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Throughout this talk (M,ω) denotes a closed symplectic

manifold, and S1 = R/Z.

For a Hamiltonian H : S1 ×M → R, consider, on an appropriate

cover

L̃0M =
{(γ,v)|v : D2 → M, v|S1 = γ}

∼

of the contractible loopspace, the action functional

AH([γ,v]) = −
∫

D2
v∗ω −

∫ 1

0
H(t,γ(t))dt.

The critical points of AH are those [γ,v] for which the loop γ is

an integral curve of the Hamiltonian vector field XH

(ιXH
ω = dH), so they correspond to (some of the) fixed points of

the time one map φ1
H : M → M.
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The function AH is Morse provided that the fixed points of the

time-one map φ1
H are nondegenerate; in this case, the

Hamiltonian Floer complex (CF(H),∂ ) is, formally speaking, the

Morse-Novikov complex of AH.

Thus for a certain Novikov field Λω we have a vector space

isomorphism

CF(H) ∼= Λm
ω

where m is the number of contractible closed 1-periodic orbits

of φ t
H, while the boundary operator “counts negative gradient

flowlines” of AH.

These negative gradient flowlines are solutions u : R×S1 → M

of
∂u

∂ s
+ J(t,u)

(

∂u

∂ t
−XH

)

= 0
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∂ [γ−,v−] = ∑
[γ+,v+]

n([γ−,v−], [γ+,v+])[γ+,v+].

γ⁻

ᵛ⁻
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∂ [γ−,v−] = ∑
[γ+,v+]

n([γ−,v−], [γ+,v+])[γ+,v+].

u

γ⁺

γ⁻

ᵛ⁻

ᵛ⁺
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Theorem (Floer, Hofer-Salamon, Liu-Tian, Fukaya-Ono)

∂ 2 = 0, and the resulting homology HF∗(H) is isomorphic to

singular homology H∗(M;Λω), independently of H.

This immediately implies (a variant of) Arnold’s famous

conjecture on the number of fixed points of Hamiltonian maps.
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One way (due to Piunikhin-Salamon-Schwarz) of realizing the

isomorphism with singular homology (equivalently, Morse

homology) on chain level is by choosing a Morse function f and

constructing chain maps Φ : CM(f ;Λω) → CF(H) and

Ψ : CF(H) → CM(f ;Λω) which count “spiked discs” (Here

CM(f ;Λω) is a chain complex generated over Λω by p ∈ Crit(f),
with differential counting negative gradient flowlines of f):

p
∆-

f

γ

Φ Ψ

γ

∆-

f

P
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While the homology of the Floer chain complex CF(H) is

independent of the Hamiltonian H, other aspects the behavior

of CF(H) are in fact sensitive to H, and this can yield interesting

information about properties that hold for some, but not all,

Hamiltonian diffeomorphisms.

In particular, because CF(H) is formally the Morse complex of

the function AH, there is a natural R-valued filtration

{CFλ (H)}λ∈R:

CFλ (H) =
{

∑ai[γi,vi]
∣

∣AH([γi,vi]) ≤ λ
}

.

Since AH decreases along its negative gradient flowlines, for

any λ ∈ R, CFλ (H) is a subcomplex of CF(H).
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The filtered Floer complex is a dynamically significant invariant:

Theorem (U.)

Given φ̃ = φ̃H ∈ H̃am(M,ω), generated by a normalized

(
∫

M H(t·)ωn = 0) Hamiltonian H : S1 ×M → R, the filtered chain

isomorphism type of the Floer complex CF(H) = ∪λ∈RCFλ (H)
depends only on φ̃ , and is independent of H and of the other

auxiliary data in the construction.

Accordingly we’ll write CFλ (φ̃) (where φ̃ ∈ H̃am(M,ω)) rather

than CFλ (H).
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Hamiltonian Floer complexes admit a pair of pants product,

which behaves compatibly with the filtrations:

∗PP : CFλ (φ̃)⊗CFµ(ψ̃) 7→ CFλ+µ(φ̃ ◦ ψ̃).

φ

ψ

φ◦ψ
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Piunikhin–Salamon–Schwarz (and, by different methods,

Ruan–Tian and Liu–Tian) showed that, on homology, this pair of

pants product induces the small quantum product on

H∗(M)⊗Λω :

a∗b = ∑
A∈H2

(a∗b)AT−ω(A) where (a∗b)A ∩ c = 〈a,b,c〉0,3,A.

b

a

c

≈
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One way of extracting information from the filtration on CF(φ̃)
is through the Oh–Schwarz spectral invariants: where

Φ : H∗(M,Λω) → HF(φ̃) is the PSS isomorphism, for

a ∈ H∗(M;Λω) and φ̃ ∈ H̃am(M,ω), set

ρ(a, φ̃) = inf

{

λ ∈ R

∣

∣

∣

∣

Φ(a) is represented by a chain in CF(φ̃)
of filtration level ≤ λ

}

Consideration of the pair of pants product shows

ρ(a∗b; φ̃ ◦ ψ̃) ≤ ρ(a, φ̃)+ρ(b, ψ̃).

In particular, if e∗ e = e (for example if e = [M], though there are

often other useful idempotents as well)

ρ(e; φ̃ ◦ ψ̃) ≤ ρ(e, φ̃)+ρ(e, ψ̃).
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The “big quantum homology” of a symplectic manifold (M,ω)
provides a family of quantum products ∗η on H∗(M;Λω),
parametrized by η ∈ Hev(M;C):

a∗η b =
∞

∑
k=0

∑
i,A

1

k!
〈a,b,∆i,η , · · · ,η〉0,k+3,AT−ω(A)∆i,

where {∆i} is a basis for H∗(M;C) with Poincaré dual basis {∆i}.

If η ∈ H2n−2(M;C), the divisor axiom for GW invariants shows

a∗η b = ∑
i,A

〈a,b,∆i〉0,3,Aeη∩AT−ω(A)∆i.
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Correspondingly, for η ∈ Hev(M;C) the differential ∂ on the

Floer chain complex may be “deformed by η”:

In case η ∈ H2n−2(M;C) this is particularly simple: choose a

closed 2-form θ ∈ Ω2(M;C) such that PD[θ ] = η , and modify the

definition of the boundary operator to

∂η [γ−,v−] = ∑
u∈M1([γ−,v−],[γ+,v+])

±e
∫

R×S1 u∗θ [γ+,v+].

This is similar to the use of “B-fields” in Lagrangian Floer theory

(Fukaya, Cho) and to Heegaard Floer homology with twisted

coefficients (Ozsváth-Szabó); however I am not aware any prior

uses of this in Hamiltonian Floer theory.
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For more general η (not necessarily representing a

codimension-two class), one deforms ∂η further by adding

infinitely many terms which count Floer cylinders u obeying

appropriate incidence conditions.

γ⁻
η

η

η

γ+

u

The “bulk deformations” used by Fukaya-Oh-Ohta-Ono

implement a similar idea in Lagrangian Floer thoery.
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In a very similar way, given η ∈ Hev(M;C) we may deform the

PSS map CM(f) → CF(φ̃) and the pair-of-pants product

CF(φ̃)⊗CF(ψ̃) → CF(φ̃ ◦ ψ̃); these deformed maps will be chain

maps with respect to the deformed differentials ∂η .

Proposition

On homology, the induced map Φη : H∗(M;Λω) → HF(φ̃) induces

an isomorphism of rings between the quantum homology

(H∗(M;Λω),∗η) and Floer homology with its η-deformed

pair-of-pants product.

In particular, although (unlike in the Lagrangian “B-field” case)

the homology HF(φ̃) is independent of the deformation

parameter η , the pair-of-pants ring structure does depend on η ,

and so we can hope to obtain additional information as η varies.
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The deformed complexes (CF(φ̃),∂η) still carry standard

filtrations, and so we may define η-deformed Oh-Schwarz

spectral invariants:

ρ(a, φ̃)η = inf

{

λ ∈ R

∣

∣

∣

∣

Φη(a) is represented by a cycle in

(CF(φ̃),∂η) of filtration level ≤ λ

}

We now have a triangle inequality

ρ(a∗η b, φ̃ ◦ ψ̃)η ≤ ρ(a, φ̃)η +ρ(b, ψ̃)η .

Since the product structure ∗η depends on η , this triangle

inequality potentially gives us different kinds of information for

different values of η .



Hamiltonian Floer theory Deforming the Floer complex Calabi quasimorphisms Capacity estimates

The deformed complexes (CF(φ̃),∂η) still carry standard

filtrations, and so we may define η-deformed Oh-Schwarz

spectral invariants:

ρ(a, φ̃)η = inf

{

λ ∈ R

∣

∣

∣

∣

Φη(a) is represented by a cycle in

(CF(φ̃),∂η) of filtration level ≤ λ

}

We now have a triangle inequality

ρ(a∗η b, φ̃ ◦ ψ̃)η ≤ ρ(a, φ̃)η +ρ(b, ψ̃)η .

Since the product structure ∗η depends on η , this triangle

inequality potentially gives us different kinds of information for

different values of η .



Hamiltonian Floer theory Deforming the Floer complex Calabi quasimorphisms Capacity estimates

If (U,ω) is an open symplectic manifold, the universal cover

H̃am(U,ω) of the group of compactly supported Hamiltonian

diffeomorphisms admits the Calabi homomorphism

CalU : H̃am(U,ω) → R.

If φ̃ ∈ H̃am(U,ω) is generated by the compactly supported

Hamiltonian H : [0,1]×U → R, then

CalU(φ̃) =
∫ 1

0

∫

M
H(t, ·)ωndt.

On the other hand, for a closed symplectic manifold (M,ω), a

famous theorem of Banyaga shows that there are no nontrivial

homomorphisms from H̃am(M,ω) to any abelian group.
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In general, if G is a group, a quasimorphism µ : G → R is a map

for which there exists a constant C such that for all g,h ∈ G we

have the estimate

|µ(gh)−µ(g)−µ(h)| ≤ C.

Following Entov-Polterovich, a Calabi quasimorphism on

H̃am(M,ω) is a quasimorphism µ : H̃am(M,ω) → R obeying the

additional properties that

µ(φ̃k) = kµ(φ̃), and

If U ⊂ M is a displaceable open subset and if

φ̃ ∈ H̃am(U,ω |U) is extended trivially to an element of

H̃am(M,ω), then

µ(φ̃) = CalU(φ̃).
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H̃am(M,ω), then

µ(φ̃) = CalU(φ̃).
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Entov and Polterovich have shown that the existence of a Calabi

quasimorphism leads to many interesting consequences,

concerning for instance the commutator norm on H̃am(M,ω)
and strong nondisplaceability results for certain subsets of

(M,ω).
Moreover, Entov and Polterovich produced (starting in 2003)

Calabi quasimorphisms for certain (M,ω) from the Oh-Schwarz

spectral invariants; initially, the class of manifolds for which

their construction worked was rather limited, but this has been

improved:
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Theorem (Entov-Polterovich, as generalized by McDuff, U.)

Let (M,ω) be a closed symplectic manifold and η ∈ Hev(M;C).

Suppose that e ∈ Hev(M;Λω) obeys e∗η e = e and that we have

an estimate

ρ(e, φ̃)η +ρ(e, φ̃−1)η ≤ C ∀φ̃ ∈ H̃am(M,ω). (1)

Then

µ(φ̃) = vol(M) lim
k→∞

ρ(e, φ̃k)η

k

defines a Calabi quasimorphism on H̃am(M,ω).

If the algebra (Hev(M;Λω),∗η) splits as a direct sum

F⊕A where F is a field,

then where e is the multiplicative identity of the field

summand, e obeys an estimate (1).
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Theorem (U.)

A certain (complicated) algebraic criterion on the Gromov–Witten

invariants of (M,ω), depending only on the deformation class of

ω , is equivalent to the statement that the algebra (Hev(M;Λω),∗η)
has a field direct summand for an open dense set of η ∈ Hev(M;C).
Moreover, this criterion holds for the following classes of (M,ω),
which therefore admit Calabi quasimorphisms:

A blowup at a point of any closed symplectic manifold.

Any algebraic manifold whose quantum homology is

“generically semisimple” in the sense considered by Dubrovin,

Manin, et al. In particular (by a theorem of Iritani) this

includes all symplectic toric manifolds.
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Previous work:

McDuff showed that point blowups of non-uniruled

symplectic manifolds admit Calabi quasimorphisms.

Fukaya-Oh-Ohta-Ono and Ostrover-Tyomkin showed that

generic toric symplectic structures on toric Fano manifolds

admit Calabi quasimorphisms.

Fukaya-Oh-Ohta-Ono also have work in preparation

constructing infinite families of Calabi quasimorphisms on

some toric manifolds.
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If (M,ω) is a closed symplectic manifold, its π1-sensitive

Hofer–Zehnder capacity c◦HZ(M,ω) is the quantity

sup

{

maxH−minH

∣

∣

∣

∣

H : M → R, all nonconstant contractible

periodic orbits of XH have period > 1

}

.
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For many (M,ω), c◦HZ(M,ω) is infinite; however it may

sometimes be bounded by using Gromov–Witten invariants

and/or Floer theory. For instance:

Theorem (Lu, cf. also Hofer-Viterbo, Liu-Tian)

If there is a nonzero Gromov–Witten invariant

〈[pt], [pt],a1, . . . ,ak〉
K
0,k+2,A (where K ∈ H∗(M 0,k+2;Z) is arbitrary

and A ∈ H2(M;Z)), then

c◦HZ(M,ω) ≤ ω(A).

This estimate is sharp for a number of examples, such as CPn

and S2 ×S2 with an arbitrary symplectic form.
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Theorem (U.)

Suppose that η ∈ Hev(M;C) and C > 0 and that we have

either of the following two estimates, for all φ̃ ∈ H̃am(M,ω):

ρ([M], φ̃)η +ρ([M], φ̃−1)η ≤ C or (2)

ρ([pt]; φ̃)η +ρ([pt]; φ̃−1)η ≥−C. (3)

Then

c◦HZ(M,ω) ≤ C.

The estimate (3) holds for generic choices of η ∈ Hev(M;C),

with C = ω(A), whenever the class A ∈ H2(M;Z)
tors has a nonzero

Gromov–Witten invariant of the form

〈[pt], [pt],a1, . . . ,ak〉
{1,...,k+2}
0,k+2,A

enumerating J-holomorphic curves with fixed marked points
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In particular this gives a Floer-theoretic interpretation of Lu’s

result, at least for Gromov–Witten invariants of a somewhat

more limited type.

Note that the estimate ρ([M], φ̃)η +ρ([M], φ̃−1)η ≤ C is the same

type of estimate as is used to obtain Calabi quasimorphisms.

The estimates

ρ([M], φ̃)η +ρ([M], φ̃−1)η ≤ C

and

ρ([pt]; φ̃)η +ρ([pt]; φ̃−1)η ≥−C

are equivalent if the minimal Chern number of (M,ω) is larger

than 1
2 dimM. Thus in the case of, for example, CPn, the same

estimate that gives rise to a Calabi quasimorphism also gives

rise to a sharp capacity bound!
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