ERRATA for T. Shifrin and M. Adams’s

Linear Algebra: A Geometric Approach, second edition

p. 85, **Example 2.** The matrix B should be

\[
\begin{bmatrix}
4 & 1 & 0 & -2 \\
-1 & 1 & 5 & 1 \\
\end{bmatrix}.
\]

(Thanks to Katie at Duke for pointing out the error.)

p. 89, **Exercise 4.** In part c., the “$= A(B + B’)” should be removed at the end of the argument. (Thanks to Quinn C. for pointing this out.)

p. 116, **Example 4.** In the first line, we should have “the first n rows” and then

\[
E = \begin{bmatrix}
1 & \frac{1}{2} & 0 \\
0 & -\frac{1}{2} & 0 \\
0 & -\frac{1}{2} & 1 \\
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-2 & 0 & 1 \\
\end{bmatrix} = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & -\frac{1}{2} & 0 \\
-\frac{3}{2} & -\frac{1}{2} & 1 \\
\end{bmatrix}.
\]

(Thanks to Xiaoshen Li for pointing out these errors.)

p. 137, **footnote.** Sections 3 and 4.

p. 169, **Exercise 13.** Here we intend that U be an echelon form of A. (Thanks to Radu Grosu for pointing out the ambiguity.)

p. 170, **Exercise 25.** The last line should refer to Exercise 4.4.24.

p. 227, **line 3** of Proof of Proposition 4.1. $v = T^{-1}(T(v)) = T^{-1}(0) = 0$.

p. 283, **lines 3 and 4.** = rather than \leq (not that it matters) and $a_{i\ell}^{(k+1)} = a_{i\ell}^{(k)} a_{r\ell} + \sum_{q \neq r} a_{iq}^{(k)} a_{q\ell}$, respectively. (Thanks to Radu Grosu.)

Solutions Manual, pp. 35–36, 1.5.9. The Solutions Manual addresses the wrong matrix. The matrix is singular when $\alpha = \pm 1, 2$. For $\alpha = -1$, for $Ax = b$ to be consistent we must have $3b_1 + 2b_2 + b_3 = 0$; for $\alpha = 2$, we must have $b_2 - b_3 = 0$.