there exists an element Te M(E)
such that pol=m. By Lemma 3x8.3, (iv)* the sequence E: §—B—E—E—0 (BE
=BBE) is special exact. Then from the commutative diagram
E: 09— B-—E—FE—9¢
R

X: 0—B—FE—A—0
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we obtain [ X Jep=Fo[E], and so [X Jom=[XJogol=pFo[ E]cl. This proves[X Jom
&Im fo, and the proof is completed.

ProoF oF SATELLITE THEOREM III. Because of S;S,=Sn,1 it will suffice to show
exactness in the last two rows of S.M(4). Under our assumption we can take
Satellite Theorem I, (i;) as the definition of &M, and the argument in [4, III-3]
works. We shall rewrite the proof in terms of our definition
SiM(a)=Hom s(Ext! (4, s)(a, ), M(x)).

We shall firstly show that if there exists a special exact sequence P: g— A,
Pop A g with P S-projective, then the sequence
(4.7.1) SMA YN i d) L2, ma)
is exact. Since P is S-projective there exists a map P—A such that PAA=PA.
So there is also a map a;: A;—A such that A, AA=A,PA, and then we have
@[ P]=[A]. Define a map p: P@A—A by (PDA)A=(PDA)PA+(PDA)AA,
and py: A—P®A by A(POA)=APe(POA)—AAc(P®A). Then the diagram

4, — A
. ¢ = lp ) st !
g— A —POA— P — 0

[T

A: 9— A A — A —9p

is commutative, and A, (P@®A)A=0. Therefore by Lemma 3x2.10* the sequence
g— AP A5 A—0 is special exact. Suppose m is an element in M(A) such that
d@om=0. Then pocom=0, and so there exists an element i€ M(A,) such that
profy=—com. From this we get o, =0 and &oim,;=m. Therefore by Satellite
Theorem I, (i,) there is an element s=SM(A) such that [Pl\o=;, and so we
obtain m=a;o([P1\o)=(@; o[ P]\c=[A]\o. This proves exactness of (4.7.1).
Secondly we shall show that if ‘there exists a special exact sequence P: g—A,
%P A—p with P S-projective, and if (4, S) is quasi-abelian, then the sequence

4.7.2) SuMA) X% s MUA Y M A)

is exact. Since PAA is a special projection we have a special exact sequence P’:
9—-A"5P—A—p (PA=PAA). This is imbedded in the commutative diagram
A — A,

lai lan

P ﬂ——>A'——>P—>A'f-——>0

S R

A: §— A-— A — A —9,
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and by Lemma 38X 3.3, (iii*) the sequence g—A,—A'— A—g is special exact. Suppose
7 is an element in S;M(A) such that [A]\e=0. Put m'=[P']\e€M(4A’). Then
we have a’om/=(a’s[P'])\6=[A]\5=0, and so there exists an element m:EM(4,)
such that ajom,=m’. On the other hand we have p’om’=(p’c[P'])\c=0, and so
ajomy=ajop’om’=0, Therefore by Satellite Theorem I, (i;) there is an element
cE8:M(A) such that [P]\e=m;. Now in virtue of the commutative diagram

lat | s

Pt s s P A5
we have [P'Joa=ajo[P]. So we get
[P'I\@oa)=[P'I\@\o)=([P'Jea)\o=(ai[ PD\o
=ajo([P\o)=ajemi=m'=[P'\o.

Sinee [P’]\: SiM(A)—M(A’) is a monomorphism by Satellite Theorem I, (i), we
obtain @eo=go. This proves exactness of (4.7.2).

Finally we put ourselves in the same situation as above. Having proved the
exactness of (4.7.1), we may assume that for the special exact sequence A’: g—A,

24’ A0 the sequence

@71 SMA) A, pran) 28 a4y

is exact. We now prove the exactness of the sequence

4.7.3) SIM(A) 220 s M(A) 22, 5, M(A).

Suppose o is an element in S;M(A) such that @oo=0. Put my=[PN\ecEM(A)).
Then we have ajom,=(aje[ PI\o=([P’]Jca)\o=[P’]\(@°0)=0. Therefore by 4.7.1)
there exists an element =S, M(A) such that [4A’]\6=m;. Then we get [P\(&od)
=([Ploa)\d=[A’)\6=my=[P]\o. Since [P] is a monomorphism, we obtain dog
=g. Thus (4.7.3) is exact, and the proof is completed.

§5. Similar exact sequences.

5.0. Let (1, S) be a regular S-category. In the regular span SE*: SE A= AX A
we have X~X’ if and only if there exists an equivalence map X—X’ giving X
~X'. Let X: 6—B—E—A—0, X': 0—B'—E'—A’—0 be special exact sequences,
and suppose for maps a: A—A’, §: B—B’ we have Bo[X]=[X"Joar. Then there
exists an equivalence map fOX—X'Oa over (e4, ex), and so by composing this
with the natural maps X—80X, X’Oa—X’, we obtain a map X—X’ over («, f).
Thus existence of a map X—X’ over (a, f) is a necessary and sufficient condition
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for Bo[X]=[X"]ca.
The situation is not so simple for SE™: SE"A—AX A (n=2). In fact suppose
we have a non-direct special exact sequence X: §—B—E—A—p. Let

X¥: - B—>EDB—ADE—A—g

be the direct sum sequence of X#: g—g—B—E—A—0 and X': g—B—E—A—0—4.
The canonical projection X4—X* is a map over (0%, ez), and so we have [X4]
=[X*$]o04=0€Ext?(4,s)(4, B). Thus X* is similar to the trivial sequence 0%*(4, B):
0—B=>BA=>A—f. However we have neither X4~50%A4, B) nor 0%4, B)~X¢,
because either one of these relations would imply that X be direct. Here X* and
0% A, B) are connected by the relations

X4 XF~0%A, B), XiX ~0%4A, B)
(X#=X*®0%9, B), X;’=X'®0%A, 9)).

It is not difficult to see (cf. [10]) that when 2 has enough S-projectives (S-in-
jectivés) two objects X, X’ in S&€".1 are similar if and only if there exists a third
object X (5( ) such that X~ X~ X’ (X::)Z':‘_’X’). Thence naturally arises the question
whether this remains valid without S-projectives (S-injectives). In this section
this will be answered affirmatively for quasi-abelian S-categories. Throughout
the rest of the paper we assume (1, S) is a quasi-abelian S-category. M will stand
for a half S-exact ./-module. Recall that the -modules Ext™(4,s)(4, a), S"M(a)
are half S-exact.

5.1. For convenience’ sake we call objects in S€'t 1-blocks. In writting down
a 1-block (i.e. a short special exact sequence) we shall omit the outer #’s as X:
B—E—A. The three objects in X will now be located as X(+)=B, X(0)=F,
X(—)=A. Let X—X’ be a map of 1-blocks, and suppose XX'(t;) (t,=+,0, —)
are special maps. Using Lemma 8x8.4 and its dual, we see easily that XX’ is
a proper map (in S€'4) if and only if either one (and therefore each) of the three
sequences

Ker XX'(*): Ker XX'(4+) —Ker XX’(0) —Ker XX'(-),
Coker XX'(+): Coker XX’(+)—Coker XX’(0)—Coker XX'(—),
Im XX'(x): ImXX'(+) -ImXX'(0) —ImXX'(-)

is a 1-block. In this case these three 1-blocks make Ker XX’, Coker XX, Im XX’
respectively. It is readily seen that the totality S® of proper maps X—X’ in
SE'A having special constituents XX(t,) gives a quasi-abelian S-category (se'.1,
S8®). In this S-category a 1-block means a commutative diagram



On Ext and exact sequences 565

comprising six 1-blocks in (.7, 8). It will be called a 2-block in (A, S). W may
be considered as a 1-block of three rows or as a 1-block of three columns. The
nine objects in W will be located by a pair t=(fi, ¢:) of symbols ¢,=+,0, —.
Thereby we take the horizontal direction as the first direction and the vertical
direction as the second. By inscribing * we shall designate one of the six 1-blocks
in W. Namely W(, t,) refers to the horizontal 1-block W(+, t2)—W(0, t)—W(—, tz).
and W(¢;, *) refers to the vertical 1-block W(ti, +)—W(ts, 0)—W(t;, —). Also we
denote by W(, 2), W(2, 1) the special exact sequences.
W, 2)=W(*, +)OW(—, *), W, )= W(+, =*)OW(x, —).

In S&" A (n=2) we shall say that a map X—X’ is special if, in the decompo-
sition of XX’ into maps of 1-blocks as XX'=X,X,’O.--OX,X,’, the maps
X, X', -+, X1 X\’ are all special. Again the totality S of special maps in S€"A
gives rise to a quasi-abelian S-category (S€™, ™). A 1-block W in this category
means thus a special exact sequence

W.: 0-W,-oW,—> - >Wi > W_—0
of 1-blocks.

52. Let X: BAESA, X': BLE'Y A" be 1-blocks. Applying Lemma 3x2.10
to the translation (¢'"X): X—>¢’OX we obtain a 2-block

B - E  —A

15l
(X'AX): B'— A A4
| e
A — A —0 .

—_

Define a sequence
X' X: B— AL, a0aA’
by BA=BEA=BE'A, A(ADA"Y=AAc/(ADA")+AA'co(ADA’). Then the diagram
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is commutative, and so by Lemma 83x8.8, (iv¥*), X’~X is a 1-block. Clearly we
have
[X'~XJoe,=[X], [X'~X]oc;=[X"].
We further define
X —X: B>E®E —A

by B(E®E')=BEc(EDE')—BE'¢(EQE"), (EQENA=(E®EY2EA+(E®E)E'A. By
Lemma 3x2.9, X'—X (=¢’A¢) is a 1-block, and because of the commutative
diagram
X: B— FE —A
I o T2
X—-X: B—E®E —A
= |
X: B— E —A
we have : e
[X1o@=[X'—X]=—[X"]-¢".
Let
B > Ez -—>A1
l L l
W: E,— E — E,
l l l
A— E]— A
be a 2-block. We denote the 1-blocks W(x, +): B—E.:—A;, W(+, *): BoE}—A]
by X,, X, respectively. A; will stand for the central term (XA X»)(©, 0) of the

2-block (XJ AXy).

LEMMA 3%3.5. There is a unique map A—E with which the identity maps
of X, X{ are extended to a map of 2-blocks (X3AXe)—W. Moreover the sequence

W: A,—»E— A (FA=EE,A=FEFE}A)
is a 1-block.
ProOF. By Lemma 8Xx2.6 applied to the upper halves of (X{AX:;) and W,
there is a unique map A;—E such that
ﬁ’é — zlil - z‘lh
t— B — E

is commutative and E.A;E=FE,E. Then by Lemma 3x3.3, (iv) the sequence W
is a 1-block. It remains to show the commutativity A,EE|=A4,A/E}. In view of
the projection E.®E;—A, in X}~X,, this commutativity follows from E,A,EFE;
=E,LE,=0=E,A,A\E; and E;A,EE|=E,EE|=E}A|E,=E}A,A|E;.

The first part of the lemma shows in particular that upto equivalence the
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2-block (X’AX) is uniquely determined by X and X’. The 1-blocks Xi—X: B

—E®E—A,, W: A—FE—A thus determined by W will be denoted by W(1©2),

W(1x2) respectively. Also we denote by W(102) the special exact sequence
W(102)= W1®2OW(1x2): §—B—EDE;—E—A—0.

Note that we have the following 2-blocks :

N JUN 7

Ll

[T
W1&2): B — E.DE;,— A, Wax2): A —E — A
o |

1

N

W, +): B— E:— Ay, W-—,%: A4 — — A,
(5.2.1)
g — E, — E, Ey—s E,— 0
Lo | I
wl®2): B — E.QE;— A wWix2: A —E — A
|- [0 & o |

W(+,%): B—s Et — A, W(x-): Al—E—A.

For a special exacts equence X: 0—»BiE—»- .. we shall denote by —X the special
exact sequence obtained from X by changing the sign of the first map as —X:
9—~B =t .. .. Then from the above 2-blocks we get the following result:

PROPOSITION 5.1. Let W be a 2-block. There exist special projections in
SEA giving WIO=W(, 2) and W(10O2=—W(2,1). In particular we have
[W@, 2]1+[W e, 1)]=0.

For 1-blocks X: B—E—A, X’: B—E'—A’ and elements meM(A), m'eMA’)
we shall write
(X, m)B (X', m')

if in the 2-block (X’AX) there exists an element le M(A) such that

Pol=m,  ¢ol=m'.
Also for two special exact sequences X:0X, : —»B—E:—E—A—9, X;0X]:0—B
—Ej—E{—A—f we shall write

(X.0X,) B (X;0X])
if there exists a 2-block W such that W(, 2)=X.0X;, W(2, 1)=XI0X].

PROPOSITION 5.2. (X, OX)E(XIOX)) if and only if (Xe, [XiDE(X:, [X1]).

PROOF. Suppose the 2-block W gives (X;OXy)B(X;OXj). Because of the maps
W x2) — W(—, +), W(lx2)— W(+, —) displayed earlier, we have [W(1X2)]o§,
=[W(—, ¥)]=[X:] and [W(1x2)Jegi=[W(x, —)]=[Xi]l. Hence the element
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[W(1x2)]€Exti 4, 5)(4, Ay) gives (Xe, [X:)B(XS, [X{]). Conversely suppose X;:
A, —E—A is a 1-block such that [Xi1€Extls, s)(4, 4y) gives (X, [Xi])B(XS,
[X])). This means ;o[ Xi]=[X1], @io[X1]1=[X!], and so we have commutative
diagrams

Xi: 4B A X: A-E -4

2| | e | ]

Xi: Ai—>E — A, X{: Al-E[—A,
Define E;—E, E;—E by E.E=E,AE, E}f=FE}A,E. Then by Lemma 3x3.3 (iv¥)
the sequences E,—E—E!, E'—FE—E, are 1-blocks. This reconstructs a 2-block W
giving (X,OX)B(X[0X3).

THEOREM B (ANTICOMMUTATIVITY THEOREM).

(i) For 1-blocks X: B~E—A, X': B—~E'— A’ and meM(A), m'e M(4A’)
we have (X, m)B(X', m’") if and only if [X]om+[X'Jem’=0€S ' M(B).

(ii) For special exact sequences X, X' €EXT?(4,s)(4, B) we have XBX' if
and only iof [ X]+[X']=0.

Proor. In virtue of Proposition 5.2, (ii) is a special case of (i). So we shall
prove (i). Suppose in the 2-block (X’AX) an element l€M(A) gives (X, m)BR(X',
m’), i.e., Pol=m, @’ol=m’. Then because of [X]P=[X'—X]=—[X"]1-0", we
get [XJom+[ X Jom/=[X Jo@ol +[X’"]o@ ol =[ X' — X Jol—[ X' —X Jol=0. Conversely
suppose [X]em+[X'Joem’=0. Recall that with regard to the 1-block X’ X: B
—A5SA®A’ and the canonical injections AZSA®A'A’ we have [X’ X Joc,
=[X1], [X' ~X]Jec;=[X"]. Thus we now have [ X’ X Jo(ciom+czom’)=0, and so
by Proposition 4.5 there exists an element !eM(A) such that Pol=com+cyom’.
On the other hand as to the canonical projections A= ADA’>A’ we have 0,05=0,
0,0¢=¢’. Henece we obtain Pol=0s0(ciom~+-coom’)=m, & ol=0;0(ciom+csom)=m’.
This shows (X, m)B(X’, m’).

SIMILARITY THEOREM I,. For two special exact sequences

X: g’—’B"—’Eg'_'El"_’A_'O,
X' 9— B—E,—E|—A—90

the following conditions are equivalent to each other :

(1) X~X'

(2) There exists a special exact sequence Xe EXT?%(4,s)(4,B) such that X2 X~Xx;
(2*%) There exists a special exact sequence Xe EXT2(1,s)(A,B) such that X~X~X';
(8) There exists a commutative diagram
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X: §—B—> Ez —PEjl——)A—>@
b1

X: 9— B E®E:—E —A—70
o]

X: 9—B-— E} —E— A—4,

where X is special exact, and E\E,, E\E, are special projections with
éc(Ez(EEé)El:kernel ElE’;, Egc(E2®E£)E'1=kernel EYIE{,
(3*) There exists a commutative diagram

X: g———’B-——bEz-—“' E1 — A—0

S

X: 9— B—E,~EQE —~A—0

[

X: 9—B—E;— El —A—90,

where X is special exact, and E2E‘2, EQE?_ are special injections with
E‘Z(EE@E{)OE" cokernel E;E, Ez(E1®E')9E1 cokernel E’E’z
Proor. The implications (3)—(2)—(1), (8%)—(2*)—(1) are obvious. In view of
duality principle it will suffice to show the implication (1) —(3). As before —X’
will denote the sequence X’ with BL”»EQ replaced by B:i”,Eg. Suppose (1) X~X'.
Then we have [X]+[—X’]=0, and so by Theorem H there exists a 2-block

B ’—’Ez'_—’A1

o | ]

W1: E’é—_’El "—"El

L]

Al— E — A

such that Wi(1,2)=X, Wy, 1)=—X’. Thus taking into account the four 2-blocks
as in (5.2.1), we have only to put X=W,(102) to obtain (3).

5.3. Let
X2 g’_’B"’_‘"Ez'——’El-—’A‘—’ﬂ,
X: 9— B—E,—E/—A—9¢

be special exact sequences. For elements meM(A), m’&€M(A’) we shall write
(X, m)E(X’, m')

if there exist 1-blocks U: B—E,—A4,, V: A,—E—A, V': A—E{—A’ such that
(vovymX, (UovVHmX’, (V, m)B(V’, m').
In virtue of Theorem H these three relations are respectively equivalent to
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[UI[VI+[X]=0, [UI[V']+[X']=0, [VIem+[V']Jom’=0.
Therefore we must have [ X Jom+[X’Jom’=0. We now assert the converse, namely
the following :
PROPOSITION 5.3. [XJoem+[X'Jom’ implies (X, m)BAX', m').
ProOF. We decompose X, X’ into 1-blocks as X=X,0X;, X'=X|OXi. Firstly
we have
[—X3]o[X{]+[X"]=0, [X{lem+[Xi]e(—m)=0,
and so setting U=—X}, V=V’=X]{ we obtain
(X, —m/)EAX’, m).
On the other hand we have [X]om=—[X"]Jom'=[X']o(—m’). Therefore it will
suffice to show that in the situation [X"']€Ext?1,s)(A", B), m"" € M(A"), [X Joa
=[X"], aom/'=m (a:A'"—A), we have
(X', m')By(X’, m") if and only if (X, m)B(X', m').
We set X;Oa=X,%. Then we get [X"]=[X,0X?], and so (UOV)HX" if and
only if (UOV)B(X,0X:%). Thus we have
(X7, m'YBAX’, m') 2f and only if (Xo20X:%, m'")HEAX’, m').
Therefore our task is reduced to proving that

(6.3.1) (Xo0X15, mE(X, m') if and only if (X20X;, m)B(X', m’).

As for the ‘if’ part of (6.8.1) let U, V, V' be the 1-blocks giving (X;OXy, m)
Hy(X’, m'), i.e., (UOV)R(X,0X:), (UOV)EX!, and (V, m)A(V’, m'). Setting Ve
=VOa, we obtain [U e[ V2 ]+[X,]o[X1*]=([U Jo[ V14 [X:]o[ X ])ea=0, [ V=]om"’
+L V' Jom/'=[V]eaom' +-[ V' Jom'=[ V]om+[V']Jom’=0. Thus the 1-blocks U, V=,
V' give the required relation (X,OX;%, m'")Hx(X’, m’). Finally for the ‘only if’
part of (5.3.1) suppose (X,OX,*, m'")By(X’, m’). Because of [ —X;Jom-+[X;*Jom’’
=—[XiJem+[X;Joaom’'=0 we have, with regard to the 2-block

A —E/!— A"
=0 | onl

(-X)AX®: E— A T a7

o |
A —s A —90,
an element I M(A) such that $ol=m, $"ol=m’’. Also we have special projections
of 1-blocks
(-X)—-X\": A —E/®E — A (-X)—-X*: A —>E/®E — A

2 ¢,// o
LA A R A
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By a suitable substitution in the ‘if ' part of (5.3.1) we obtain (X,O(—X)—X1%), I)
Ay(X’, m’) from (X;0X,%, m'")By(X’, m’). This shows that without loss of generality
we may assume the map of 1-blocks

X% x‘|'11 F—— E{I — A

l | |

X: AA— FE —A
is a special projection. Assuming so, let T, ¥, ¥’ be the 1-blocks giving (X,0X,?,
m"BL(X’, m'), i.e., (FOV)B(X:0X), (FOV)BX, (V, m")B(V’, m’). Further let
B — E,— Ay

Lo

W By— B — EY

Ll

Aqi,'—_’ El—’A”
be the 2-block giving (JOV)A(X:OX,®). We consider W' as a l-block U
—W"(0, *)—X,* in S&'%4, and define W'/(0, »)—X; by W(0, »)X;=W"(0, » X7 X,
This map of 1-blocks being a special projection, we take its kernel U—=W"/(0, %),

and obtain the map of 2-blocks
W U— W0, ) — X°

.

wW: U— W'0,+x—X,.
Since the map X,*X, has the identity on A;, we may assume W(x, +)=X,. Then
as parts of the map W”W we get the following maps of 1-blocks:

O=W'"(+,%: B— Ey— Ay V=W, —): Al— E— A"

| I P law | e
U=W (+,%): B— E,— A4, , V=W (x,—): A —E —A .
From these commutative diagrams we get [UJoay=[ U1, [V]ea=a;°o[V]. Then
in setting V'=a,OV’, we obtain
[UILV'1+[X1=[UJoaro[ V'1+[X"]=[ T1[ V']+[X"']=0,
[V]om+[V']om’:[Vjoaom”+a1°[V’]om’=a1°([V]om”+[V’]om’)=0.
In addition to these relations the 2-block W gives (UOV)B(X;OX;). Thus the
1-blocks U, V, V'’ give the required relation (X:OX;, m)H(X’, m’), and the pro-
position is established.

54. Let
X: ﬂ—»B—)Enq n—l_“"_’El—'A'—’g
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X" 0—B—E,—E} ——E—A—0

be spacial exact sequences (n=3). We decompose X, X’ into 1-blocks as X
20X 100Xy, X'=X0X,_ 1O OX’ ‘For elements meM(4), m'e M(A")
we define the relation '
(X, m)E(X, m)
inductively as follows. Naniély we write (X, m)E (X', m') if there exist 1-blocks
U, Vaoi, Vi_1 such that ‘

(UnOVn—l)m(XnQXn—l); - (UnOVJ—l)E(X7{OX1:-1),
(VnoiOX, 200 - - OXy, mA,_ (V10X _,O- - - OX1, m').

In other words (X, m)H.(X’, m’) means existence of 1-blocks Uy,+++, Us, Vaog,e -+,
Vi, Vaoq, «++, ¥V} such that

(U0 Ve )B(X OXn Dy (U OVn’ 1)53(X'OX4 1),
(UQVi)B(V:OX:), (UOV'i 1)E3(V¢'OX'1 1) @2=ign-1),
(Vy, m)B(Vi, m').

Schematically this means existence of the following patch work of 2-blocks:

CVilem+[VyIom’=0). -

Since each of these 2n—1 HB’s gives anticommutativity,
(X, m)BL(X’, m’) implies [X Jom+[X'Jom’=0

THEOREM H,. (X, m)BX’, m') if and only if [X]om=+[X'Jom'=0 (n=2).

ProoF. We have only to show the ‘if ’ part. We prove it by induction on
n. Firstly Theorem H; is true in virtue of Proposition 5.3. For n>8 suppose
[XJom+[X"Jom’=0. Then we have
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[X.OXn_11o([ X0+ -OX Jom)+ [ XaOX] 1 1o([Xa_20- - - OX{Jom’)=0,
and so by Theorem H. there exist 1-blocks U,, Va1, V7.1 such that

(UnO Vo) B(X:OXo-1), (UnOVi-)B(X70X,-),
(Vn-h [Xn—2o' b 'OX1]°’”L)EH(V,{_1, [ny_zo' o ‘OX]’_]"’”L').

The last relation implies
[Va1OX,2O - - OXylom+[ Vi 1OX; O+ - - OX{Jom/.
Therefore by induction hypothesis we get
(V10X 20¢ - O Xy, m)B,_1(Vi10X520- - - OX], m),

and so (X, m)E(X’, m’), completing the proof.

Now suppose [XJem=[X'Jom!. Then [XJem+[—X'Jom’=0, and so (X, m)
B,.(—X’, m’). Therefore there exists a patch work as displayed above with X’
replaced by —X’. We consider it as consisting of two 1-blocks in (ser-ta, s«-?),

w:.: U0---OU,—V—X,.,0---0X,,
w: U0-.--OU,—V'— X;_,0---OX].

These two 1-blocks W, W’ yield the 2-block
Uno ....O[]2 —_ V—'Xn_lo"‘oXl

l

(WAW): 14 — V—X,,0:--0X;

X, ,0---0X=X, 1,0 -0X{ — 0

in (s€m14, S™-P), Take it as a special exact sequence of 2-blocks in (J,S). It
starts from the 2-block

(—XT{/\XH) .

and ends at the 2-block
V1 5 jL_ — F1 — A

(VIANVY): Fi——)AAl—’A
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We now join the two special projections of 1-blocks

with the special projections,

Xn—lO"'OXI: g—)An-l'_) n—l"_b"'_‘El—>A )

I [ ]?

I[f s g— Ay — By — o — B — A—0
[ |l
_ X 0.--0Xl: 06— A}, —E, ,— - — El— A'—9
included in the 2-block (WA W). Then, in setting X =(—X,{'—,Xn)OIA/, we obtain
two special projections in (S&€*.1, S™) of the form
X: §p—B—E, —E,,——FE—A—9
| I [ ]?
X: 09— B—E®E,—>E, ,— - —E—A—y
| N | |
X: §—B— E,—FE,  — - —E—A"~—0.
Because of the relation (Vi, m)EB(VY, m') there exists an element l€M(A) such
that @el=m, @’cl=m’. Thus in S"M(B) (n=1) we have [X Jom=[X'Jom' if and
only if there exists a third element [X71ol and special projections &: X—X, &:
XX’ such that SEME)=SEX&)=ep, SE™X&)ol=m, SE"(&')osl=m’. In particular,
setting M(a)=Ext!(s,s)(4, a), we get finally the following :

SIMILARITY THEOREM I,. For two special exact sequences

X: —B—FE,—.-— E— A—0,
X §—B—E,—--— E—A—0

the following conditions are equivalent to each other :

(1) X~X'.

(2) There exists XEEXT"(.A,S)(A, B) such that XX~ X'.

(2%) There exists XEEXT"M,C)(A, B) such that X~X~X'.

(8) There exists a commutative diagram

X: g—"*B'_-)En——)En_I—«)--.—)El——bA-—)g

[ [

X: 90— B-EQE,~E,1—— B — A—p

I S O |

X: §— B—E,—E, ,—---—E,—A—0.
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where X is special exact and XX, &X' are special projections in
(Se%d, $™).
(8%) There exists a commutative diagram

X: 9—B—E,—---— E—FE —A—9J
| I | e
X: $—B—E,— - — E;—E®E—-A—0
I P [l 1
X: 9—B—E,—.--— Ej— E} —A—4,

where is X special exact and X—X, X'»X are special injections in
(8577, $9%,

We note also that two similar exact sequences X, X'€EXT"(4,s)(4, B) (n=2)

are connected by 2n—3 steps of modifications each consisting in a special projec-

tion from a third object XEEXT”(A,S)(A, B) of the following form (1=i<n—1):

X(k): g._,B._,En__,...__, I el —"Ei'_’ i—l‘*""‘"f';l—’A_'g

[ [ o

X: g'—’B—'En—’"'—’E“z“"Ei“@E;“—’Ei—’ 5_1—’"'“’E1"“’A—’0
i

N o1 | Pl

X% g B E,—+—o Ejo— El,y, —E/— ig—e— B> A—0.

This is an immediate consequence of Theorem H,.; and Similarity Theorem 1.
As a corollary to Similarity Theorem I, we get easily the following:
SIMILARITY THEOREM II. For a special exact sequence

X: gp—B—E,—--— E—A—0 (nz2)

the féllowing conditions are equivalent to each other:

(1) [X1=0;

(2) There exists a commutative diagram

X: .‘,' g—»En——y_EA'n_z——»-..——)EI—bA—)ﬂ

I ||

X: 9—B—E,—E,,——E—A—97,
where X is special exact :
(2%) There exists a commutative diagram

X: ﬂ——’B—'—’En——’"'_—’Ez—"Ei‘—’A‘_"g

| | [

v v

X: 9—B—E,— - — EB—E—90,

where X is special exact.
University of Tokyo.
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