Recall: The graphs of $y = \sin(x)$ and $y = \cos(x)$ are pictured below. They are both waves, where \sin starts at a “rising root” and \cos starts at its peak. Here are key features of these graphs:

- The **axis** is the horizontal line through the middle. Here, it’s $y = 0$.
- The **amplitude** is how far the graph rises and falls from the axis.
- The **period** is how long a wave is. You measure distance between rising roots or between peaks (or valleys).

Transforming these: Consider something like $y = a \cdot \sin(bx) + d$ or $y = a \cdot \cos(bx) + d$. It has three transforms.

1. The b in “bx” DIVIDES the x-values and width by $|b|$. (Usually $b > 0$ though, so $|b|$ is just b.)
2. The a in front stretches vertically by $|a|$. (If $a < 0$, flip the waves upside-down.)
3. The addition of d shifts the graph vertically.

These steps produce

$$\begin{align*}
\text{Amplitude} &= |a| \\
\text{Period} &= \frac{2\pi}{b} \\
\text{Axis} &= y = d
\end{align*}$$

Ex 1: Find the amplitude, period, and range of each curve. Also make a quick sketch.

(a) $y = 3 \sin(\pi x) + 2$
(b) $y = -2 \cos(\pi x/2)$

NOTE: For (b), you’ll want to draw the wave upside-down... why?

Some other remarks:
- **Range:** The min is (axis) - (amplitude) and max is (axis) + (amplitude), so the range is $[d - |a|, d + |a|]$.
- (axis) = (max + min) / 2, and (amplitude) = (max - min)/2... why?
- The only difference between sin and cos here is what y-value the graph starts with at $x = 0$!

Ex 2: Let $f(x) = a \cos(2x) + d$, where a is positive. If $f(x)$ oscillates between -17 and 5, find a and d.

NOTE: This only talks about range, so the 2 on the inside is irrelevant (its a horizontal change). Use the min and max to get axis and amp.

Ex 3: Determine the ranges of:
(a) $10 + 2 \sin(-8x + 9)$
(b) $10 + 10 \cos^2(x)$

HINT: For (a), ignore horizontal transforms. For (b), $\cos^2(x)$ has range $[0, 1]$, not $[-1, 1]$... why?

Ex 4: Determine the coordinates of the first maximum and minimum turning points on the graph of $y = 6 \sin(13x)$ on the interval $[0, 2\pi]$.

NOTE: Normally, the first maximum turning point of \sin is at $(\pi/2, 1)$, and the first minimum is $(3\pi/2, -1)$. In other words, they are $1/4$ and $3/4$ of the way through one full wave. Transform those points!

Phase Shift

When you shift a wave horizontally, the amount its “start position” moves is called the **phase shift** (PS). When you have a phase shift, the equation is more like $y = a \sin(bx + c) + d$.

Finding PS: Focus on the angle part $bx + c$... call this θ. Normally, the wave “starts” when $\theta = 0$, so $bx + c = 0$. To find the PS, which is the new “starting x” of the wave, solve for x!

$$\text{Phase shift} = -\frac{c}{b}$$

Ex 5: Find the amplitude, period, phase shift, and axis:

(a) $y = -3 \cos(2x + \pi) - 1$
(b) $y = \frac{1}{2} \sin(\frac{\pi}{2} x)$
Recognizing the Transforms from a Sine or Cosine

Instead of going from an equation to a graph, let’s go the other way around now! In other words, we’re going to find the constants a, b, c, d in $y = a \cdot \text{trig}(bx + c) + d$ from a picture. For simplicity, we’ll make sure $a, b > 0$ and $c \geq 0$.

1. Find $d = \text{axis} = (\text{max} + \text{min})/2$ and $a = \text{amplitude} = (\text{max} - \text{min})/2$.
2. Measure the period. Usually, I look for two adjacent peaks/crests/maxes or two valleys/troughs/mins.
 - Since $(\text{period}) = 2\pi/b$, solve for b!
3. There are technically infinitely many possible phase shifts! (The wave repeats infinitely often.) By convention, our choice will be the greatest negative “starting point” of the wave (though $x = 0$ is possible).
 - This means you go left of the origin but as close as possible, and that x-coordinate is your phase shift.
 - Remember: sin starts at the axis and rises. cos starts at a peak/crest.
4. Think of this as a “two-layer problem” where we have $\cos(\theta)$ or $\cos(\theta) + d$.
5. Solve the basic equation $\cos(\theta) = -1/2$; there’s only one answer in $(0, \pi)$. Use that θ value to find b!
 - Double-check that b satisfies $0 < b < 9.$

HINT: On the far right, you can see the parts labeled (the solid dot is PS).

NOTE: If this were a COSINE function, how would that change the phase shift and the equation?

Tricky Problem Type: Getting the Transformed Wave from Two Points

Ex 6: The graph of a sine function with a positive coefficient is shown (it’s the graph on the left).

(a) Find its amplitude, period, and phase shift.
(b) Write the equation in the form $y = a \sin(bx + c)$ with $a, b > 0$.

HINT: On the far right, you can see the parts labeled (the solid dot is PS).

NOTE: If this were a COSINE function, how would that change the phase shift and the equation?

Ex 7: A function $f(x)$ is of the form $f(x) = a + \cos(bx)$, where a and b are constants and $0 < b < 9$. If $f(0) = 2$ and $f(\pi/9) = 0.5$, find a and b.

MAIN APPROACH:
1. You have a form given, and you have two points. Plug the points in!
2. When you plug in 0, you get $a + \cos(0) = 2$. Since $\cos(0) = 1$ (whereas $\sin(0) = 0$), you get $a = 1$.
3. When you plug in $\pi/9$, you get $1 + \cos(b\pi/9) = 0.5$. Hence, $\cos(b\pi/9) = -0.5 = -1/2$.
4. Think of this as a “two-layer problem” where we have $\cos(\theta) = -1/2$ and $\theta = b\pi/9$. Let’s focus first on $\cos(\theta) = -1/2$.
 - To get an interval for θ: We know $0 < b < 9$. Multiply by $\pi/9$ to find $0 < b\pi/9 < \pi$. Thus, θ must be in $(0, \pi)$. This tells you that θ must be in Quad I or II; Quad I would handle positive values, so our θ must be Quad II.
5. Solve the basic equation $\cos(\theta) = -1/2$; there’s only one answer in $(0, \pi)$. Use that θ value to find b!
 - Double-check that b satisfies $0 < b < 9.$

Ex 8: Suppose $g(x) = a + \tan(bx)$, where $-3.5 < b < 3.5$. Determine a and b if $g(0) = 3$ and $g(\pi/7) = 2$.

NOTE: If $\theta = b\pi/7$, you find $-\pi/2 < \theta < \pi/2$. This time, the angle is NEGATIVE for Quadrant IV! I recommend: find θ_R, then just use $\theta = -\theta_R$ for Quad IV.

Transforming the Other Four Trigs

We can do the same types of transforms to the other trig functions, and we make equations like $y = a \tan(bx + c) + d$, $y = a \sec(bx + c) + d$, etc. There are minor changes:

- $\text{PS} = -c/b$, but think about where the graphs “start”! At $x = 0$, tan has $(0, 0)$ and sec has $(0, 1)$, whereas the “co” functions cot and csc have vertical asymptotes.
- “Amplitude” and “axis” don’t make as much sense, since there’s no min or max. Instead, use a and d to transform vertically! The ranges of tan and cot will always be $(-\infty, \infty)$. For sec and csc, though, think of the range as having a “gap” from -1 and 1, and your transformations adjust that gap.
- tan and cot have half the usual period! It’s π/b instead of $2\pi/b$.

Ex 9: Find the ranges and periods of the following curves (check with a graphing calculator!):

(a) $-3 \tan(5x)$
(b) $4 \sec(x/2)$
(c) $9 \csc(2x + 3) + 1$