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Math 3000 Test 1 9/27/12
Instructions: Show your work, justifying your answers. If a problem specifies the
method of solution, you are expected to use that method. You may not use your book
or notes or a calculator.

Suggestion: Work duickly on the problems you can easily do, to leave time for the
others.

1. For the following matrix A and vector b, determine the reduced echelon form
of the augmented matrix [A|b] and write the general solution of Ax = b in standard

form.
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2. (a) Compute the projection of the vector (3,5) onto the vector (2,7).
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(b) Write down a system of linear equations which you would solve to find the
parabola y = az? + bz + ¢ passing through the points (0,2), (1,3) and (2,1). (You
don’t have to solve this system.)

J = € :
3z = a+bec

l = L{q{-lh‘t

———

£ —



3. In this problem, you should use part a) to help you with the remaining parts.

(a) Find constraint equations that b = (b1, b2, b3) must satisfy in order for the system
Ax = b to be consistent, where
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(b) Find constraint equations that b = (by, by, b3) must satisfy in order to be in the
span of (—1,2,1) and (2, —4, —2).
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(c) Find the Cartesian equation of the following plane in R3:
x=s(-1,2,1)+¢2,—4,-2), s,t €R.

i’lG‘L o F{G\.NE

(d) Find the Cartesian equation of the following plane in R3:
x=(3,2,1) +5(-1,2,1) + £(2,—-4,-2) , s,t €R.
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4. Find the value of k£ such that the following matrix has rank 2.

1 2 3
2 50
-1 1 %

\ o+ 3 a9 3 i . 5
= 8 & M |00 b Ay ) | - L
1k 0o 3 3tk 0 o  Stkru

TL“Z Wm}‘ﬂ"y\ LM vaule 2 AF 3-{- l(;l,g =0
k=-21



5

5. (a) Suppose u,v and x are unit vectors such that the angle between u and x is
45°, and v and x are orthogonal. Find (u+ v) - x.
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(b) Find the products AB and BA if defined, or explain why not if they are not

defined, for
2 1 1 0 1
A=[1 0] Bz[—1 = 3}
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6. Let» and w be unit vectors in R?. Show that the angle between x and x + y
equals the angle between y and x +y. Deduce that x +y bisects the angle between x
and y.
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7. Let A be an m X n matrix and let r be the rank of A.

(a) What is the condition on the rank which implies that the system Ax = O has
only one solution?

(b) What is the condition on the rank which implies that the system Ax = b is
consistent for every vector b € R™?

(¢) Give a proof or counterexample to the following assertion: If the system Ax = 0
has only one solution, then the system Ax = b is consistent for every vector b € R".
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