Math 3000 Test 1 9/27/12

Instructions: Show your work, justifying your answers. If a problem specifies the method of solution, you are expected to use that method. You may not use your book or notes or a calculator.

Suggestion: Work quickly on the problems you can easily do, to leave time for the others.

1. For the following matrix A and vector \mathbf{b} , determine the reduced echelon form of the augmented matrix $[A|\mathbf{b}]$ and write the general solution of $A\mathbf{x} = \mathbf{b}$ in standard form.

$$A = \begin{bmatrix} 1 & 2 & 2 & -1 \\ 0 & -1 & 1 & 1 \\ 1 & 3 & 1 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 2 & -1 & 2 \\ 0 & -1 & 1 & 1 & 3 \\ 1 & 3 & 1 & 0 & 2 \end{bmatrix} \xrightarrow{\text{NS}} \begin{bmatrix} 1 & 2 & 2 & -1 & 2 \\ 0 & -1 & 1 & 1 & 3 \\ 0 & 1 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{\text{NS}} \begin{bmatrix} 1 & 2 & 2 & -1 & 2 \\ 0 & -1 & 1 & 1 & 3 \\ 0 & 0 & 0 & 2 & 3 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} \frac{13}{2} - 4x_3 \\ -\frac{3}{2} + x_3 \\ x_3 \\ \frac{3}{2} \end{bmatrix} = \begin{bmatrix} \frac{13}{2} \\ -\frac{3}{2} \\ 0 \\ \frac{3}{2} \end{bmatrix} + x_5 \begin{bmatrix} -4 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

2. (a) Compute the projection of the vector (3, 5) onto the vector (2, 7).

$$\rho roj_{(2,7)}(3,5) = \frac{(2,7)\cdot(3,5)}{\|(2,7)\|^2}(2,7) = \frac{2\cdot3+7\cdot5}{4+49}(2,7)$$

$$= \frac{41}{53}(2,7)$$

(b) Write down a system of linear equations which you would solve to find the parabola $y = ax^2 + bx + c$ passing through the points (0,2), (1,3) and (2,1). (You don't have to solve this system.)

- 3. In this problem, you should use part a) to help you with the remaining parts.
- (a) Find constraint equations that $\mathbf{b} = (b_1, b_2, b_3)$ must satisfy in order for the system $A\mathbf{x} = \mathbf{b}$ to be consistent, where

$$A = \begin{bmatrix} -1 & 2 \\ 2 & -4 \\ 1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 2 & b_1 \\ 2 & -4 & b_2 \\ 1 & -2 & b_3 \end{bmatrix} \text{ any } \begin{bmatrix} -1 & 2 & b_1 \\ 0 & 0 & 2b_1 + b_2 \\ 0 & 0 & b_1 + b_3 \end{bmatrix}$$

$$50 \quad 2b_1 + b_2 = 0$$

$$b_1 + b_3 = 0$$

(b) Find constraint equations that $\mathbf{b} = (b_1, b_2, b_3)$ must satisfy in order to be in the span of (-1, 2, 1) and (2, -4, -2).

(c) Find the Cartesian equation of the following plane in \mathbb{R}^3 :

$$\mathbf{x} = s(-1,2,1) + t(2,-4,-2) \;,\; s,t \; \in \mathbb{R}.$$
 not a plane

(d) Find the Cartesian equation of the following plane in \mathbb{R}^3 :

$$\mathbf{x} = (3,2,1) + s(-1,2,1) + t(2,-4,-2) \; , \; s,t \; \in \mathbb{R}.$$

4. Find the value of k such that the following matrix has rank 2.

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ -1 & 1 & k \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 0 \\ -1 & 1 & k \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 & 3 & 3+k \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -6 \\ 0 & 0 & 3+k+18 \end{bmatrix}$$

The matrix has rank 2 if
$$3+k+18=0$$
 $k=-21$

4

5. (a) Suppose \mathbf{u}, \mathbf{v} and \mathbf{x} are unit vectors such that the angle between \mathbf{u} and \mathbf{x} is 45°, and \mathbf{v} and \mathbf{x} are orthogonal. Find $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{x}$.

$$\cos 45^{\circ} = \frac{\vec{u} \cdot \vec{x}}{\|\vec{u}\| \|\vec{x}\|} = \vec{u} \cdot \vec{x} \qquad \text{So } \vec{u} \cdot \vec{x} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$

$$\vec{v} \cdot \vec{x} = 0$$

$$\text{So } (\vec{u} + \vec{v}) \cdot \vec{x} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$

(b) Find the products AB and BA if defined, or explain why not if they are not defined, for

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 & 1 \\ -1 & -1 & 3 \end{bmatrix}$$

$$AB = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ -1 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 2-1 & 0-1 & 2+3 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 5 \\ 1 & 0 & 1 \end{bmatrix}$$

6. Let \overrightarrow{y} and \overrightarrow{w} be unit vectors in \mathbb{R}^2 . Show that the angle between \mathbf{x} and $\mathbf{x} + \mathbf{y}$ equals the angle between \mathbf{y} and $\mathbf{x} + \mathbf{y}$. Deduce that $\mathbf{x} + \mathbf{y}$ bisects the angle between \mathbf{x} and \mathbf{y} .

Let θ_1 be the angle between \vec{x} and $\vec{x}+\vec{y}$ and θ_2 be the angle between \vec{y} and $\vec{x}+\vec{y}$. We want to show $\theta_1=\theta_2$. It is enough to show $\cos\theta_1=\cos\theta_2$ because the function $f(\theta)=\cos\theta$ is 1-1 if the domain is $[0,\pi]$, so $\cos\theta_1=\cos\theta_2$ implies $\theta_1=\theta_2$.

$$\cos \theta_{1} = \frac{\vec{x} \cdot (\vec{x} + \vec{y})}{\|\vec{x}\| \|\vec{x} + \vec{y}\|} = \frac{\vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot (\vec{x} + \vec{y})}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{y} \cdot \vec{y}}{\|\vec{x} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{y} \cdot \vec{y}}{\|\vec{y} + \vec{y}\|} = \frac{\vec{y} \cdot \vec{y}}{\|\vec{y} + \vec{y}\|} =$$

Hence $\cos \theta_1 = \cos \theta_2$, which is what we wanted. To see that $\vec{x} + \vec{y}$ bisects the angle between \vec{x} and \vec{y} .

Since $\theta_1 = \theta_2$, $\vec{\chi} + \vec{y}$ bisects the angle $\theta_1 + \theta_2$ between $\vec{\chi}$ and \vec{y} .

- 7. Let A be an $m \times n$ matrix and let r be the rank of A.
- (a) What is the condition on the rank which implies that the system $A\mathbf{x} = \mathbf{0}$ has only one solution?
- (b) What is the condition on the rank which implies that the system $A\mathbf{x} = \mathbf{b}$ is consistent for every vector $\mathbf{b} \in \mathbb{R}^n$?
- (c) Give a proof or counterexample to the following assertion: If the system $A\mathbf{x} = \mathbf{0}$ has only one solution, then the system $A\mathbf{x} = \mathbf{b}$ is consistent for every vector $\mathbf{b} \in \mathbb{R}^n$.
 - a) r=n (no free variables)
 - b) r=m (no constraint equations, so no nonzero rows in an echelon form of A)
- c) Counterexample: We look for a counterexample: find a matrix A where r=n, $r ext{ cm. }$ Take n=1, m=2, $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{x} = \text{LcJ.}$ Then $A\vec{x} = \vec{0}$ means $[c\vec{J} = \vec{0}]$ so c = 0, so $\vec{x} = \vec{0}$. Therefore $A\vec{x} = \vec{0}$ has only one solution (namely $\vec{x} = \vec{0}$). But $A\vec{x} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$ so the system $A\vec{x} = \begin{bmatrix} 6 \\ 6 \\ 2 \end{bmatrix}$ is not consistent if $6 \neq 0$.