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Consider R2n = {(~x , ~y)|~x , ~y ∈ Rn} with its standard symplectic
form

ω0 =
n∑

i=1

dxi ∧ dyi .

The structure (R2n, ω0) has many symmetries
(“symplectomorphisms”) φ : R2n → R2n with φ∗ω0 = ω0, arising
e.g. from solutions to Hamilton’s equations for any well-behaved
H : [0, 1]× R2n → R:

~x ′(t) = −∇~yH(t, ~x(t), ~y(t))

~y ′(t) = ∇~xH(t, x(t), y(t)).

If φ is the map sending arbitrary initial conditions (~x(0), ~y(0)) to
(~x(1), ~y(1)) then φ∗ω0 = ω0.
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Motivating questions

Question (Existence)

Given A,U ⊂ R2n, is there a symplectomorphism φ : R2n → R2n

with φ(A) ⊂ U?

Question (Uniqueness)

Given two such φ1, φ2, how are they related? In particular is there
a symplectomorphism ψ : U → U with ψ(φ1(A)) = φ2(A)?

Technical assumptions: Unless otherwise stated A,U will be star-shaped with A

compact, U open and A, Ū both manifolds with corners.
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Liouville’s theorem (1838)

ω0 =
n∑

i=1

dxi ∧ dyi .

Note ω∧n0 is a constant times the standard volume form

dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn.

So if φ∗ω0 = ω0 then φ must be volume-preserving. Thus a
necessary condition for φ(A) ⊂ U is that vol(A) ≤ vol(U).
Actually vol(A) < vol(U) given that we assume A compact, U open.
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In R2 this is the end of the story: under our assumptions on
A,U ⊂ R2, a 1965 argument of Moser implies that A
symplectically embeds into U if and only if vol(A) < vol(U), and
that two such embeddings are symplectically isotopic provided that
they are smoothly isotopic through embeddings whose images have
constant volume.

We’ll see that things are much more complicated starting in
dimension 4.
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Gromov’s non-squeezing theorem (1985)

Consider the 2n-dimensional ball of capacity a > 0

B2n(a) =

(~x , ~y) ∈ R2n

∣∣∣∣∣∣
∑
j

π(x2
j + y2

j ) ≤ a


and the corresponding cylinder

P(a,∞, . . . ,∞) =
{

(~x , ~y) ∈ R2n
∣∣π(x2

1 + y2
1 ) ≤ a

}
.

Gromov’s non-squeezing theorem asserts that B2n(a)
symplectically embeds into P(A,∞, . . . ,∞)◦ only if a < A.
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A good family of test cases is provided by toric domains (also
called “Reinhardt domains”) in R2n, which are given as preimages
XΩ = µ−1(Ω) of regions Ω ⊂ [0,∞)n under the map

µ(~x , ~y) =
(
π(x2

1 + y2
1 ), . . . , π(x2

n + y2
n )
)
.

For instance we have the ellipsoid

E (a1, . . . , an) = µ−1

({
(t1, . . . , tn)

∣∣∣∣∑ ti
ai
≤ 1

})
with B2n(a) = E (a, . . . , a) and the polydisk

P(a1, . . . , an) = µ−1 ({(t1, . . . , tn) |0 ≤ ti ≤ ai })
= B2(a1)× · · · × B2(an)
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Our normalization gives vol2n(XΩ) = voln(Ω), so Liouville’s
theorem says that if we have a symplectic embedding of
2n-dimensional toric domains XΩ1 ↪→ X ◦Ω2

then
voln(Ω1) < voln(Ω2).

Gromov’s theorem shows for instance that we cannot symplectically
embed the toric domain E (1, 1) associated to the region at left
into the toric domain P(.95, 5) associated to the region at right.
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Consider the existence problem for embeddings of four-dimensional
ellipsoids into polydisks:

E (1, a) ↪→ P(c , d)◦.

It’s conventional to fix the “aspect ratio” of the codomain equal to
some b ≥ 1 and investigate the “embedding capacity function”

cb(a) = inf{t|(∃symplectic embedding E (1, a) ↪→ P(t, tb)◦)}.

1

a tb

t
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cb(a) = inf{t|(∃symplectic embeddingE (1, a) ↪→ P(t, tb)◦)} (a, b ≥ 1)

Our classical embedding obstructions give lower bounds:

Liouville’s theorem (volume) ⇒ cb(a) ≥
√

a
2b

Non-squeezing ⇒ cb(a) ≥ 1.

Also the inclusion gives an upper bound

cb(a) ≤ max{1, a/b}.

???
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The function cb has remarkably intricate structure, which has been
completely worked out by Frenkel–Müller for b = 1 (2012, modeled
on work of McDuff–Schlenk for embeddings into balls) and
Cristofaro-Gardiner–Frenkel–Schlenk (2016) for other integer b.
The structure for non-integer b is likely at least as complicated,
and not yet entirely known.
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Explicit embeddings
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Some of the foundation for these results is given by the following
deep facts:

(McDuff 2009) For a ∈ Q, E (1, a) symplectically embeds into
P(c , d)◦ iff a certain specific disjoint union of balls
B4(w1(a)) t · · · t B4(wN(a)) symplectically embeds into
P(c , d)◦.
(McDuff-Polterovich 1994) Up to arbitrarily small rescaling,
such a disjoint union of balls symplectically embeds into
P(c , d)◦ iff it embeds into the product S2(c)× S2(d) of
spheres of area c and d .
(McDuff-Polterovich 1994) This last condition is equivalent to
the statement that there is a symplectic form on the N-fold
blowup of S2 × S2 giving areas c , d to S2 × {pt}, {pt} × S2

and areas w1(a), . . . ,wN(a) to the N exceptional divisors (and
homotopic to a Kähler form).

This turns our embedding problem into a problem about the
cohomology classes of symplectic forms on blowups of S2 × S2.
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One consequence of the previous slide is that, to understand cb, we
can replace the codomains of our embeddings E (1, a) ↪→ P(t, tb)◦

by products of spheres S2(t)× S2(tb).

We know that cb(1) = 1 by non-squeezing and the fact that
E (1, 1) ⊂ P(1, b). Once one replaces P(1, b) by S2(1)× S2(b)
one can work out the largest a such that cb(a) = 1 (i.e., the
supremum of a such that E (1, a) ↪→ S2(1)× S2(b)) by fairly direct
considerations, using toric geometry on S2(1)× S2(b).
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This can be made especially explicit when b = 1 (Gutt-U. 2017,
based in part on Fukaya-Oh-Ohta-Ono 2012, Oakley-U. 2014), so
that we are considering a product of equal-area spheres
S2(1)× S2(1). Regard S2(1) as the unit sphere in R3, with
symplectic form equal to 1

4π times the standard area form. The
functions

F1,F2 : S2(1)× S2(1)→ R

F1(~v , ~w) = 1− ‖
~v + ~w‖

2
, F2(~v , ~w) =

‖~v + ~w‖ − (v3 + w3)

2

have Hamiltonian flows that generate commuting R/Z-actions on
S2 × S2 \ {(~v ,−~v)}.

The image of the map (F1,F2) : S2(1)× S2(1)→ R is exactly the
triangle {2x + y ≤ 2, x , y ≥ 0}, which is the same as the image of
E (1, 2) under the map
µ : (x1, x2, y1, y2) 7→ (π(x2

1 + y2
1 ), π(x2

2 + y2
2 )) (whose components

likewise generate commuting R/Z-actions).

Michael Usher (University of Georgia) Existence and uniqueness for symplectic embeddings



Introduction
Embedding four-dimensional ellipsoids into polydisks

(Non-)Uniqueness

Setup and key ingredients
Explicit embeddings
Exceptional sphere obstructions

This can be made especially explicit when b = 1 (Gutt-U. 2017,
based in part on Fukaya-Oh-Ohta-Ono 2012, Oakley-U. 2014), so
that we are considering a product of equal-area spheres
S2(1)× S2(1). Regard S2(1) as the unit sphere in R3, with
symplectic form equal to 1

4π times the standard area form. The
functions

F1,F2 : S2(1)× S2(1)→ R

F1(~v , ~w) = 1− ‖
~v + ~w‖

2
, F2(~v , ~w) =

‖~v + ~w‖ − (v3 + w3)

2

have Hamiltonian flows that generate commuting R/Z-actions on
S2 × S2 \ {(~v ,−~v)}.
The image of the map (F1,F2) : S2(1)× S2(1)→ R is exactly the
triangle {2x + y ≤ 2, x , y ≥ 0}, which is the same as the image of
E (1, 2) under the map
µ : (x1, x2, y1, y2) 7→ (π(x2

1 + y2
1 ), π(x2

2 + y2
2 )) (whose components

likewise generate commuting R/Z-actions).

Michael Usher (University of Georgia) Existence and uniqueness for symplectic embeddings



Introduction
Embedding four-dimensional ellipsoids into polydisks

(Non-)Uniqueness

Setup and key ingredients
Explicit embeddings
Exceptional sphere obstructions

This allows us to construct “action-angle coordinates”
(F1,F2, φ1, φ2) on an open dense subset of S2(1)× S2(1), which
symplectically identify that subset with E (1, 2)◦. So we get a
symplectic embedding E (1, 2)◦ ↪→ S2(1)× S2(1); note that this
fills up the entire volume of the codomain.

One can even write a
formula: (x1, x2, y1, y2) 7→(
Γ(
√

4π(x1 + iy1),
√

4π(x2 + iy2)), Γ(−
√

4π(x1 + iy1),
√

4π(x2 + iy2))
)

where

Γ(w , z) =

(√
8− |w |2

(
(8− 2|w |2 − |z |2)w + w̄z2

)
8(4− |w |2)

+
iz

4

√
8− 2|w |2 − |z |2,

1− |w |
2 + |z |2

4
−
√

(8− |w |2)(8− 2|w |2 − |z |2)

4(4− |w |2)
Im(wz̄)

)
and we think of S2 as a subset of C× R.
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symplectic embedding E (1, 2)◦ ↪→ S2(1)× S2(1); note that this
fills up the entire volume of the codomain. One can even write a
formula: (x1, x2, y1, y2) 7→(
Γ(
√

4π(x1 + iy1),
√

4π(x2 + iy2)), Γ(−
√

4π(x1 + iy1),
√

4π(x2 + iy2))
)

where

Γ(w , z) =

(√
8− |w |2

(
(8− 2|w |2 − |z |2)w + w̄z2

)
8(4− |w |2)

+
iz

4

√
8− 2|w |2 − |z |2,

1− |w |
2 + |z |2

4
−
√

(8− |w |2)(8− 2|w |2 − |z |2)

4(4− |w |2)
Im(wz̄)

)
and we think of S2 as a subset of C× R.
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For non-integer b there is a related toric construction: writing
b = m + ε where m ∈ N, 0 < ε < 1, there is a symplectomorphism
between S2(1)× S2(m + ε) and a Kähler Hirzebruch surface
Σ2m, with the sections of square ±2m having areas 2m + ε, ε and
the fiber having area 1.

There are functions F1,F2 : Σ2m → R
generating commuting (R/Z)-actions, with (F1,F2) : Σ2m → R2

having image:

ϵ

1

2m+ϵ
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ϵ

1

2m+ϵ

Inside this we see the usual moment image of the ellipsoid
E (2m + ε, 1)◦, from which one can infer the existence of a
symplectic embedding E (1, 2m + ε)◦ ↪→ S1(1)× S2(m + ε).
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2

0 1
0
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This is enough to show that, if b = m + ε with m ∈ N, 0 ≤ ε < 1,
then cb(a) = 1 for 1 ≤ a ≤ 2m + ε.

In fact the conversion to a problem about blowups of S2 × S2

implies that this interval of a’s is sharp, or equivalently that the
ellipsoid E (1, 2m + α) does not embed into arbitarily small dilates
of P(1,m + ε)◦ if α > ε.
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The general source of obstructions to embeddings of this nature
consists of symplectic exceptional classes in blowups of S2 × S2—
second homology classes of self-intersection −1 and Chern number
1 which are represented by smoothly embedded spheres. Any
symplectic form in the standard deformation class must evaluate
positively on such a class.

One such class is

Fm = m[S2 × {pt}] + [{pt} × S2]−
2m+1∑
i=1

Ei .

If we could embed E (1, 2m + α) into P(t, t(m + ε))◦ McDuff’s
results imply that there would be a symplectic form evaluating as t
on [S2 × {pt}], t(m + ε) on [{pt} × S2], 1 on E1, . . . ,E2m, and α
on E2m+1. But in order for this form to evaluate positively on Fm,
if α > ε we would need to bound t away from 1.
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By thinking about rescalinigs of the above embeddings to get an
upper bound, and applying similar reasoning with the exceptional
class Fm to get the lower bound, one can obtain the following
picture for the initial part of the graph of cb (together with the
simpler bounds from the start of the talk):
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To go much further than this one seems to need deeper results
about blowups of S2 × S2, taking one into arguments that are
more remote from explicit constructions. Work of Li-Liu (2001)
and Li-Li (2002) based on Taubes–Seiberg–Witten theory shows
that a cohomology class can be represented by a symplectic form
in the standard deformation class if and only if it has positive
square and evaluates positively on every exceptional class. Thus
the only obstructions that prevent cb(a) from coinciding with the
volume bound

√
a

2b come from exceptional classes like Fm.

Moreover their results lead to an algorithm which, given a class
with rational coefficients in the standard basis, determines whether
or not that class obeys the required condition. By asking a
computer to implement this algorithm thousands of times, one gets
pictures such as the following for c3/2:
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Scaling required to embed E(1,a) into P(1,3/2) Volume bound

1.8 2.4 3 3.6 4.2 4.8 5.4 6 6.6 7.2 7.8

a

0.824
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1.014
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1.141

1.204

1.268
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1.585

1.648
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Note the complicated behavior for a ∈ [6, 7], which has not yet
been completely understood:

Scaling required to embed E(1,a) into P(1,3/2) Volume bound

6 6.08 6.16 6.24 6.32 6.4 6.48 6.56 6.64 6.72 6.8

a

1.412

1.421

1.429

1.437

1.446

1.454

1.462

1.47
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1.503

1.512
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As mentioned earlier, the functions cb have been completely
worked out when b ∈ N. b = 1 turns out to be the richest case:
analogously to work of McDuff-Schlenk for embeddings of
ellipsoids into balls, Frenkel–Müller found the graph of c1 to be
given on the interval [1, (1 +

√
2)2] by an infinite staircase arising

from exceptional class obstructions near a sequence of a related to
the Pell numbers and the half-companion Pell numbers (each of
which satisfy a recurrence xn+2 = xn+1 + 2xn):

a =
3

1
,

5

1
,

17

3
,

29

5
,

99

17
,

169

29
, . . .

For a > 7 1
32 , c1(a) coincides with the volume bound

√
a
2 , and for

a ∈ [(1 +
√

2)2, 7 1
32 ], c1(a) is the maximum of the volume bound

and a collection of seven exceptional class obstructions that have
been determined explicitly.
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Scaling required to embed E(1,a) into P(1,1) Volume bound
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For integer b ≥ 2, Cristofaro-Gardiner–Frenkel–Schlenk showed
that the only obstructions come from the exceptional classes Fm
mentioned earlier for a finite subset of m depending on b, together
with one additional exceptional class Gb. In particular the
Frenkel–Müller infinite staircase somehow disappears as b increases
from 1 to 2.

This leads to the question of what happens for b ∈ R very close to
1. We don’t entirely know, but:

Theorem (U., in progress)

Fix b > 1. The only exceptional class obstructions for
a < (1 +

√
2)2 are given by a finite subset of size O(log(1/(b− 1)))

of the classes from the Frenkel–Müller infinite staircase.
However, new obstructions arise for a, b arbitrarily close to (and
larger than) (1 +

√
2)2, 1.
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We now discuss the extent to which symplectic embeddings
A ↪→ U are unique up to some notion of equivalence.

By using the relation between ball embeddings and symplectic
blowups, McDuff showed in 1991 that if A and U are both balls in
R4, then the space of symplectic embeddings of A into U is
connected. Since there is a symplectic version of the isotopy
extension theorem, this implies that any two embeddings of A into
U are related by a compactly supported ambient symplectic isotopy
of U.
McDuff’s 2009 work extended this result to the case that A and U
are each ellipsoids in R4. Cristofaro-Gardiner later observed that
her argument extends more generally to the case that A is an
ellipsoid and U is a “convex toric domain,” e.g. a polydisk.
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On the other hand, Floer–Hofer–Wysocki showed in 1994 that, if
a, b < 1 and a + b > 1, then the two embeddings

P(a, b) ↪→ P(1, 1)◦ P(a, b) ↪→ P(1, 1)◦

(x1, x2, y1, y2) 7→ (x1, x2, y1, y2) (x1, x2, y1, y2) 7→ (x2, x1, y2, y1)

are not symplectically isotopic inside P(1, 1)◦.

≄

Note that this example illustrates that it matters what equivalence
relation one uses to study uniqueness; the embeddings aren’t
isotopic but they are obviously related by a symplectomorphism of
the codomain P(1, 1)◦.
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Gutt-U. (2017) provide a broad class of examples of symplectic
embeddings φ : A ↪→ U where A ⊂ U ⊂ R4 which are distinct from
the inclusion in the strong sense that there is no
symplectomorphism of U mapping A to φ(A); for example we can
take A = P(a, a) and U = P(1, 1)◦ for 1

2 < a < 2
3 .

In general, our strategy is to choose a toric domain
XΩ =

{(
π(x2

1 + y2
1 ), π(x2

2 + y2
2 )
)
∈ Ω

}
for a suitable Ω ∈ R2 that

is star-shaped with respect to the origin, and take A = XΩ and
U = X ◦λΩ, where λ > 1 is chosen just large enough for there to
exist an ellipsoid E that contains A and symplectically embeds into
U.

A U

E
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The main tool that we use to prove that these embeddings are
distinct from the inclusion is the filtered version of the
S1-equivariant symplectic homology of Viterbo and
Bourgeois–Oancea. This associates to a suitable domain X ⊂ R2n

a R-filtered chain complex, whose filtered homology {CHL(X )}L∈R
is functorial with respect to symplectic embeddings.

It turns out that CHL(E ) is relatively small for any ellipsoid E ,
which in some cases makes it impossible for the map associated to
the inclusion A ↪→ U to factor through CHL(E ).
In such a situation, if we can use methods like those discussed
earlier in the talk to prove the existence of a composition
φ : A ↪→ E ↪→ U of symplectic embeddings, then φ(A) can be
shown to be inequivalent to A under symplectomorphisms of U.
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This works for a wide class of domains:

Theorem (Gutt-U. 2017)

Let Ω ⊂ [0,∞)2 be any convex set strictly containing {x + y ≤ c}
and contained in [0, c]× [0, c] for some c > 0, so that the
associated toric domain XΩ obeys B4(c) ( XΩ ⊂ P(c , c). Then
there is λ > 1 and a symplectic embedding φ : XΩ ↪→ X ◦λΩ such
that φ(XΩ) cannot be mapped to XΩ by any symplectomorphism
of X ◦λΩ. The same conclusion also holds with XΩ equal to any
polydisk P(a, b) with a ≤ b < 2a.

Note that XΩ can be taken to be arbitrarily close to a ball B4(c);
on the other hand recall McDuff’s 1991 theorem that implies that
the result cannot hold for XΩ exactly equal to a ball.
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In general, our embeddings are constructed using the rather
indirect ellipsoid embedding machinery discussed earlier in the talk;
however in the case of mapping P(c , c) ↪→ P(1, 1)◦ our explicit
embedding E (1, 2)◦ ↪→ S2(1)× S2(1) makes it possible to obtain
something much more concrete. Here are pictures of how the
image of our embedding intersects P(1, 1) ∩ {y2 = a} for various
constants a:
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something much more concrete. Here are pictures of how the
image of our embedding intersects P(1, 1) ∩ {y2 = a} for various
constants a:
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Thank you!
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