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Definition

A symplectic manifold is a pair (M , ω) where
1 M is a smooth manifold of some even dimension 2n.
2 ω ∈ Ω2(M ) is a two-form such that

ω is closed: dω = 0; and
ω is nondegenerate: if p ∈ M and 0 6= v ∈ TpM then for
some w ∈ TpM ω(v,w) 6= 0.

By nondegeneracy, ω∧n is nonvanishing, so symplectic
manifolds always carry a natural orientation.
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Classical examples

1 If V is any manifold, the cotangent bundle T ∗V carries a
natural 1-form

λ =
∑

pidqi,

and (T ∗V ,dλ) is a symplectic manifold.
This is the setting for Hamiltonian mechanics.

2 CPn carries a natural symplectic form ωFS, and if X ⊂ CPn

is any smooth projective variety (X , ωFS|X ) is a
symplectic manifold.
More generally, a Kähler form on a complex manifold
induces a symplectic structure.
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Local structure

Symplectic manifolds have no local invariants!
Darboux’s theorem: Any p ∈ M has a coordinate
neighborhood in which the symplectic form ω takes the form

ω =
n∑

i=1

dxi ∧ dxn+i.

Similar results hold near certain submanifolds: P ⊂ M is
called a symplectic submanifold if ω|P is a symplectic form on
TP.

Weinstein neighborhood theorem: The symplectic structure
on a neighborhood of a compact symplectic submanifold P is
completely determined by ω|P and the isomorphism class of
the normal bundle to P.
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Almost complex structures

An almost complex structure J on M is a bundle map
J : TM → TM such that J 2 = −1.
J is called compatible with the symplectic form ω provided
that the map (v,w) 7→ ω(v, Jw) defines a Riemannian metric
on M .

Theorem (Gromov)
The set of compatible almost complex structures on a
symplectic manifold (M , ω) is nonempty and contractible.

So the tangent bundle of a symplectic manifold is, canonically
up to homotopy, a complex vector bundle.
Hence we can speak of the Chern classes
ck(M , ω) ∈ H 2k(M ; Z).
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Pseudoholomorphic curves

Let Σ be a Riemann surface, with complex structure j, and let J
be an almost complex structure on M .
A map u : Σ → M is called J -holomorphic (and its image is
called a J -holomorphic curve) if its linearization
u∗ : TΣ → u∗TM is complex linear:

u∗ ◦ j = J ◦ u∗, i.e., du + J (u) ◦ du ◦ j = 0.

Gromov discovered a compactness property for such maps,
which made it possible to define global symplectic invariants
(“Gromov–Witten invariants”) by (roughly speaking) choosing
an almost complex structure J compatible with ω, counting
the number of J -holomorphic curves satisfying some
conditions, and showing that the result is independent of the
choice of J .
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The intersection form

We’ll restrict attention to closed symplectic four-manifolds
from now on.
A basic topological invariant of a closed oriented
four-manifold is the intersection form

H 2(M ; Z)× H 2(M ; Z) → Z
(a,b) 7→ 〈a ∪ b, [M ]〉

= 〈a,PD(b)〉

This is a nondegenerate, symmetric bilinear form.
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A symplectic structure ω gives us two distinguished elements
in H 2(M ; Z): [ω] and κM = −c1(M , ω). The universe of
symplectic four-manifolds splits naturally into classes based
on how κM and [ω] behave with respect to the intersection
form.

Since a J -holomorphic map u : Σ → M satisfies∫
Σ

u∗ω =
∫

Σ
|du|2,

homology classes represented by pseudoholomorphic curves
pair positively with [ω].
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Symplectic spheres

Some important topological properties of a symplectic
four-manifold (M , ω) are reflected in whether M contains
certain kinds of embedded spheres as symplectic
submanifolds.

Theorem (McDuff)
If (M , ω) contains any embedded symplectic sphere S of
nonnegative self-intersection, then (M , ω) is symplectomorphic
to a Kähler manifold obtained by blowing up either

CP2 or a CP1-bundle over a Riemann surface.

(In fact, there is a singular foliation of M by
pseudoholomorphic spheres homologous to S.)
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Blowing up and down

McDuff also showed that the operation of blowing up can be
performed in the symplectic category: replace a small ball
with a tubular neighborhood of a symplectic sphere of
self-intersection −1.

Conversely, if (M , ω) contains a symplectic sphere S of
self-intersection −1, we can get a new symplectic manifold
(N , ω̄) by blowing down S (replace its tubular neighborhood
with a ball).
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Minimality

If M is obtained by blowing up N , then, as smooth oriented
manifolds,

M = N#CP2.

A symplectic manifold is called minimal if it contains no
symplectic spheres of square −1; evidently, then, nonminimal
symplectic four-manifolds decompose as connected sums.
Any symplectic four-manifold has a minimal model, obtained
from it by blowing down a maximal collection of spheres of
square −1.
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The Seiberg–Witten invariants

The Seiberg–Witten equations are a natural elliptic system of
PDE’s that can be written down on any closed oriented
four-manifold M . Counting their solutions gives rise to a
powerful invariant, which in case M is symplectic takes the
form of a map

SW : H 2(M ; Z) → Z.

In monumental work in the mid-1990’s, Taubes showed that,
when (M , ω) is symplectic,

1 If b+(M ) > 1, then SW (κM ) = ±1.
2 For all α ∈ H 2(M ; Z), SW (α) can be expressed as a

combination of Gromov invariants which count
pseudoholomorphic curves Poincaré dual to α.
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Taubes’ work had many consequences, including:

Theorem (Kotschick)
If (M , ω) is minimal and π1(M ) is residually finite, then M is
irreducible (i.e. if M is diffeomorphic to a connected sum X#Y
then X or Y is a homotopy S4).

Theorem (Taubes, Liu)

If κM · [ω] < 0, then M is a blowup of CP2 or a CP1-bundle.

If κ2
M < 0 and M is minimal then M is a CP1-bundle.
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Kodaira dimension

The Kodaira dimension of a minimal symplectic 4-manifold
(M , ω) is

κ(M , ω) =


−∞ if κM · [ω] < 0 or κ2

M < 0
0 if κM · [ω] = κ2

M = 0
1 if κM · [ω] > 0 and κ2

M = 0
2 if κM · [ω] > 0 and κ2

M > 0

If (M , ω) is not minimal, its Kodaira dimension is defined to be
that of any of its minimal models.

If (M , ω) is a Kähler surface, this coincides with the definition
from algebraic geometry.
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Theorem (Li, et al.)
The Kodaira dimension of (M , ω) is completely determined
by the diffeomorphism type of M .

κ(M , ω) = −∞ if and only if (M , ω) is symplectomorphic to
a blowup of either CP2 or a CP1-bundle.

If M is minimal, κ(M , ω) = 0 if and only if κM is torsion.
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We’ve seen that, if k ≥ −1, the presence of symplectic spheres
of square k is equivalent to certain basic topological
properties (reducibility if k = −1, being a blowup of CP2 or a
CP1-bundle if k ≥ 0).
By contrast:

Theorem (Li-U.)
If (M , ω0) is a symplectic four-manifold and S ⊂ M is a
symplectic sphere of self-intersection k < −1, then there is a
path of symplectic forms {ωt}t∈[0,1] such that the symplectic
manifold (M , ω1) admits no symplectic spheres homologous to
S.
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Most of what I’ve discussed so far about the topology of
symplectic four-manifolds applies equally well to the topology
of Kähler surfaces.

But symplectic four-manifolds form a vastly more diverse
category than Kähler surfaces; the symplectic sum (Gompf,
McCarthy-Wolfson) has been the most powerful tool for
demonstrating this.
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Construction

Let (X , ω), (Y , ω′) be symplectic four-manifolds, F ⊂ X , G ⊂ Y
two-dimensional symplectic submanifolds of

equal genus and area

opposite self-interesection, so there’s an
orientation-reversing bundle isomorphism
ψ : NF X → NGY

Then the normal connect sum

X#F=GY := (X \ νF ) ∪ψ|∂νF
(Y \ νG)

admits a natural isotopy class of symplectic structures.
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Examples of families of manifolds obtained by the
symplectic sum

1 Gompf: If G is any finitely presented group, infinitely
many symplectic 4-manifolds with fundamental group G.

2 Gompf: Simply connected symplectic 4-manifolds X
realizing infinitely many intersection forms
H 2(X ; Z)× H 2(X ; Z) → Z which can’t be intersection
forms of complex surfaces.

3 Fintushel-Stern: Infinitely many symplectic
four-manifolds homeomorphic to the K 3 surface but not
diffeomorphic to any complex manifold.
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Constraints on symplectic sums

While the symplectic sum gives rise to a diverse array of new
symplectic four-manifolds, there are interesting restrictions
on what one can obtain by it:

Theorem (U.)
Let F ⊂ X ,G ⊂ Y be symplectic surfaces of equal positive genus
and opposite self-intersection, and let Z = X#F=GY be their
(smoothly nontrivial) symplectic sum.

1 Z is minimal if and only if both X \ F and Y \ G contain
no symplectic spheres of square −1.

2 Z does not have Kodaira dimension −∞.
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Idea of the proof

If a symplectic sphere of
self-intersection ≥ −1 existed in
Z , then in the singular space
X ∪F=G Y we’d get a
configuration of
pseudoholomorphic spheres:

X

Y

F G

But such a configuration is impossible by a new version of the
(almost-)positivity of the canonical class: if (M , ω) is any
symplectic four-manifold and F ⊂ M a positive genus surface
(other than a section of an S2-bundle) meeting all
(−1)-spheres, then κM + PD[F ] evaluates nonnegatively on all
pseudoholomorphic spheres.
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Constraints on Kodaira dimension zero symplectic
sums

Theorem (U.)
Where Z = XF=GY as earlier, if Z has Kodaira dimension zero,
then (modulo blowdowns away from F and G), X , Y , and Z
are, up to diffeomorphism, as in the following table.

X Y Z
rational surface rational surface K3 surface
rational surface ruled surface over T 2 Enriques surface

ruled surface over T 2 ruled surface over T 2 T 2-bundle over T 2
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Find “small” exotic symplectic four-manifolds

What is the smallest k such that there is a symplectic (or even
smooth) four-manifold homeomorphic but not diffeomorphic
to CP2#kCP2?
Current record: For k = 5, Park-Stipsicz-Szabo,
Fintushel-Stern (2004) constructed infinitely many such
smooth four manifolds, but at most one (and possibly none)
of these is symplectic.

Akhmedov (2006) used symplectic sum to obtain a symplectic
4-manifold homeomorphic to CP2#5CP2 which can be
smoothly distinguished from it using theorems discussed
earlier in this talk.
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Classify all (minimal) symplectic four-manifolds of
Kodaira dimension zero

In spite of all the ways we have of constructing new symplectic
manifolds, the only known ones with Kodaira dimension zero
are blowups of K 3, the Enriques surface, or a T 2-bundle over
T 2.

U. (2006): Symplectic sum along surfaces of positive genus
can’t give any new examples (up to diffeomorphism).

Li, Bauer (2006): Every minimal symplectic four-manifold of
Kodaira dimension zero has the same rational homology as
one of the known examples (in particular b1 ≤ 4,
χ ∈ {0, 12, 24}, σ ∈ {−16,−8, 0}).
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How is deformation equivalence of symplectic
four-manifolds related to diffeomorphism?

McMullen-Taubes, Smith, Vidussi (1999-2000): Examples of
deformation inequivalent symplectic structures on the same
smooth four-manifold, distinguished by Chern classes.

Ruan (1994): In dimensions 6 and higher, examples of
deformation inequivalent symplectic structures on the same
smooth manifold with the same Chern classes.

But Taubes’ results imply that Ruan’s methods can’t work in
dimension four, and there are still no known examples.

Can one obtain such examples by using different framings in a
symplectic sum? (one would probably need new invariants to
distinguish them)
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