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1. TOPOLOGICAL INVARIANTS AND HOMOTOPY

A basic goal of topology is to determine under what circumstances two spaces X and Y
are homeomorphic to each other–here a homeomorphism f : X → Y is a continuous bijection
having a continuous inverse; since this means that a subset V ⊂ X is open if and only if f (V ) is
open this is evidently the appropriate notion of isomorphism for topological spaces.

If you think that two spaces X and Y are homeomorphic, the most obvious way to try to show
this is to try to construct a specific homeomorphism f : X → Y . For instance if you wanted to
show that the open interval (−1,1) is homeomorphic to the real numbers R it would suffice to
write down a function like x 7→ x

1−x2 and check that it is a continuous bijection between (−1, 1)
and R with continuous inverse. Likewise, introductory explanations of what topology is often
note that a donut is homeomorphic to a coffee mug, as can be convincingly illustrated by an
animation1 in which the former continuously deforms to the latter.

However, if you think that X and Y are not homeomorphic, how would you prove this? For
instance, it probably seems unlikely that a donut would be homeomorphic to a muffin, on the
basis that transforming the donut to the muffin would presumably involve tearing it and not
just deforming it and tearing is not a continuous transformation, but this bears no resemblance
to an honest proof—perhaps there’s some very clever continuous transformation that we just
didn’t think of.

The standard way of proving that spaces are not homeomorphic is by using topological in-
variants. The idea is to develop a rule which assigns to each topological space Z something that
I’ll denote I(Z), and prove a general theorem that says that if two spaces X and Y are home-
omorphic then I(X ) and I(Y ) are equivalent2 (i.e., I is “invariant” under homeomorphisms).
Contrapositively, if we go compute the invariants I(X ) and I(Y ) and find them to be inequiva-
lent then we can deduce that our two spaces X and Y are indeed not homeomorphic.

Whether or not you’ve seen this phrased in this specific way, you’re probably familiar with
this on some level. For a very easy example, presumably the way that you would prove that
the topological spaces (with the discrete topology, for definiteness) X = {5} and Y = {π, 63}
are not homeomorphic is by noting that X and Y have different numbers of elements. In the
language of the previous paragraph, for any space Z let I(Z) denote the number of elements of
(the underlying set of) Z (or the symbol∞ if Z is an infinite set). Since a homeomorphism is a
bijection, if X were homeomorphic to Y then we would have I(X ) = I(Y ), but we observe that
in fact I(X ) 6= I(Y ) and so X and Y are not homeomorphic.

For a more serious example, consider the statement that X = [0, 1] and Y = (0,1) are not
homeomorphic. If you’re taking this class then you should know how to prove this—the obser-
vation is that X is compact (a non-trivial and important theorem from point set topology) and

1such as this one
2what “equivalent” means will depend on the context, as we’ll see
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Y isn’t. We can phrase this in the language above: if Z is any space let

I(Z) =
§

yes if Z is compact
no otherwise

Since the image of a compact space under a continuous function is compact, I(Z) is evidently a
topological invariant. So the fact that I(X ) = yes while I(Y ) = no implies that X and Y aren’t
homeomorphic.

Exercise 1.1. Prove that R is not homeomorphic to R2. (Hint: If f : R→ R2 were a homeomor-
phism then it would restrict to a homeomorphism between R \ {0} and R2 \ { f (0)}.)

As the above examples illustrate, a topological invariant I(Z) might usefully be a number,
or the answer to a yes-or-no question. Algebraic topology is founded on the realization that
it is often useful to have I(Z) be an algebraic object—in this course usually it will be a group
(the fundamental group or a homology group), and so if X and Y are homeomorphic then I(X )
and I(Y ) will be isomorphic as groups. In later courses you may learn about other topological
invariants (notably cohomology) which are instead rings or more elaborate algebraic structures.

I’m going to take a somewhat unconventional approach of postponing the introduction of
topologically invariant groups to the subject until we’ve learned a little more topology, but as a
transition I will concentrate on invariants I(Z) which are defined as sets.

Example 1.2. To give another hopefully easy example, let X = R \ {0} and Y = R \ {0,1}. What
invariant can we use to distinguish these spaces? I propose to define, for any space Z, I(Z) to be
the set of all path components of Z. (Recall that a path component of a topological space Z is an
equivalence class under the equivalence relation on Z given by saying that two points z0, z1 ∈ Z
are equivalent if and only if there is a continuous map γ: [0,1] → Z such that γ(0) = z0 and
γ(1) = z1.) So evidently I(X ) = {(−∞, 0), (0,∞)} and I(Y ) = {(−∞, 0), (0, 1), (1,∞)}.

In what sense is I an invariant? It’s supposed to be true that the values of I on homeomorphic
spaces should be “equivalent”—in this context I(Z) is a set and the appropriate notion for sets to be
equivalent is that there should be a bijection between them. In fact, if f : X → Y is a homeomor-
phism, then it is easy to see that C ⊂ X is a path component of X if and only if f (C) ⊂ Y is a path
component of Y . (x0, x1 ∈ X are joined by a path γ if and only if the path f ◦ γ joins f (x0) and
f (x1)). Consequently a homeomorphism f : X → Y would induce a bijection f∗ : I(X )→ I(Y ).
But I(X ) has two elements and I(Y ) has three elements so no such bijection can exist and hence
neither can the homeomorphism f .

This example illustrates a property that most of the invariants of algebraic topology share:
they can be seen as functors from the category of topological spaces (with morphisms given
by continuous maps) to another category (here the category of sets with morphisms given by
arbitrary functions). Without delving too much into categorical formalism (of course you can
look up the precise definitions, see e.g. [H, p. 162] or Wikipedia) this means that in addition to
associating a set I(Z) to every space Z , the functor associates to any continuous map (not just a
homeomorphism) f : X → Y between two topological spaces an induced map f∗ : I(X )→ I(Y )
between the associated sets.3 Moreover these induced maps are nicely-behaved in that the
identity 1X : X → X induces the identity map on I(X ), and given composable continuous maps
f : X → Y and g : Y → Z the map (g ◦ f )∗ : I(X ) → I(Z) is the same as g∗ ◦ f∗. From these
latter properties it is immediate that if f happens to be a homeomorphism then f∗ is a bijection
with inverse ( f −1)∗. Thus functors automatically yield invariants, but they also yield quite

3In the case of Example 1.2, f∗ sends a path component C ⊂ X to the path component of f (x)where x is an arbitrary
element of C—it is easy to check that f∗C is independent of the choice of x .

http://en.wikipedia.org/wiki/Category_(mathematics)
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a bit more, among other things since they can be used to study continuous maps that aren’t
necessarily homeomorphisms.

For one last introductory example, which will motivate several new ideas, consider the spaces
X = R2 and Y = R2 \ {(0,0)}. These are both connected, noncompact, Hausdorff, second-
countable, etc., and tricks like deleting a point in Exercise 1.1 don’t seem to work, so introduc-
tory point-set topology seems powerless to tell the difference between X and Y . On the other
hand if you try to construct a homeomorphism from X to Y you probably won’t succeed.

We will see that X and Y are indeed not homeomorphic. To get a sense of why this should
be, consider the unit circle T ⊂ R2, which is contained in both X and Y . In X , you can imagine
“continuously shrinking T down to a point” without ever leaving the space. In fact the same
would be true with T replaced by any circle embedded inside X . However it seems impossible
to do this in Y , since shrinking down the circle T would require one to pass over (0, 0) at some
time, and (0, 0) is not contained in Y .

It might be instructive at this point for you to try to write down a rigorous version of the
above argument—if you haven’t seen this material before it will probably be hard, as is often
the case when you are trying to prove that something is impossible to do.

The way to prove the result involves the notion of homotopy, which is fundamental to the
entire course. Here is the definition:

Definition 1.3. Let h0 : V → X and h1 : V → X be two continuous maps between the topological
spaces V and X . We say that h0 is homotopic to h1 if and only if there is a continuous map
H : [0,1]× V → X such that H(0, v) = h0(v) and H(1, v) = h1(v) for all v ∈ V . In this case H
is said to be a homotopy from h0 to h1.

Of course [0,1]×V has the standard product topology in the above definition. So a homotopy
between two maps is essentially a continuous family of maps interpolating between them.

Exercise 1.4. Let C(V, X ) be the set of continuous maps from the topological space V to the
topological space X and define a relation ∼ on C(V, X ) by saying that h0 ∼ h1 if and only if h0
is homotopic to h1.

(a) Prove that ∼ is an equivalence relation.
(b) If Y is another topological space, f ∈ C(X , Y ), and g ∈ C(Y, V ), and if h0 ∼ h1 where

h0, h1 ∈ C(V, X ), prove that f ◦ h0 ∼ f ◦ h1 and h0 ◦ g ∼ h1 ◦ g.

Exercise 1.5. If V and X are two topological spaces let [V, X ] denote the set of equivalence classes
of the relation ∼ on C(V, X ). If Y is another topological space and f : X → Y is continuous,
“define” f∗ : [V, X ]→ [V, Y ] by, for any h ∈ C(V, X ), f∗[h] = [ f ◦ h].

(a) Prove that f∗ is indeed well-defined (i.e. that the image of an equivalence class under f∗
is independent of the choice of representative of the equivalence class).

(b) Prove that such maps f∗ are “functorial” in the sense that the map induced by the identity
1X : X → X is the identity on [V, X ], and that given continuous maps f : X → Y and g : Y → Z
we have g∗ ◦ f∗ = (g ◦ f )∗.

(c) A homotopy equivalence f : X → Y is a continuous map with the property that there
exists a continuous map g : Y → X such that f ◦ g is homotopic to the identity on Y and g ◦ f
is homotopic to the identity on X . (So in particular a homeomorphism is obviously a homotopy
equivalence.) Prove that if f : X → Y is a homotopy equivalence then for any topological space
V the function f∗ : [V, X ]→ [V, Y ] is a bijection.

Definition 1.6. A space X is called contractible if X is homotopy equivalent to a one-point topo-
logical space.
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Exercise 1.7. Prove that R2 is contractible, and that R2 \ {(0, 0)} is homotopy equivalent to the
unit circle.

Let S1 denote the quotient space [0,1]
0∼1

. There is an obvious homeomorphism between S1 and
the unit circle in C ∼= R2 defined by t 7→ e2πi t . A special case of Exercise (1.5) (iii) says that if
X and Y are homeomorphic then there is a bijection between [S1, X ] and [S1, Y ].

Returning to our example X = R2 and Y = R2 \ {(0,0)}, we will show that [S1,R2] and
[S1,R2 \ {(0,0)}] are not in bijection. It is fairly easy to find the first of these sets; indeed quite
generally we have:

Proposition 1.8. For any topological space V and any n, [V,Rn] consists of only one element.

Proof. It suffices to show that f : V → Rn is any continuous map then f is homotopic to the
constant map g : V → Rn defined by g(v) = 0. To see this, simply note that the map F : [0, 1]×
V → Rn defined by F(t, v) = (1− t) f (v) defines a homotopy from f to g (verification of this is
left to the reader). �

So to prove that R2\{(0,0)} is not homotopy equivalent to R2 it is enough to show that there
exists a continuous map S1 → R2 \ {(0, 0)} which is not homotopic to a constant map.4 This
is harder, and will involve a detour into covering space theory, which will eventually prove a
stronger statement:

Theorem 1.9. There is a bijection

deg: [S1,R2 \ {(0, 0)}]→ Z

Roughly speaking, if f : S1→ R2 \ {(0, 0)} is a map with homotopy class [ f ], then deg([ f ])
measures the “number of times f winds around the origin,” with counterclockwise winding
counting positively and clockwise winding counting negatively. Viewing R2 \{(0, 0)} as C\{0},
for any n ∈ Z we will see that the map fn(t) = e2πint has deg([ fn]) = n. Thus Theorem 1.9
asserts that no two of the maps fn are homotopic, and that every continuous map S1→ C \ {0}
is homotopic to one (and only one) of the fn.

We will prove Theorem 1.9 using the theory of covering spaces, a notion which I will now
introduce and which we will revisit in greater detail in a few weeks.

2. INTRODUCTION TO COVERING SPACES

Definition 2.1. If X is a topological space, a covering space of X is a continuous map p : X̃ → X
where X̃ is some other topological space, with the following property. There is an open cover
{Uα}α∈A of X such that for each α the preimage p−1(Uα) ⊂ X̃ is a disjoint union of open subsets
Vαβ such that for each β the restriction p|Vαβ is a homeomorphism from Vαβ to Uα.

One usually imagines X̃ hovering above the “base space” X . Then if one is standing at a point
x0 ∈ X and looking up at X̃ , one will see a discrete collection of copies of a small neighborhood
of x0. If one moves around in X , continuing to look up at X̃ , something like these copies will
continue to exist, though the definition allows for them to move around each other in various
ways.

An obvious example of a covering space of X is given by choosing an arbitrary set S, endowed
with the discrete topology, and putting X̃ = X ×S and p equal to the projection. This is a rather
trivial example, and some references rule it out (except in the case where S is a one-point set)

4In view of Exercise 1.7 we could instead just look for a map S1 → S1 which is not homotopic to a constant map,
though we won’t use this. By the way, a space X is called simply connected if [S1, X ] has only one element, so we are
going to show that R2 \ {(0,0)} is not simply connected.
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by requiring X̃ (and hence also X ) to be connected. Connected covering spaces (when they
are not homeomorphisms) are in some sense nontrivial, and our first example of one will be
instrumental in the proof of Theorem 1.9

Example 2.2. Let X = C\{0}. As you know, any element z ∈ X can be written in polar coordinates
as z = reiθ for real numbers r and θ with r > 0. Of course r is uniquely determined by z (it is
equal to |z|), but θ is not uniquely determined since adding an integer multiple of 2π to θ doesn’t
change z. (One way of ruling this issue out is by insisting that θ belong to a half-open interval like
[0,2π), but from a topological perspective this is a bad idea since it means that θ doesn’t depend
continuously on z as one crosses the positive real axis.)

The way of understanding this topologically is to say that polar coordinates don’t give a homeo-
morphism but rather a nontrivial covering space. Specifically, define X̃ = (0,∞)×R and p : X̃ → X
by

p(r,θ ) = reiθ

To see that this is a covering space, we cover X by the four open sets

U1 = {x + i y|x > 0}
U2 = {x + i y|y > 0}
U3 = {x + i y|x < 0}
U4 = {x + i y|y < 0}

We see that

p−1(U1) =
∐

n∈Z
(0,∞)× (2nπ−π/2, 2nπ+π/2)

p−1(U2) =
∐

n∈Z
(0,∞)× (2nπ, 2nπ+π)

p−1(U3) =
∐

n∈Z
(0,∞)× (2nπ+π/2, 2nπ+ 3π/2)

p−1(U4) =
∐

n∈Z
(0,∞)× (2nπ+π, 2nπ+ 2π)

and it is a routine matter to check that p restricts to each of the sets in the above disjoint unions
representing p−1(Ui) as a homeomorphism to Ui . For instance the inverse of the restriction of p to
(0,∞)× (2nπ−π/2, 2nπ+π/2) is given by

x + i y 7→
�p

x2 + y2, 2nπ+ arctan(y/x)
�

(recalling that by convention arctan takes values between −π/2 and π/2).
The fact that p : X̃ → X is a covering space can be seen as an expression of the fact that, although

one cannot uniquely and continuously assign the polar coordinate θ to all nonzero complex numbers
at the same time, one do so if one restricts to a sufficiently small part of C \ {0}.

Definition 2.3. Let p : X̃ → X be a covering space and let f : Y → X be any continuous map. A
lift of f via p is a continuous map f̃ : Y → X̃ such that p ◦ f̃ = f .

The question of when a lift of f : Y → X exists will be fundamental both to our proof of
Theorem 1.9 and to our detailed study of covering spaces later on. For instance the fact that
C \ {0} is not simply connected can be understood in terms of the fact that there are maps
S1 → C \ {0} (such as the fn mentioned earlier for n 6= 0—it might be instructive for you to
think about why this is plausible) which do not have lifts via the cover (r,θ ) 7→ reiθ . The
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question of the existence of lifts is in some sense a global question as opposed to a local one:
locally in X lifts are easy to understand as the following lemma shows.

Lemma 2.4. Let Z be a connected space, let p : X̃ → X be a covering space, and let f : Z → X be
continuous. Let {Uα}α∈A be an open cover of X as in Definition 2.1 with corresponding open subsets
Vαβ ⊂ p−1(Uα). Suppose that f (Z) ⊂ Uα for some α. Then:

(i) If f̃ : Z → X̃ is any lift of f , we must have f̃ (Z) ⊂ Vαβ for some β .
(ii) For each β there is a unique lift f̃ of f with the property that f̃ (Y ) ⊂ Vαβ .

Proof. For (i), note that the various subsets f̃ −1(Vαβ) ⊂ Z are open and mutually disjoint, and
moreover their union is all of Z since f = p ◦ f̃ has image contained in Uα and any point of
X̃ that is mapped by p to Uα is contained in one of the Vαβ . But since Z is connected, for any
collection of disjoint open subsets of Z whose union is all of Z , one of these sets must equal Z
and the others must be empty. (i) immediately follows.

As for (ii), note that since p|Vαβ : Vαβ → Uα is a homeomorphism it has an inverse p|−1
Vαβ

. If

f̃ : Z → Vαβ lifts f , this means that p|Vαβ ◦ f̃ = f , and so applying p|−1
Vαβ

to both sides shows

that f̃ = p|−1
Vαβ
◦ f , proving the uniqueness of f̃ . Conversely f̃ = p|−1

Vαβ
◦ f is obviously a lift of f ,

proving existence. �

The most important tool in our study of lifts will be the following:

Theorem 2.5 (Unique homotopy lifting property). Let Y be a locally connected space5 and let
p : X̃ → X be a covering space. Let F : [0,1]× Y → X be continuous and suppose that there is a
continuous map f̃0 : Y → X̃ such that p ◦ f̃0(y) = F(0, y) for all y ∈ Y . Then there is a unique
continuous F̃ : [0, 1]× Y → X̃ such that p ◦ F̃ = F and such that F̃(0, y) = f̃0(y) for all y ∈ Y .

In other words, this says that, for any homotopy F between maps f0, f1 : Y → X such that f0
has a lift to X̃ , the entire homotopy F has a lift to X̃ (in particular, f1 has a lift). Moreover this
lift of F is unique once the lift of f0 is specified. The special case where Y is a one-point space
is already nontrivial and important—it says that paths in X can be uniquely lifted to paths in X̃
upon specifying a starting point for the lift.

Proof of Theorem 2.5. Most of the work will be done by the following lemma (a special case of
which already gives the case of Theorem 2.5 where Y is a one-point space):

Lemma 2.6. Under the hypotheses of Theorem 2.5, any point y ∈ Y has a connected neighborhood
Ny with the following property. There exists a lift F̃ y : [0, 1] × Ny → X̃ of F |[0,1]×Ny

such that

F̃ y(0, z) = f̃0(z) for all z ∈ Ny . Moreover, for any z ∈ Ny , the only lift γ̃: [0,1]→ X̃ of the map
t 7→ F(t, z) such that γ̃(0) = f̃0(z) is the map t 7→ F̃ y(t, z).

Proof. Let y ∈ Y and let Uα and Vαβ be sets as in the definition of Definition 2.1. By the
continuity of the map t 7→ F(t, y), the sets {t ∈ [0, 1]||F(t, y) ∈ Uα} form an open cover of
[0,1]. Using the compactness of [0, 1], one can then find6 numbers 0 = t0 < t1 < · · · <
tk = 1 and indices α0, . . . ,αk−1 such that, for each i ∈ {0, . . . , k − 1}, F([t i , t i+1]× {y}) ⊂ Uαi

.
By standard properties of the product topology (sometimes this is called the “tube lemma”),
since [t i , t i+1] is compact there is then, for each i, an open neighborhood Ny,i of y such that

5recall that this means that, for any point y ∈ Y , any open neighborhood of y has an open subneighborhood which
is connected

6Check this yourself if it’s not clear.



MATH 8200 LECTURE NOTES (SPRING 2014) 7

F([t i , t i+1]× Ny,i) ⊂ Uαi
. Then ∩k

i=1Ny,i is also an open neighborhood of y , and so since Y is
assumed locally connected we can find a connected open subneighborhood of ∩k−1

i=0 Ny,i; denote
such a subneighborhood by Ny . In particular we have

F([t i , t i+1]× Ny) ⊂ Uαi
for all i

We will prove by induction that, for all i ∈ {0, . . . , k}, there is a lift F̃ y,i of F |[0,t i]×Ny
which

coincides at t = 0 with f̃0|Ny
, and moreover that for all z ∈ Ny the only lift of t 7→ F(t, z) on

the interval [0, t i] which coincides at t = 0 with f̃0(z) is t 7→ F̃ y,i(t, z). Note that since t0 = 0,
the base step of this induction is a tautology. Meanwhile since tk = 1, the i = k version of the
statement is precisely the conclusion of the lemma. So to prove the lemma we just need to prove
the inductive step; assume that, for some i ∈ {0, . . . , k−1}, we have a lift F̃ y,i : [0, t i]×Ny → X̃
satisfying the indicated properties; we need to extend this to a map with domain [0, t i+1]×Ny .

Now we have arranged that F([t i , t i+1]× Ny) ⊂ Uαi
. By Lemma 2.4(i) there is β such that

our inductively-existing map F̃ y,i has F̃ y,i({t i} × Ny) ⊂ Vαiβ
. By Lemma 2.4(ii), there is a lift of

F |[t i ,t i+1]×Ny
to a map G̃ : [t i , t i+1]×Ny → Vαβ , and moreover by the uniqueness part of Lemma

2.4(ii) the restriction G̃|{t i}×Ny
must coincide with F̃ y,i |{t i}×Ny

. Consequently we may define
a map F̃ y,i+1 : [0, t i+1] × Ny → X̃ by setting F̃ y,i+1 equal to F̃ y,i on [0, t i] × Ny and to G̃ on
[t i , t i+1] × Ny . The “pasting lemma” from point-set topology shows that F̃ y,i+1 is continuous.
The fact that p ◦ F̃ y,i+1(t, z) = F(t, z) for all (t, z) in the domain of F̃ y,i+1 follows directly from
the corresponding facts for F̃ y,i and G̃, and moreover F̃ y,i+1 restricts appropriately to {0} × Ny

since it is equal to F̃ y,i there.
It remains to prove the uniqueness statement in the inductive hypothesis. Let γ̃: [0, t i+1]→

X̃ be a continuous map such that p◦ γ̃(t) = F(t, z) for all t, where z is any given point of Ny . We
must show that γ̃(t) = F̃ y,i+1(t, z) for all t ∈ [0, t i+1]. If t ≤ t i then this follows from the induc-
tive hypothesis, as F̃ y,i is assumed to satisfy the corresponding property and F̃ y,i+1|[0,t i]×Ny

= F̃ y,i

by construction. In particular γ̃(t i) ∈ Vαiβ
where αi and β are as in the previous paragraph.

Consequently since F(t, z) ∈ Uαi
for all t ∈ [t i , t i+1], we have γ̃([t i , t i+1]) ⊂ Vαiβ

by Lemma
2.4(i). So γ̃ and t 7→ F̃ y,i+1(t, z) both restrict to [t i , t i+1] as lifts of t 7→ F(t, z) having image
contained in Vαiβ

; hence by Lemma 2.4(ii) they are equal. So indeed γ̃(t) = F̃ y,i+1(t, z) for all
t ∈ [0, t i+1], completing the induction. �

Having proven Lemma 2.6 we now complete the proof of Theorem 2.5. The various open
sets Ny as y varies through Y obviously cover Y (since y ∈ Ny), and for each of these we have
a map F̃ y : [0, 1]× Ny → X̃ . If z ∈ Y belongs to two different sets Ny1

and Ny2
, then the maps

t 7→ F̃ y1(t, z) and t 7→ F̃ y2(t, z) are both lifts of t 7→ F(t, z) which send 0 to f̃0(z), so by the
uniqueness part of Lemma 2.6 they are equal. So we can define a map F̃ : [0,1] × Y → X̃
by setting F̃(t, z) = F̃ y(t, z) for any y such that z ∈ Ny ; as just explained this definition is
independent of the particular choice of y with z ∈ Ny . The fact that F̃ is a continuous lift
of F restricting at t = 0 to f̃0 is inherited directly from the corresponding facts for the F̃ y ,
completing the proof of existence in Theorem 2.5. Moreover if H̃ : [0, 1]×Y → X̃ were another
map satisfying the same properties then for any z ∈ Y the map t 7→ H̃(t, z)would, by Lemma 2.6,
coincide with t 7→ F̃ y(t, z) for any y with z ∈ Ny , and hence would coincide with t 7→ F̃(t, z).
This proves uniqueness in Theorem 2.5. �

We now use Theorem 2.5 to construct the function deg: [S1,C \ {0}]→ Z in Theorem 1.9.
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Proposition 2.7. If f : [0,1] → C \ {0} is any continuous map there are continuous functions
r : [0, 1]→ (0,∞) and θ : [0,1]→ R such that f (t) = r(t)eiθ (t) for all t ∈ [0,1] Moreover any
two such pairs of functions (r1,θ1) and (r2,θ2) have r1(t) = r2(t) and θ1(t)−θ2(t) = 2πn for all
t ∈ [0, 1] and some n ∈ Z which is independent of t.

Proof. The first statement follows directly from the existence part of Theorem 2.5 applied with Y
equal to a point and with p equal to the cover (0,∞)×R→ C\{0} defined by (r,θ ) 7→ reiθ . (One
just needs to choose arbitrarily a pair (r(0),θ (0)) ∈ (0,∞)×R such that r(0)eiθ (0) = f (0) and
then apply Theorem 2.5.) For the second part, if r1, r2 : [0,1]→ (0,∞) and θ1,θ2 : [0,1]→ R
are continuous and both obey r1(t)eiθ1(t) = r2(t)eiθ2(t) = f (t) for all t, setting t = 0 we see
that r1(0) = r2(0) and that there is n ∈ Z such that θ1(0) = 2πn + θ2(0). Then the maps
t 7→ (r1(t),θ1(t)−2nπ) and t 7→ (r2(t),θ2(t)) are both lifts via p of the map f : [0, 1]→ C\{0},
and they coincide at t = 0, so by the uniqueness part of Theorem 2.5 they coincide for all t.
Thus r1(t) = r2(t) and θ1(t)− 2nπ= θ2(t) �

Recall that, by definition, S1 = [0,1]
0∼1

. Where π: [0,1] → S1 is the quotient projection, any
continuous map f : S1 → C \ {0} gives rise to a continuous map f ◦ π: [0, 1] → C \ {0}. By
Proposition 2.7 we can write f ◦π(t) = r(t)eiθ (t) where r : [0, 1]→ (0,∞) and θ : [0, 1]→ R
are continuous. Since π(0) = π(1), we have r(0)eiθ (0) = r(1)eiθ (1), forcing r(0) = r(1) and

θ (1)− θ (0)
2π

∈ Z

Moreover if (r2,θ2) is a different choice of continuous functions with f ◦ π(t) = r2(t)eiθ2(t),
by Proposition 2.7 we have θ (t) = θ2(t) + 2πn for some n ∈ Z which is independent of t. In
particular θ2(0)− θ (0) = θ2(1)− θ (1), from which it follows by rearranging terms that

θ2(1)− θ2(0)
2π

=
θ (1)− θ (0)

2π

Thus we may define the degree of a continuous map f : S1→ C \ {0} as

d( f ) =
θ (1)− θ (0)

2π

for any continuous maps r : [0,1] → (0,∞),θ : [0, 1] → R such that f (π(t)) = r(t)eiθ (t) for
all t ∈ [0, 1]. The above discussion shows that this definition is independent of the particular
choice of r,θ obeying the required property, and that d( f ) ∈ Z.

Proposition 2.8. If f0, f1 : S1→ C \ {0} are two homotopic maps then d( f0) = d( f1).

Proof. If F : [0,1]×S1→ C\{0} is a homotopy from f0 to f1, then evidently the map F : [0,1]×
[0,1] → C \ {0} defined by F(s, t) = F(s,π(t)) is a homotopy between the maps f0 ◦ π, f1 ◦
π: [0, 1]→ C \ {0}, where again π: [0,1]→ S1 is the quotient projection.

If (r0,θ0): [0, 1]→ (0,∞)×R is a lift via p of f0◦π, the homotopy lifting property gives a lift
via p of F restricting at s = 0 to (r0,θ0); we may write this lift as (R,Θ): [0, 1]×[0, 1]→ (0,∞)×
R for some continuous functions (R,Θ). So (R(0, ·),Θ(0, ·)) = (r0,θ0), while (R(1, ·),Θ(1, ·)) is
a lift of f1 ◦π. So

d( f0) =
Θ(0, 1)−Θ(0,0)

2π
d( f1) =

Θ(1, 1)−Θ(1,0)
2π

Moreover for all t ∈ [0,1] it holds that R(s, 1)eiΘ(s,1) = R(s, 0)eiΘ(s,0) = F(s, 0), so for all s ∈ [0,1]
we have Θ(s,1)−Θ(s,0)

2π
∈ Z. Thus s 7→ Θ(s,1)−Θ(s,0)

2π
is a continuous, Z-valued function which equals
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d( f0) at s = 0 and d( f1) at s = 1. But the only continuous functions from [0,1] to Z are
constants, so d( f0) = d( f1). �

Proof of Theorem 1.9. By Proposition 2.8 we obtain a well-defined function deg: [S1,C\{0}]→
Z by setting deg(c) = d( f ) where f is any continuous map representing a given homotopy class
c. We will show that deg is a bijection. Now that we know that deg is well-defined, surjectivity
is immediate: for n ∈ Z the function fn(t) = e2πint lifts to a map t 7→ (1,2πnt) and so has
degree 2πn−0

2π
= n. (Note that this already completes the proof that C \ {0} is not homotopy

equivalent to the contractible space C.)
To prove injectivity we need to prove that any two maps having the same degree are homo-

topic. Let f0, f1 : S1→ C\{0} be two maps with the same degree, say n ∈ Z. We can then write
f0 ◦ π(t) = r0(t)eiθ0(t) and f1 ◦ π(t) = r1(t)eiθ1(t) for continuous r0, r1 : [0,1] → (0,∞) and
θ0,θ1 : [0, 1]→ R with r0(1) = r0(0), r1(1) = r1(0), and θ1(1)− θ1(0) = θ0(1)− θ0(0) = 2πn.

Define R: [0,1]×[0,1]→ (0,∞) by R(s, t) = (1− s)r0(t)+ sr1(t) and Θ : [0, 1]×[0, 1]→ R
by Θ(s, t) = (1− s)θ0(t) + sθ1(t). For any s ∈ [0,1] we have

Θ(s, 1)−Θ(s, 0) = (1− s)θ0(1) + sθ1(1)− (1− s)θ0(0)− sθ1(0)

= (1− s)(θ0(1)− θ0(0)) + s(θ1(1)− θ1(0)) = (1− s)2πn+ s2πn= 2πn.

Likewise R(s, 1) = R(s, 0) for all s ∈ [0, 1], so we have R(s, 1)eiΘ(s,1) = R(s, 0)eiΘ(s,0) for all
s ∈ [0,1]. This allows us to define F : [0,1]× S1 → C \ {0} by F(s, t) = R(s, t)eiΘ(s,t), and it is
straightforward to see that F is a homotopy from f0 to f1.

�

Exercise 2.9. Let us define the degree of a continuous map g : S1 → S1 to be the degree of the
composition g ◦ f1 : S1 → C \ {0} where f1(t) = e2πi t . (So if you think of S1 as identified with
the unit circle T via f1 then the degree of g is θ (1)−θ (0)

2π
where g(t) = r(t)eiθ (t) for continuous

r : [0, 1]→ (0,∞) and θ : [0, 1]→ R, just like the definition of the degree of a map to C\{0}.)
(a) Prove that if a continuous map g : S1→ S1 is not surjective then its degree is zero.
(b) Prove that if g : S1 → S1 is a homeomorphism then its degree is not zero. (Actually its

degree is ±1 but we’ll need the fundamental group to prove this.)
(Hint for both parts: A map S1 → S1 has degree zero if and only if it is homotopic to a

constant map.)

3. SOME APPLICATIONS OF THEOREM 1.9

Our determination of the set of homotopy classes of maps from S1 to C\{0} has some classic
consequences going beyond the original motivating question of distinguishing C \ {0} from C.

First, let T = {z ∈ C||z| = 1} denote the unit circle, so by Exercise 1.7 T is homotopy
equivalent toC\{0}. So by Theorem 1.9 and Exercise 1.5(c), the set of homotopy classes [S1, T]
is countably infinite. Meanwhile if D = {z ∈ C||z|= 1} is the closed unit disk, a straightforward
modification of the proof of Exercise 1.7 or Proposition 1.8 shows that [S1, D] consists of a
single element.

Definition 3.1. Let X be a topological space and let Y ⊂ X . A retraction from X to Y is a
continuous map r : X → Y such that r(y) = y for all y ∈ Y .

Proposition 3.2. There does not exist any retraction r : D→ T.

Proof. Suppose that r : D→ T were a retraction. Another way of expressing this is that, where
i : T → D is the inclusion and 1T is the identity on T , r ◦ i = 1T . Now we have induced maps
r∗ : [S1, D] → [S1, T] and i∗ : [S1, T] → [S1, D], and by Exercise 1.5 (c) these obey r∗ ◦ i∗ =



10 MIKE USHER

(r◦i)∗ = 1T∗. But i∗ is a map to the one-element set [S1, D], so r∗◦i∗ must have image consisting
of only one element. On the other hand 1T∗ is the identity on the infinite set [S1, T] so its image
is infinite, a contradiction. �

This leads to one of the most famous results of early algebraic topology (though actually
we’ve proven it without any algebra):

Theorem 3.3 (Brouwer Fixed Point Theorem, 1912). If f : D→ D is any continuous map then
there is a point x ∈ D such that f (x) = x.

(Note that if D were replaced by R2, or D \ {0}, or the open unit disk, this result would be
false, as you should be able to convince yourself via specific counterexamples.)

Proof. We will prove this by assuming for contradiction that f : D → D is a continuous map
with no fixed points and then using this to construct a retraction r : D → T , in violation of
Proposition 3.2. Specifically, assuming that f (x) 6= x for all x ∈ D, let r : D → T be the map
defined by letting r(x) be the point on T obtained as follows: r(x) is the unique point on T lying
on the open ray that starts at f (x) and passes through x . 7 From this geometric description it’s
clear that r(x) = x if x ∈ T . This contradicts Proposition 3.2. �

We also obtain a quick proof of a result with which you are likely familiar from other courses
(the proof also perhaps justifies the use of the term “degree” in the proof of Theorem 1.9):

Theorem 3.4 (Fundamental theorem of algebra). If f (z) =
∑n

j=0 a jz
j is a polynomial having no

zeros in C then f is constant.

Proof. Let f (z) =
∑n

j=0 a jz
j be as in the statement of the theorem; without loss of generality

we can assume that an 6= 0 and then our goal is to show that n= 0.
Define a map γ: S1 → C \ {0} by γ(t) = f (e2πi t). Let us compute the degree of γ in two

ways.
First define G : [0,1]×S1→ C \ {0} by G(s, ei t) = f (se2πi t). Then G is a homotopy between

the constant map to a0 = f (0) and the loop γ (it takes values in C \ {0} because f has no
zeros in the closed unit disk). So by the homotopy-invariance of the degree (Proposition 2.8) γ
evidently has degree 0.

On the other hand let us define H : [0, 1]× S1→ C \ {0} by

H(s, t) = sn f (s−1e2πi t) =
n
∑

j=0

a js
n− je2πi j t

(of course the formula in the middle is ill-defined at s=0, so really we are defining this using
the formula on the right, but the formula in the middle makes clear that this takes values in
C \ {0} for s 6= 0 since f has no zeros outside the open unit disk). At s = 0 the only nonzero
term on the right is where j = n; on the other hand we have H(1, ·) = γ. So γ is homotopic to
the map t 7→ ane2πint which has degree n.

Since γ both has degree n and has degree 0 we have shown that n= 0.
�

7If you want a formula, it’s r(x) = f (x) + t(x)(x − f (x)) where

t(x) =
x · ( f (x)− x) +

p

(x · ( f (x)− x))2 + 4|x − f (x)|2(1− | f (x)|2)
2|x − f (x)|2
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Recall that the n-dimensional sphere is by definition {(x1, . . . , xn) ∈ Rn+1|
∑n+1

1 x2
i = 1},

endowed with the subspace topology from Rn+1.8 There is an important homeomorphism from
Sn to itself, the antipodal map A: Sn→ Sn, defined by

A(x1, . . . , xn+1) = (−x1, . . . ,−xn+1)

Theorem 3.5 (Borsuk–Ulam theorem (two dimensions)). If f : S2→ R2 is any continuous map
then there is x ∈ S2 such that f (x) = f (Ax).

Proof. As with the proof of the Brouwer fixed point theorem we will assume that no such x exists
and use this to construct a different map having contradictory properties. Namely, identifying
R2 with C as usual, if f (x) 6= f (Ax) for all x then we obtain a map F : S2→ C \ {0} by setting

F(x) = f (x)− f (Ax)

This new map evidently has the property that, for all x ∈ S2,

(1) F(Ax) = −F(x)

Consider the loop γ: S1→ S2 given by

γ(t) = (cos(2πt), sin(2πt), 0)

so that γ goes once around the equator. We will consider the degree of the composition F ◦
γ: S1→ C \ {0}.

Observe that γ is homotopic to a constant map: Γ : [0,1] × S1 → S2 defined by Γ (s, t) =
(s cos(2πt), s sin(2πt),

p

1− s2) defines a homotopy from the constant map to the north pole
(1,0, 0) to γ. So by Exercise 1.4 F ◦ γ is homotopic to the constant map to F(1, 0,0), and so by
Proposition 2.8 the degree of F ◦γ is the same as the degree of this constant map, namely zero.

Since d(F◦γ) = 0 we may write F(γ(t)) = r(t)eiθ (t) where r : [0,1]→ (0,∞) and θ : [0, 1]→
R are continuous functions such that θ (1) = θ (0). Now γ has the property that A(γ(t)) =
γ(t + 1/2) for t ∈ [0, 1/2], so by (1) we have, for all t ∈ [0,1/2],

r(t + 1/2)eiθ (t+1/2) = −r(t)eiθ (t)

So taking magnitudes shows that r(t + 1/2) = r(t), and so eiθ (t+1/2) = −eiθ (t). This implies
that, for some n(t) ∈ Z, θ (t + 1/2)− θ (t) = (2n(t) + 1)π. But since θ is continuous, so is the
map t 7→ n(t), and so since n(t) ∈ Z it must be that n(t) = n for some (constant) n ∈ Z and we
have θ (t + 1/2)− θ (t) = (2n+ 1)π for all t ∈ [0, 1/2].

Thus we obtain

θ (1)− θ (0) = (θ (1)− θ (1/2)) + (θ (1/2)− θ (0)) = (4n+ 2)π

Since n ∈ Z this contradicts the fact that (since d(F ◦ γ) = 0) θ (1) = θ (0).
�

4. THE FUNDAMENTAL GROUP(OID)

What we have done up to now should be enough to convince you that studying sets con-
structed out of the paths and loops in a space can yield significant information about the space.
We can go further than this by performing algebraic operations on paths and loops.

For example, we have shown that C \ {0} can be topologically distinguished from C by the
fact that the set [S1,C \ {0}] of homotopy classes of loops in C \ {0} is countably infinite, while
the corresponding set for C has just one element. But what happens if we delete another point,

8Apologies for the slight abuse of notation that I previously defined S1 to be not exactly this but rather something
homeomorphic to it.
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and consider C\{0,1}? It turns out to be possible to show that [S1,C\{0, 1}] is also countably
infinite; this successfully distinguishes it from C, but gives no information about whether or
not it is homeomorphic to C \ {0}. However, after we construct the fundamental group we will
find that the fundamental groups of C \ {0} and C \ {0,1}, while again both countably infinite,
are not isomorphic, with the latter much larger than the former from the standpoint of group
theory (even though there exists a non-homomorphic bijection between them).

To inject algebra into this story we need to have a natural binary operation which one can
perform on paths and/or loops. There does not seem to be such an operation on arbitrary loops,
but there is a “partially defined” binary operation on paths arising from the observation that if
one has a way of getting from point A to point B and also a way of getting from point B to point
C then one has a way of getting from point A to point C . This gives rise to something called the
fundamental groupoid, and then specializing to the case that A= B = C (so one is dealing with
paths from A to A, i.e. loops “based at” A) gives the fundamental group.

If X is a topological space and x , y ∈ X let us denote

PX (x , y) = {γ: [0,1]→ X |γ is continuous, γ(0) = x , γ(1) = y},
i.e. PX (x , y) is the set of paths from x to y . The remark in the previous paragraph reflects the
fact that there is a concatenation operation

PX (x , y)×PX (y, z)→PX (x , z)

(α,β) 7→ α ∗ β

where for α ∈ PX (x , y),β ∈ PX (y, z) the path α ∗ β from x to z is defined by

α ∗ β(t) =
§

α(2t) 0≤ t ≤ 1/2
β(2t − 1) 1/2≤ t ≤ 1

Thus α ∗β goes along α (but twice as fast) to get from x to y , then goes along β (but twice as
fast) to get from y to z; since α(1) = β(0) = y it is clear from the pasting lemma that α ∗ β is
continuous. There is also a reversal operation

PX (x , y)→PX (y, x)
γ 7→ γ̄

defined by
γ̄(t) = γ(1− t)

The sets PX (x , y) are generally too large to readily give usable information by themselves,
and don’t particularly satisfy nice algebraic properties (like forming a groupoid). We will instead
consider homotopy classes of paths between points of X . In general, given two continuous
maps f0, f1 : Y → Z and a subset A ⊂ Y , a homotopy rel A from f0 to f1 is a continuous map
F : [0,1]×Y → Z which is a homotopy from f0 to f1 (so F(0, y) = f0(y), F(1, y) = f1(y)) with
the additional property that F(t, a) is independent of t for every a ∈ A. (So in particular this
obviously forces f1|A = f0|A.) It is straightforward to see that saying that f0 ∼ f1 if and only if
there is a homotopy rel A from f0 to f1 defines an equivalence relation on the set of maps Y → Z
(or for that matter on the set of maps Y → Z whose restriction to A coincides with some given
map A→ Z).

Now for x , y ∈ X we define

ΠX (x , y) =
PX (x , y)
∼

where for γ0,γ1 ∈ PX (x , y) we say γ0 ∼ γ1 if and only if there is a homotopy rel {0, 1} from
γ0 : [0, 1] → X to γ1 : [0,1] → X . In other words ΠX (x , y) is the set of equivalence classes
of paths from x to y , where paths γ0,γ1 are considered equivalent provided that there is a
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continuous Γ : [0, 1]× [0,1]→ X such that for all t Γ (0, t) = γ0(t) and Γ (1, t) = γ1(t), and for
all s Γ (s, 0) = x and Γ (s, 1) = y .

For γ ∈ PX (x , y) we denote its equivalence class in ΠX (x , y) by [γ]. Generic elements of
ΠX (x , y) which are not given as equivalence classes of specific loops will be given names like a
or c.

Exercise 4.1. Prove that if we instead had said that γ0,γ1 ∈ PX (x , y) were equivalent if there
were any homotopy from γ0 to γ1 (not necessarily a homotopy rel {0,1}) then all elements of
PX (x , y) would have been equivalent.

Exercise 4.2. Let r : [0, 1]→ [0, 1] be any continuous map with r(0) = 0 and r(1) = 1. Prove
that for any γ ∈ PX (x , y) we have [γ ◦ r] = [γ]. (Hint: Exploit the fact that [0,1] is a convex
set.)

Exercise 4.3. Assume we have α0,α1 ∈ PX (x , y) and β0,β1 ∈ PX (y, z) such that [α0] = [α1]
and [β0] = [β1]. Prove that, where ∗ is the concatenation operation defined earlier,

[α0 ∗ β0] = [α1 ∗ β1]

In view of Exercise 4.3 we may now define a concatenation operation on (relative, though in
future I’ll leave this word out) homotopy classes of paths:

ΠX (x , y)×ΠX (y, z)→ ΠX (x , z)

(a, b) 7→ a ∗ b := [α ∗ β] for any α,β with [α] = a, [β] = b

Moreover this operation is associative in the following sense:

Proposition 4.4. For w, x , y, z ∈ X and a ∈ ΠX (w, x), b ∈ ΠX (x , y), c ∈ ΠX (y, z) we have

a ∗ (b ∗ c) = (a ∗ b) ∗ c

Proof. Let α ∈ PX (w, x), β ∈ PX (x , y), γ ∈ PX (y, z) be representatives of the classes a, b, c
respectively. By definition a ∗ (b ∗ c) is represented by the path α ∗ (β ∗ γ) from w to z where

β ∗ γ(t) =
§

β(2t) 0≤ t ≤ 1/2
γ(2t − 1) 1/2≤ t ≤ 1

and so

α ∗ (β ∗ γ)(t) = β ∗ γ(t) =
§

α(2t) 0≤ t ≤ 1/2
β ∗ γ(2t − 1) 1/2≤ t ≤ 1 =







α(2t) 0≤ t ≤ 1/2
β(4t − 2) 1/2≤ t ≤ 3/4
γ(4t − 3) 3/4≤ t ≤ 1

Similarly

(α ∗ β) ∗ γ(t) =
§

(α ∗ β)(2t) 0≤ t ≤ 1/2
γ(2t − 1) 1/2≤ t ≤ 1 =







α(4t) 0≤ t ≤ 1/4
β(4t − 1) 1/4≤ t ≤ 1/2
γ(2t − 1) 1/2≤ t ≤ 1

(In particular α ∗ (β ∗γ) is not the same path as (α ∗β) ∗γ; we are just proving that they are
homotopic.) Defining r : [0,1]→ [0, 1] by

r(t) =







t/2 0≤ t ≤ 1/2
t − 1/4 1/2≤ t ≤ 3/4
2t − 1 3/4≤ t ≤ 1
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we see from the above formulas that, for all t ∈ [0, 1], ((α ∗β) ∗ γ)(r(t)) = (α ∗ (β ∗ γ))(t). So
since the “reparametrization function” r : [0, 1]→ [0,1] is continuous it follows from Exercise
4.2 that

[(α ∗ β) ∗ γ] = [α ∗ (β ∗ γ)]
�

If one specializes to the case that x = y we get the fundamental group at x , ΠX (x , x) (or
more commonly written as π1(X , x)) consisting of homotopy classes of paths from x to x , i.e. of
loops based at x . The name fundamental group will be justified shortly; evidently Proposition
4.4 already shows (something stronger than) associativity, and the following will imply the
existence of an identity:

Proposition 4.5. For each x ∈ X , where eX ∈ ΠX (x , x) denotes the homotopy class of the constant
path γx : [0, 1]→ X defined by γx(t) = x for all t ∈ [0,1], the following holds:

(i) If w ∈ X and a ∈ ΠX (w, x) then a ∗ ex = a
(ii) If y ∈ X and b ∈ ΠX (x , y) then eX ∗ b = b.

Proof. For (i), if a = [α] where α ∈ PX (w, x), we have a ∗ ex = [α ∗ γx] where

α ∗ γ(t) =
§

α(2t) 0≤ t ≤ 1/2
x 1/2≤ t ≤ 1

Thus where r : [0, 1] → [0,1] is defined by r(t) = 2t for 0 ≤ t ≤ 1/2 and r(t) = 1 for
1/2 ≤ t ≤ 1 we have α ∗ γx = α ◦ r. Thus by Proposition 4.2, [α ∗ γx] = [α], proving (i).
Essentially the same argument (but with r(t) = 0 for 0 ≤ t ≤ 1/2 and r(t) = 2t − 1 for
1/2≤ t ≤ 1) proves (ii). �

Likewise we have a generalization of inverses (in the sense that the case x = y in the propo-
sition below gives the existence of inverses in the group ΠX (x , x)); recall that for γ ∈ PX (x , y)
we defined γ̄ ∈ PX (y, x) by γ̄(t) = γ(1− t).

Proposition 4.6. For x , y ∈ X and γ ∈ PX (x , y) we have

[γ] ∗ [γ̄] = ex ∈ ΠX (x , x) and [γ̄] ∗ [γ] = ey ∈ ΠX (y, y)

Proof. We will prove the second equality; the proof of the first is very similar and is left to
the reader (or for that matter can be proven by formally manipulating the second equality).
[γ̄] ∗ [γ] ∈ ΠX (y, y) is the homotopy class of the loop γ̄ ∗ γ defined by

γ̄ ∗ γ(t) =
§

γ(1− 2t) 0≤ t ≤ 1/2
γ(2t − 1) 1/2≤ t ≤ 1

Define Γ : [0,1]× [0, 1]→ X by

Γ (s, t) =







γ(1− 2t) 0≤ t ≤ s/2
γ(1− s) s/2≤ t ≤ 1− s/2
γ(2t − 1) 1− s/2≤ t ≤ 1

In particular Γ (0, t)Γ (s, 0) = Γ (s, 1) = γ(1) = y for all s and t, while Γ (1, t) = (γ̄ ∗ γ)(t) for
all t. Thus Γ gives a homotopy rel {0, 1} from the constant path γy to γ̄ ∗ γ, proving that
[γ̄] ∗ [γ] = ey . �

Propositions 4.4, 4.5, and 4.6 comprise a proof that the fundamental groupoid ΠX , which
comprises the data of the sets ΠX (x , y) for all x , y ∈ X with the concatenation operation ∗ and
the distinguished elements ex ∈ ΠX (x , x), is indeed a groupoid—in (concise) categorical terms
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this means that ΠX is a small category in which every morphism is an isomorphism, namely one
has:

• A set of “objects” of the groupoid, which in this case is just the underlying set of the
space X .
• For each x , y ∈ X an associated “set of morphisms from x to y ,” in this case ΠX (x , y),

together with maps ∗: ΠX (x , y)×ΠX (y, z)→ ΠX (x , z) obeying the associativity relation
a ∗ (b ∗ c) = (a ∗ b) ∗ c.

• For each x ∈ X a distinguished “identity morphism” ex ∈ ΠX (x , x), obeying the property
in Proposition 4.5.9

• Each element [γ] ∈ ΠX (x , y) has an “inverse element” in ΠX (y, x) as in Proposition
4.6.

In this groupoid as in any other, for any object x the “endomorphisms”ΠX (x , x) form a group,
as one sees by setting w = x = y = z in Propositions 4.4, 4.5, and 4.6. Groups are simpler to
study than groupoids, so this will tend to be our primary object of study:

Definition 4.7. If X is a topological space and x0 ∈ X , the fundamental group of X at x0 is the
set ΠX (x0, x0) of homotopy classes of paths from x0 to x0, endowed with the concatenation
operation ∗.

On the other hand, algebra that we can do on more general homotopy classes of paths in
ΠX (x , y) will sometimes be useful—this makes sense, since in exploring a space one would
presumably like to follow paths wherever they go rather than always having to return to a
single basepoint x0.

Proposition 4.8. If X and Y are spaces with x0 ∈ X , and if f : X → Y is any continuous map,
there is a well-defined induced map f∗ : π1(X , x0)→ π1(Y, f (x0)) defined by, for γ ∈ PX (x0, x0),

f∗([γ]) = [ f ◦ γ]
Moreover f∗ is a homomorphism of groups. Also, if g : Y → Z is another continuous map of
topological spaces then the induced map (g ◦ f )∗ : π1(X , x0)→ π1(Z , g( f (x0))) obeys

(g ◦ f )∗ = g∗ ◦ f∗

Proof. Exercise (this is very similar to Exercise 1.5—the main novelty is the statement that f∗ is
a homomorphism, but if you think about what this means you shouldn’t find it hard). �

In categorical language Proposition 4.8 says that the fundamental group is a functor from
the category of pointed topological spaces to the category of groups, where a pointed topologi-
cal space is a topological space together with a specifically-chosen “basepoint” in that space,
and the only allowed maps from one pointed topological space (X , x0) another one (Y, y0)
are those continuous maps X → Y which map x0 to y0. In particular Proposition 4.8 shows
that if there is a homeomorphism f : X → Y taking x0 to y0 then π1(X , x0) must be isomor-
phic to π1(Y, y0), since the induced map f∗ : π1(X , x0)→ π1(Y, y0) will have inverse given by
( f −1)∗ : π1(Y, f (x0)) → π1(X , x0). So π1 is an invariant of pointed topological spaces. This
need to arbitrarily specify and then keep track of basepoints is annoying, but inevitable unless
you want to analyze the entire groupoid structure. However we at least have the following:

Proposition 4.9. Suppose that x0, x1 ∈ X belong to the same path component. Then there is an
isomorphism φ : π1(X , x0) → π1(X , x1). In particular, if X is path-connected, then the isomor-
phism type of π1(X , x) is independent of the choice of x ∈ X .

9These three items define a “small category,” with the term “small” referring to the fact that the collection of objects
is a set rather than something too big to be a set, such as the class of all sets or the class of all topological spaces.
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Proof. Let γ ∈ PX (x0, x1), which then determines a path γ̄ ∈ PX (x1, x0) such that [γ] ∈
ΠX (x0, x1) and [γ̄] ∈ PX (x1, x0) obey the “inverse” property of Proposition 4.6. Using the
concatenation operation in the whole fundamental groupoid, and recalling that by definition
π1(X , x j) = ΠX (x j , x j) for j = 0, 1, we define φ : π1(X , x0)→ π1(X , x1) by

φ(a) = [γ̄] ∗ a ∗ [γ]

(of course the very act of writing the above formula without parentheses requires Proposition
4.4). To see that φ is a homomorphism we simply note that since [γ] ∗ [γ̄] = ex0

is the identity
in π1(X , x0),

φ(a) ∗φ(b) = [γ̄] ∗ a ∗ [γ] ∗ [γ̄] ∗ b ∗ [γ] = [γ̄] ∗ a ∗ ex0
∗ b ∗ [γ] = φ(a ∗ b).

If we define ψ: π1(X , x1)→ π1(X , x0) by

ψ(c) = [γ] ∗ c ∗ [γ̄],

repeatedly applying Propositions 4.4,4.5, and 4.6 shows that

φ(ψ(c)) = [γ̄] ∗ [γ] ∗ c ∗ [γ̄] ∗ [γ] = ex1
∗ c ∗ ex1

= c

for all c ∈ π1(X , x1) and likewise

φ(ψ(a)) = [γ] ∗ [γ̄] ∗ a ∗ [γ] ∗ [γ̄] = ex0
∗ a ∗ ex0

= a

for all a ∈ π1(X , x0). This φ is bijective, with inverse ψ. So since φ was already shown to be a
homomorphism it is an isomorphism. �

Note however that the isomorphism φ depended on the path γ; if we had chosen a path
representing a different homotopy class we might have gotten a different isomorphism. One
accordingly says that the fundamental groups at different basepoints of a path-connected space
are isomorphic, but not canonically isomorphic. One could apply the construction in the proof
to the case where x0 = x1, giving an isomorphism π1(X , x0) → π1(X , x0)—in this case the
homotopy class [γ] itself belongs to π1(X , x0) and the isomorphism is given be conjugation by
the element [γ]. It could very well be the case that this isomorphism is not the identity, since
we will eventually see examples of spaces with nonabelian fundamental groups.

In any case, we now have a new example of an invariant of path-connected topological spaces,
even if it’s slightly less functorial than we might like: the isomorphism type of the fundamental
group. To reiterate, we choose a point x0 ∈ X and define π1(X , x0) to be the set of equivalence
classes of paths γ: [0, 1]→ X with γ(0) = γ(1) = x0, where two such γ0,γ1 are equivalent if
they are homotopic rel {0, 1}, i.e. if there is a continuous map Γ : [0, 1]× [0, 1] with Γ (s, 0) =
Γ (s, 1) = x for all s ∈ [0,1], and Γ (0, t) = γ0(t) and Γ (1, t) = γ1(t) for all t ∈ [0, 1]. If X
isn’t path connected one likewise has an invariant given by the function which assigns to any
path component of X the isomorphism type of the fundamental group at a point in that path
component.

Remark 4.10. Of course, a path γ: [0, 1]→ X having γ(0) = γ(1) = x0 is essentially the same
thing as continuous map η: S1→ X having η(0) = x0. (As before S1 = [0,1]

0∼1
; where π: [0, 1]→

S1 is the quotient projection γ and η are related by γ= η ◦π.) Moreover the paths γ0,γ1 from
x0 to x0 are homotopic rel {0,1} if and only if the corresponding loops η0,η1 : S1 → X are
homotopic rel {0}. So it is entirely equivalent to define the fundamental group π1(X , x0) as
consisting of equivalence classes up to homotopy rel {0} of continuous maps η: S1 → X with
η(0) = x0. (The more common term for “homotopy rel {0}” is “based homotopy.”) The group
operation is of course given by the same concatenation operation as before, just regarding the



MATH 8200 LECTURE NOTES (SPRING 2014) 17

domains to be S1 rather than [0,1]: namely [η0]∗[η1] is the based homotopy class of the map
η0 ∗η1 : S1→ X defined by

(η0 ∗η1)(t)
§

η0(2t) 0≤ t ≤ 1/2
η1(2t − 1) 1/2≤ t ≤ 1

We’ll often use this alternative characterization.

Exercise 4.11. As mentioned before, a pointed topological space is a pair (X , x0) where X is a
topological space and x0 ∈ X , and a based map f : (X , x0) → (Y, y0) between two pointed
topological spaces is by definition a continuous map f : X → Y such that f (x0) = y0. We
say that two based maps f0, f1 : (X , x0) → (Y, y0) are based homotopic if there is a homotopy
F : [0,1]× X → Y such that F(t, x0) = y0 for all t ∈ [0,1].

(a) Prove that if f0, f1 : (X , x0)→ (Y, y0) are based homotopic then the induced maps ( f0)∗
and ( f1)∗ from π1(X , x0) to π1(Y, y0) are equal.

(b) A based homotopy equivalence f : (X , x0)→ (Y, y0) is by definition a based map f : (X , x0)→
(Y, y0) such that there exists a based map g : (Y, y0) → (X , x0) such that g ◦ f and f ◦ g are
based homotopic to the identities (X , x0) → (X , x0) and (Y, y0) → (Y, y0), respectively. Prove
that if f is a based homotopy equivalence then the induced map f∗ : π1(X , x0)→ π1(Y, y0) is
an isomorphism.

(In fact, with a bit more effort one can show that any homotopy equivalence f : X → Y ,
based or not, induces an isomorphism on fundamental groups; see [H, Proposition 1.18].)

We’ll now compute a few examples.

Exercise 4.12. Let S ⊂ Rn be any subset which is star-shaped in the sense that for all ~v ∈ S and
t ∈ [0,1] it holds that t~v ∈ S. (So in particular S is path-connected and contains ~0.) Prove that
π1(S, ~0) is the trivial group.

Proposition 4.13. There is a group isomorphism π1(C \ {0}, 1)∼= Z.

Proof. We already did most of the work here when we proved Theorem 1.9 classifying homotopy
classes of maps from S1→ C\{0}, but the question answered by the current proposition is just a
little bit different. The proof of Theorem 1.9 shows that every continuous map f : S1→ C\{0}
is homotopic to the map fn(t) = e2πint for one and only one value of n ∈ Z. Conveniently,
the maps fn all have fn(0) = 1, so they each represent classes [ fn] ∈ π1(C \ {0}, 1). Moreover
since Proposition 2.8 shows that if m 6= n then fm is not even homotopic to fn, much less based
homotopic, the classes [ fn] are all distinct. So we have a well-defined injection

φ : Z→ π1(C \ {0}, 1)
n 7→ [ fn]

We will now show that φ is surjective. Suppose that f : S1 → C \ {0} is any continuous
map with f (0) = 1. We know that f is homotopic to some fn; we need to improve this to the
statement that f is based homotopic to fn. Let F : [0,1]× S1→ C \ {0} be a homotopy from f
to fn. We have F(0, 0) = F(1,0) = 1, but for s /∈ {0,1}, F(s, 0) may not be 1. But if we define
F̂ : [0, 1]× S1→ C \ {0} by

F̂(s, t) =
F(s, t)
F(s, 0)

then F̂ will indeed give a based homotopy from f to fn, proving that [ f ] = [ fn] ∈ π1(C\{0}, 1).
So φ is a bijection; it remains to show that φ is a group isomorphism, which is equivalent

to the statement that [ fm] ∗ [ fn] = [ fm+n]. Now what we have done up to this point shows
that, quite generally, two loops S1 → C \ {0} based at 1 will represent the same element of
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π1(C \ {0}, 1) if and only if they have the same degree. Now the loop fm ∗ fn : S1 → C \ {0} is
given by fm ∗ fn(t) = eiθ (t) for the continuous function θ : [0, 1]→ R defined by

θ (t) =
§

4πmt 0≤ t ≤ 1/2
2πm+ 2πn(2t − 1) 1/2≤ t ≤ 1

So θ (1)−θ (0) = 2π(m+n), and the degree of fm ∗ fn is m+n, which is the same as the degree
of fm+n. �

Now the unit circle T ⊂ C (which of course is homeomorphic to S1) is easily seen to be based
homotopy equivalent to C \ {0} (with basepoint 1 for both spaces): the inclusion T → C \ {0}
has based homotopy inverse z 7→ z

|z| . So we have:

Corollary 4.14. π1(S1, 0)∼= Z

The story is different for the other spheres, however:

Proposition 4.15. For n ≥ 2, where xN ∈ Sn is the “north pole” (0, . . . , 0, 1), π1(Sn, xN ) is the
trivial group.

Proof. Let xS ∈ S1 denote the south pole: xS = (0, . . . , 0,−1). The main observation is that
stereographic projection gives a homeomorphism π: Sn \ {xS} → Rn and Rn is based homo-
topy equivalent to the one-point space {π(xN )}, so a loop contained in Sn \ {xS} can easily be
basepoint-preservingly shrunk to xN .10 In formulas define π: Sn \ {xS} → Rn by

π(x1, . . . , xn+1) =

�

x1

1+ xn+1
, . . . ,

xn

1+ xn+1

�

which has inverse

π−1(y1, . . . , yn) =

�

2‖~y‖2

‖~y‖2 + 1
y1, . . . ,

2‖~y‖2

‖~y‖2 + 1
yn,
‖~y‖2 − 1

‖~y‖2 + 1

�

Then if γ: (S1, 0)→ (Sn, xN ) has γ(t) ∈ Sn\{xS} for all t ∈ S1 we can define Γ : [0,1]×S1→ Sn

by Γ (s, t) = π−1((1− s)π(γ(t))) to obtain a homotopy from γ to the constant map to xN ; since
Γ (s, 0) = π−1((1− s)π(xN )) = π−1(~0) = xN for all s, Γ is in fact a based homotopy and so [γ] is
the identity element of π1(Sn, xN ).

So to prove the triviality of π1(Sn, xN ) (for n≥ 2) it suffices to show that, if n≥ 2, any path
γ: [0,1]→ Sn with γ(0) = γ(1) = xN is homotopic rel {0, 1} to a map γ′ with image in Sn\{xS},
since we will then have [γ] = [γ′] and the previous paragraph shows that [γ′] is the identity.

So let γ ∈ PSn(xN , xN ) be arbitrary, and let U denote the southern hemisphere {x1, . . . , xn+1 ∈
Sn|xn+1 < 0}. Let ∂ U = {(x1, . . . , xn+1) ∈ Sn|xn+1 = 0}. Then γ−1(U) is an open subset of [0, 1]
containing neither 0 nor 1, and so can be written as a disjoint union of open intervals (a, b);
necessarily the endpoints a and b of these intervals are not contained in γ−1(U) (otherwise
(a, b) would not be disjoint from the other open intervals in the union), and so γ(a),γ(b) ∈ ∂ U
by continuity. The closed, hence compact set γ−1({xS}) is contained in γ−1(U), so we can find
finitely many of these intervals that cover γ−1({xS}); say the intervals are (a1, b1), · · · , (ak, bk)
where 0 < a1 < b1 < a2 < · · · < bk < 1. For notational convenience write b0 = 0 and ak+1 = 1;
then we have

[0, 1] =
�

∪k
i=0[bi , ai+1]

�

∪
�

∪k
i=1[ai , bi]

�

10In fact the same argument applies with any point other than xN in place of xS , allowing us to contract any loop
γ: (S1, 0)→ (Sn, xN )which is not surjective, but the existence of space-filling curves shows that an additional argument
is still needed.

http://en.wikipedia.org/wiki/Space-filling_curves
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where, for all i, γ|[bi ,ai+1] has image contained in Sn \ {xS}, while γ|[ai ,bi] has image meeting xS

and contained in Ū = U ∪ ∂ U , with γ(ai),γ(bi) ∈ ∂ U .
Now the fact that n ≥ 2 implies that ∂ U (which is evidently homeomorphic to Sn−1 is path-

connected. Our loop γ′ will be obtained from γ by, for each i, setting γ′|[bi ,ai+1] equal to γ|[bi ,ai+1]
while setting γ′[ai ,bi]

equal to an arbitrary continuous map γ′ : [ai , bi]→ ∂ U such that γ′(ai) =
γ(ai) and γ′(bi) = γ(bi). Since xS /∈ ∂ U , γ′ is clearly a continuous map with image in Sn \{xS},
and so is based homotopic to the constant map to xN as we have already seen. It only remains to
check that γ is based homotopic to γ′. For this it clearly suffices to see that γ|[ai ,bi] is homotopic
rel {ai , bi} to γ′|[ai ,bi]. But this is easy to check: for instance there is a homeomorphism between
Ū to the closed unit disk in Rn (for instance by taking the projection to the first n factors) and
in terms of this homeomorphism one obtains a homotopy Fi rel {ai , bi} from γ to γ′ by setting
Fi(s, t) equal to the position at time s along a line segment from γ(t) to γ′(t). (Alternately, to
give a more formal argument in terms of the fundamental groupoid, since Ū is homeomorphic
to the unit disk we know that π1(Ū ,γ(ai)) = ΠŪ(γ(ai),γ(ai)) has just one element, in view
of which the same is true of ΠŪ(γ(ai),γ(bi)) since for an arbitrary path η ∈ PU(γ(ai),γ(bi))
the map c 7→ c ∗ [η] gives a bijection from ΠŪ(γ(ai),γ(ai)) to ΠŪ(γ(ai),γ(bi)) with inverse
d 7→ d ∗ [η̄].)

Summing up, we have shown first that any loop based at xN in Sn which does not intersect
xS is based homotopic to the constant loop, and then that any loop based at xN in Sn at all is
based homotopic to one which does not intersect xS , in view of which π1(Sn, xN ) consists only
of the class of the constant loop. �

Corollary 4.16. For n≥ 3, R2 is not homeomorphic to Rn.

(Of course, you already showed in Exercise 1.1 that R2 is not homeomorphic to R, and the
same argument should show that R is not homeomorphic to Rn for n≥ 3 either. Distinguishing
the various Rn for n≥ 3 from each other will have to wait until we learn about homology later
in the course.)

Proof. If f : R2→ Rn were a homeomorphism then by composing f with the homeomorphism

~x 7→ ~x − f ((0,0)) of Rn we would obtain a homeomorphism f : R2 → Rn sending ~0 to ~0. So

f would restrict as a homeomorphism f : R2 \ {~0} → Rn \ {~0} Hence R2 \ {~0} and Rn \ {~0}
would have isomorphic fundamental groups. But the inclusion Sn−1 → Rn \ {~0} is a homotopy
equivalence with homotopy inverse ~x 7→ ~x

‖~x‖ . SoRn\{~0} has trivial fundamental group for n≥ 3

by Proposition 4.15, whereas the fundamental group of R2 \ {~0} is nontrivial by Proposition
4.13. �

Exercise 4.17. Recall that earlier we defined a space X to be simply connected if and only if
[S1, X ] has only one element. Prove that X is simply connected if and only if X has only one
path component and π1(X , x0) is the trivial group for (one and hence any) x0 ∈ X .

Here is a simple general observation:

Proposition 4.18. Let X and Y be two spaces with x0 ∈ X , y0 ∈ Y . Then π1(X × Y, (x0, y0)) is
the direct product of the groups π1(X , x0) and π1(Y, y0).

Proof. Let pX : X × Y → X and pY : X × Y → Y denote the projections. We then have induced
homomorphisms pX∗ : π1(X×Y, (x0, y0))→ π1(X , x0) and pY ∗ : π1(X×Y, (x0, y0))→ π1(Y, y0).
So we can form the homomorphism φ : π1(X × Y, (x0, y0))→ π1(X , x0)×π1(Y, y0) by setting
φ(c) = (pX∗(c), pY ∗(c)).
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We will show that φ is an isomorphism. To see that it is surjective, note that any element of
π1(X , x0)×π1(Y, y0) can be represented as ([γX ], [γY ]) for based loops γX : (S1, 0)→ (X , x0)
and γY : (S1, 0) → (Y, y0), and the definition obviously implies that, where γ: (S1, 0) → (X ×
Y, (x0, y0)) is defined by γ(t) = (γX (t),γY (t)), we have φ([γ]) = ([γX ], [γY ]).

As for injectivity (equivalently, triviality of the kernel), if γ: (S1, 0)→ (X×Y, (x0, y0)) has the
property thatφ([γ]) is the identity, this means that pX ◦γ is based homotopic to the constant map
to x0 in X and that pY ◦γ is based homotopic to the constant map to y0 in Y . Letting FX : [0, 1]×
S1→ X and FY : [0,1]× S1→ Y be the based homotopies whose existences are asserted in the
previous sentence, the map F : [0, 1]× S1 → X × Y defined by F(s, t) = (FX (s, t), FY (s, t)) is a
based homotopy from γ to the constant map to (x0, y0) in X ×Y , proving that [γ] is the identity
in π1(X × Y, (x0, y0)). �

For instance, it follows from Propositions 4.18 and 4.13 that π1(S1×S1, (0,0))∼= Z×Z, with
the two integers representing the number of times a loop “wraps around” the two S1 factors of
S1×S1. Together with Proposition 4.15 this answers a question raised at the very start of these
notes (in the third paragraph): you should be able to convince yourself that (the surface of) a
donut is homeomorphic to S1×S1, while a muffin is homeomorphic to S2, so they have distinct
fundamental groups and so are not homeomorphic.

By induction one can see that (S1)n has fundamental group Zn; one might ask what other
groups can arise. As a matter of fact every group can; a proof of this based on van Kampen’s
theorem (our next topic) appears in [H, Proposition 1.28]. Here is an important example of a
space whose fundamental group is nontrivial but finite.

Exercise 4.19. One of several equivalent ways of defining real projective space RPn is as the
quotient of the sphere Sn by the equivalence relation that identifies ~x with −~x for all ~x ∈ Sn ⊂
Rn+1. In particular RP0 is a one-point space and RP1 can be shown to be homeomorphic to S1.

(a) Prove that the quotient map p : Sn→ RPn is a covering space.
(b) From now on assume n ≥ 2. Let x0 ∈ Sn and let γ: [0,1] → RPn be continuous with

γ(0) = γ(1) = p(x0). So according to the Y = {∗} case of Theorem 2.5 γ has a unique lift via p,
denoted γ̃: [0,1]→ Sn, such that γ̃(0) = x0. Prove (using Theorem 2.5 and Proposition 4.15)
that, γ represents the identity element of π1(RPn, p(x0)) if and only if γ̃(1) = x0.

(c) Prove that π1(RPn, p(x0)) is isomorphic to Z/2Z for n≥ 2.

5. PUSHOUTS AND THE VAN KAMPEN THEOREM

The van Kampen theorem will allow us to compute the fundamental group of a space X by
covering X by two suitable open sets U0 and U1, based on the fundamental groups of U0, U1,
and U0 ∩ U1. (In [H, Section 1.2] there is a more general version that applies to certain covers
by arbitrarily many open sets, but the case of a cover by two sets is the one that is most often
used and I would say that it has a more elegant statement and proof.) The theorem as I will
formulate it will be a sort of group-theoretic version of the following simple fact from point set
topology.

Proposition 5.1. Let X be a space and let U0, U1 ⊂ X be open sets such that X = U0 ∪ U1. For
k ∈ {0,1} let jk : U0 ∩ U1 → Uk and ik : Uk → X be the inclusions. Then given any topological
space Y and continuous maps φ0 : U0 → Y and φ1 : U1 → Y such that φ0 ◦ j0 = φ1 ◦ j1, there is
a unique continuous map φ : X → Y such that φ ◦ i0 = φ0 and φ ◦ i1 = φ1.
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The proposition is more succinctly summarized by the following diagram (where all triangles
and squares should be understood to be commutative):

U0 ∩ U1
j0 //

j1
��

U0

i0
��

φ0

��

U1
i1 //

φ1
((

X

∃!φ

  
Y

Proof. If φ : X → Y is any function (continuous or not) satisfying φ ◦ i0 = φ0, we must have
φ(x) = φ0(x) whenever x ∈ U0, and likewise the condition that φ ◦ i1 = φ1 implies that
φ(x) = φ1(x) whenever x ∈ U1. Moreover the assumption that φ0 ◦ j0 = φ1 ◦ j1 shows that if
x ∈ U0 ∩ U1 then φ0(x) = φ1(x). So there is a well-defined function φ : X → Y given by

φ(x) =
§

φ0(x) x ∈ U0
φ1(x) x ∈ U1

and this is the only function of any kind obeying φ ◦ i0 = φ0 and φ ◦ i1 = φ1. So the proposition
will follow as soon as we show that φ is continuous. To see this, if V ⊂ Y is open we have
φ−1(V ) = φ−1

0 (V ) ∪ φ
−1
1 (V ). Now for k ∈ {0, 1}, φk was assumed continuous, so φ−1

k (V ) is
relatively open in Uk. Since Uk is in turn open in X this implies that φ−1

k (V ) is open in X (for
the fact that φ−1

k (V ) is relatively open in Uk amounts to the statement that there is an open
Gk ⊂ X so that φ−1

k (V ) = Gk∩Uk). Thus φ−1(V ) is a union of two open sets and so is open. �

We now abstract the behavior in the previous proposition into a general definition, which we
give simultaneously in the category of topological spaces and in the category of groups.

Definition 5.2. Let Abe a topological space (respectively, a group), and let j0 : A→ B and j1 : A→
C be continuous maps to other topological spaces B and C (respectively, homomorphisms to
other groups B and C). A pushout of the diagram

A
j0 //

j1
��

B

C

is a space (respectively, group) D together with continuous maps (respectively, homomorphisms)
i0 : B→ D and i1 : C → D such that i0 ◦ j0 = i1 ◦ j1 and satisfying the following “universal prop-
erty”: for any other space (resp. group) Y with continuous maps (resp. homomorphisms)
φ0 : B → Y and φ1 : C → Y obeying φ0 ◦ j0 = φ1 ◦ j1 there is a unique continuous map (resp.
homomorphism) φ : D→ Y such that φ ◦ i0 = φ0 and φ ◦ i1 = φ1. In this case the commutative
diagram

A
j0 //

j1
��

B

i0
��

C
i1 // D

is called a pushout square.
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Again, this definition is summarized by the diagram

A
j0 //

j1
��

B

i0
��

φ0

��

C
i1 //

φ1 ''

D

∃!φ

��
Y

(where either A, B, C , D, and Y are topological spaces and the arrows are continuous maps or
A, B, C , D, and Y are groups and the arrows are homomorphisms).

Example 5.3. According to Proposition 5.1, if X is a space with X = U0∪U1 where U0 and U1 are
open the diagram

U0 ∩ U1
//

��

U0

��
U1

// X

where all arrows are inclusion maps is a pushout square.

Example 5.4. For a rather simple-minded group-theoretic example, where 1 denotes the trivial
group, note that for any other group G there is a unique homomorphism G → 1 and a unique
homomorphism 1→ G, with the image of the latter consisting only of the identity in G. In view of
this it is easy (and left to the reader) to check that

G //

��

1

��
1 // 1

is a pushout square.

Here is a more complicated example:

Exercise 5.5. Let U and V be spaces, A ⊂ U a subspace, and g : A→ V a continuous map, and
form the “adjunction space”

U ∪g V =
U
∐

V

a ∼ g(a) for a ∈ A

(i.e. U ∪g V is the quotient space formed from the disjoint union U
∐

V by the equivalence
relation given by saying that a ∈ U is equivalent to b ∈ V iff a ∈ A and b = g(a) (and by
requiring the relation to be reflexive, symmetric, and transitive, so in particular if a1, a2 ∈ A
with g(a1) = g(a2) then a1 ∼ a2)). Let jU : U → U ∪g V and jV : V → U ∪g V be the maps
obtained by composing the inclusion of U or V into U

∐

V with the quotient projection to
U ∪g V .

(a) Prove that jV is a homeomorphism onto its image in U ∪g V . (Said differently, V appears
in an obvious way as a subset of U ∪g V , and you need to show that the resulting subspace
topology is the same as the original topology on V .)



MATH 8200 LECTURE NOTES (SPRING 2014) 23

(b) Where i : A→ U is the inclusion, prove that the diagram

A i //

g

��

U

jU
��

V
jV // U ∪g V

is a pushout square.
(c) Given any map g0 : A0 → V between topological spaces, apply the above construction

with U = A0 × [0, 1], A= A0 × {0}, and g(a, 0) = g0(a). The resulting adjunction space

Mg0
:= (A0 × [0, 1])∪g V

is called the “mapping cylinder” of g0. Prove that in this case the inclusion jV : V → Mg0
is a

homotopy equivalence.

An important fact about pushouts is that they are unique:

Proposition 5.6. If A is a topological space, j0 : A→ B and j1 : A→ C are continuous maps, and

A
j0 //

j1
��

B

i0
��

C
i1 // D

and

A
j0 //

j1
��

B

h0

��
C

h1 // E
are both pushout squares then there is a homeomorphism φ : D → E. The same statement also
holds with “topological space,” “continuous maps,” and “homeomorphism” replaced respectively by
“group,” “homomorphism,” and “group isomorphism.”

Proof. Applying the universal property for D with Y = D′, and then for D′ with Y = D, gives
rise to a commutative diagram

A
j0 //

j1
��

B

i0
��

h0

��

i0

��

C
i1 //

h1

''
i1

$$

D

φ

��
E

φ′

��
D

In particular the composition φ′ ◦φ : D→ D obeys (φ′ ◦φ) ◦ i0 = i0 and (φ′ ◦φ) ◦ i1 = i1.
But where 1D is the identity, we of course also have 1D ◦ i0 = i0 and 1D ◦ i1 = i1. Applying the
uniqueness part of the universal property to the case Y = D, φ0 = i0, φ1 = i1 then implies that
φ′ ◦φ = 1D.
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The same argument with D and E interchanged shows that φ ◦φ′ = 1E . Thus φ : D→ E is
a homeomorphism (or group isomorphism) with inverse φ′.

�

Thus, going back to the earlier examples, any pushout of a diagram

G //

��

1

1

must be given by the trivial group, and any topological space obtained as a pushout of a diagram

A i //

g
��

U

V

is homeomorphic to U ∪g V (in particular this applies to X as in Proposition 5.1). More broadly,
stating that a group appears as the bottom right corner of a pushout square suffices to uniquely
specify that group up to isomorphism (and likewise for topological spaces up to homeomor-
phism), provided that the other groups and the upper and left homomorphisms in the diagram
are known. With that in mind, here is the van Kampen theorem:

Theorem 5.7 (Van Kampen). Let X be a topological space and U0, U1 ⊂ X open with X = U0∪U1
and U0, U1, and U0 ∩ U1 all path connected. For k ∈ {0,1} let jk : U0 ∩ U1→ Uk and ik : Uk → X
be the inclusions. Then for x0 ∈ U0 ∩ U1 the diagram of induced maps

π1(U0 ∩ U1, x0)
j0∗ //

j1∗
��

π1(U0, x0)

i0∗
��

π1(U1, x0)
i1∗ // π1(X , x0)

is a pushout square.

Proof. To start we choose, for every x ∈ X , an arbitrary path ηx : [0,1] → X with η(0) = x0
and η(1) = x , such that if x ∈ U0 ∩ U1 then η([0, 1]) ⊂ U0 ∩ U1, if x ∈ U0 then η([0, 1]) ⊂ U0,
and if x ∈ U1 then η([0,1]) ⊂ U1. (Of course this is possible since we assumed U0, U1, U0 ∩ U1
where all path connected.) Also we take ηx0

to be the constant path at x0.
If [a, b] ⊂ [0,1] and γ: [0,1]→ X we will abuse notation slightly by denoting by γ|[a,b] the

map [0, 1]→ X given by γ|[a,b](t) = γ(a+ (b− a)t). Thus γ|[a,b] ∈ PX ([γ(a),γ(b)]).
If the map φ : π1(X , x0)→ G is to satisfy the required properties we will now determine how

it must evaluate on the homotopy class of an arbitrary loop γ: [0, 1]→ X based at x0.
We have an open cover [0,1] = γ−1(U0)∩ γ−1(U1) where γ−1(U0) and γ−1(U1) can each be

expressed as a disjoint union of open intervals; by passing to a finite subcover by these intervals
and then shrinking the intervals slightly we obtain

0= t0 < t1 < t2 < · · ·< tm = 1

where for each i there is εi ∈ {0,1} such that γ([t i−1, t i]) ⊂ Uεi
. Evidently we have (in the

fundamental groupoid ΠX ) an identity

[γ] = [γ|[t0,t1]] ∗ [γ|[t1,t2]] ∗ · · · ∗ [γ|[tm−1,tm]]
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Here [γ|[t i−1,t i]] ∈ ΠX (γ(t i−1),γ(t i)). Now by Proposition 4.6 the concatenation [η̄γ(t i)]∗[ηγ(t i)]
acts as the identity in ΠX (γ(t i),γ(t i)) for each i, as for that matter do [ηγ(t0)] and [η̄γ(tm)] since
these were chosen to be the homotopy class of the constant path at x0 = γ(t0) = γ(tm). As a
consequence of this (and of the associativity of concatenation in the fundamental groupoid) we
have

[γ] =Æm
i=1

�

[ηγ(t i−1)] ∗ [γ|[t i−1,t i]] ∗ [η̄γ(t i)]
�

Note that each factor [ηγ(t i−1)] ∗ [γ|[t i−1,t i]] ∗ [η̄γ(t i)] belongs to ΠX (x0, x0) = π1(X , x0). So
if φ : π1(X , x0) → G is to be a homomorphism we must have φ([γ]) =

∏m
i=1φ([ηγ(t i−1)] ∗

[γ|[t i−1,t i]] ∗ [η̄γ(t i)]).
In fact, by the way that the intervals [t i−1, t i] and the paths ηγ(t i) were chosen, each [ηγ(t i−1)]∗

[γ|[t i−1,t i]]∗[η̄γ(t i)] is the homotopy class of a loop based at x0 which remains entirely within the
open set Uεi

, and so lies in the domain of the mapφεi
. Sinceφ was assumed to obeyφ◦iεi∗ = φi

where iεi
: Uεi

→ X is the inclusion we necessarily have

φ([ηγ(t i−1)] ∗ [γ|[t i−1,t i]] ∗ [η̄γ(t i)]) = φεi
([ηγ(t i−1)] ∗ [γ|[t i−1,t i]] ∗ [η̄γ(t i)])

for each i. Hence we have shown that, if φ : π1(X , x0) → G is any homomorphism satisfying
the required properties, its value on the homotopy class [γ] of any loop γ ∈ PX (x0, x0) may be
determined as follows: choose a subdivision [0,1] = ∪m

i=1[t i−1, t i] such that for each i there is
εi ∈ {0, 1} such that γ([t i−1, t i]) ⊂ Uεi

, and then φ([γ]) is given by

(2) φ([γ]) =
m
∏

i=1

φεi
([ηγ(t i−1)] ∗ [γ|[t i−1,t i]] ∗ [η̄γ(t i)])

This is more than sufficient to show that φ is unique if it exists. Our main remaining task is
to show that (2) gives a well-defined function φ : π1(X ) → G. In this direction we will show
first that the right hand side of (2) depends only on the path γ, and not on arbitrary choices
that were made after we chose γ; and then, having completed this first step, we will show that
φ([γ]) in (2) depends only on the equivalence class of γ in π1(X , x0) (i.e., we will show that
the right hand side of (2) is unchanged under homotopy rel endpoints).

To complete the first of these two steps, let us be more specific about what the arbitrary
choices that were made after the choice of γ:

(a) We chose a partition of [0, 1] into subintervals [t i−1, t i] each of which is mapped either
to U0 or to U1.

(b) Having chosen this partition into subintervals, for any i with the property that γ([t i−1, t i]) ⊂
U0 ∩ U1 we chose a specific εi ∈ {0,1}.

First we address (b): In the case that γ([t i−1, t i]) ⊂ U0 ∩ U1 the term [ηγ(t i−1)] ∗ [γ|[t i−1,t i]] ∗
[η̄γ(t i)] represents an element of ΠU0∩U1

(x0, x0) = π1(U0 ∩ U1, x0). Consequently since it was
assumed that φ0 ◦ j0∗ = φ1 ◦ j1∗ we will have

φ0([ηγ(t i−1)] ∗ [γ|[t i−1,t i]] ∗ [η̄γ(t i)]) = φ1([ηγ(t i−1)] ∗ [γ|[t i−1,t i]] ∗ [η̄γ(t i)]).

Thus the right hand side of (2) is independent of the choices of εi in those cases where there
was more than one choice that we could have made.

As for (a), note that if ∪m
i=1[t i−1, t i] and ∪n

j=1[s j−1, s j] are two decompositions of [0,1] with
the relevant property, then by interspersing the s j between the t i we get a new subdivision refin-
ing each of the previous ones. So it suffices to show that the right hand side of (2) is unchanged
under replacing one subdivision of [0,1] by a finer subdivision (as any two subdivisions have
a common refinement). Meanwhile the process of refining a subdivision [0, 1] = ∪m

i=1[t i−1, t i]
consists of a finite sequence of operations involving choosing i ∈ {1, . . . , m} and replacing the
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interval [t i−1, t i] by two consecutive intervals [t i−1, t∗], [t∗, t i] where t i−1 < t∗ < t i . This op-
eration affects the right hand side of (2) by replacing φεi

([ηγ(t i−1)] ∗ [γ|[t i−1,t i]] ∗ [η̄γ(t i)]) with

(3) φεi
([ηγ(t i−1)] ∗ [γ|[t i−1,t∗]] ∗ [η̄γ(t∗)]) ∗φεi

([ηγ(t∗)] ∗ [γ|[t∗,t i]] ∗ [η̄γ(t i)])

(Note that since we have already addressed (b) we can certainly use the same εi for both fac-
tors.) But since φεi

is a homomorphism and since in ΠX (γ(t i−1),γ(t i)) we have an identity

[γ|[t i−1,t i]] = [γ|[t i−1,t∗]] ∗ [η̄γ(t∗)] ∗ [ηγ(t∗)] ∗ [γ|[t∗,t i]]

it follows that (3) is equal to φεi
([ηγ(t i−1)] ∗ [γ|[t i−1,t i]] ∗ [η̄γ(t i)]). Thus splitting [t i−1, t i] into

[t i−1, t∗], [t∗, t i] does not affect the right hand side of (2).
Thus at this point (2) gives a formula for φ([γ]) which does not depend on the particular

(allowable) choices of t i and εi , but still might depend on the particular path γ within its ho-
motopy class. We will now show that, on the contrary, φ is unchanged under based homotopies
of γ.

Accordingly let Γ : [0, 1]× [0,1]→ X be a continuous map such that Γ (s, 0) = Γ (s, 1) = x0
for all s, and write γ0(t) = Γ (0, t) and γ1(t) = Γ (1, t). We must show that the right-hand side
of (2) defined using γ0 is the same as the one defined using γ1.

Just as with the reasoning that led to (2), since [0,1] × [0,1] is compact and is covered
by the open sets Γ−1(U0),Γ−1(U1), we may cover [0, 1] × [0, 1] by rectangles [a, b] × [c, d]
each of which is mapped by Γ either to U0 or to U1. After subdividing these rectangles we may
assume that they are of the form [t i−1, t i]× [u j−1, u j] where 0 = t0 < t1 < · · · < tm = 1 and
0= u0 < u1 < · · ·< un = 1, and we choose εi j ∈ {0, 1} with Γ ([t i−1, t i]× [u j−1, u j]) ⊂ Uεi j

.
We have thus divided the square [0,1] × [0, 1] into a rectangular grid. Let us encode the

various ways of traveling from (0,0) to (1,1) northward and eastward along the edges of the
grid by a tuple ~v ∈ {0, 1}m+n consisting of m zeros and n ones: starting at (0, 0), one successively
reads through the entries of ~v and moves along an edge [t i−1, t i]×{u} when the entry of ~v is 0
and along an edge {t}×[u j−1, u j]when the entry of ~v is 1. For any such ~v, and for k ∈ {1, . . . , m},
let ek(~v) be the kth edge of ~v as just described, which will have the form [t ik(~v)−1, t ik(~v)]×{u jk(~v)}
(if vk = 0 or {t ik(~v)} × [u jk(~v)−1, u jk(~v)] (if vk = 1) for appropriate integers ik(v), jk(v). Also let
pk(~v), qk(~v) be the initial and terminal points, respectively, of ek(~v).

Let γk,~v be the restriction of Γ to the edge ek(~v), linearly reparametrized to have domain
[0, 1]. Thus in the notation just defined γk,~v ∈ PX (γ(pk(~v)),γ(qk(~v))), and the image of γk,~v is
contained in Uεik (~v) jk (~v)

.
Now define an element α(~v) of G by

α(~v) =
m+n
∏

k=1

φεik (~v) jk (~v)

�

[ηpk(~v)] ∗ [γk,~v] ∗ [η̄qk(~v)]
�

Note incidentally that, just as earlier, if k and ~v are such that γk,~v has image both in U0 and
in U1, the fact that φ0 ◦ j0∗ = φ1 ◦ j1∗ implies that the kth term in the product defining αk(~v) is
independent of whether εik(~v) jk(~v) is 0 or 1.

Observe that if ~v = (0, . . . , 0, 1, . . . , 1) (m zeros followed by n ones) then the first m terms in
the product defining αk(~v) are each the identity (since for k ≤ m ek(~v) is part of the lower edge
[0, 1]×{0} which is mapped by Γ to x0), while in each of the last n terms of the product γk,~v is
the segment γ1|[uk−m−1,uk−m]. Thus for this choice of ~v, α(~v) is equal to the γ1-version of (2) (for
the particular subdivision given by the u j , but we showed earlier that (2) does not depend on
the choice of a subdivision).
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Similarly if ~v = (1, . . . , 1, 0, . . . , 0) (so the path associated to ~v travels first along {0} × [0,1]
and then along [0, 1]× {1}), the first n terms in the product defining αk(~v) reproduce the γ0-
version of (2) and the last m terms are the identity.

Thus to prove that (2) returns the same element of G regardless of the choice of loop within
a homotopy class, it suffices to show that α(0, . . . , 0, 1, . . . , 1) = α(1, . . . , 1, 0, . . . , 0). To see this,
for any ~v ∈ {0,1}m+n with m entries equal to 0 and n entries equal to 1, consider the effect
on αk(~v) of swapping two adjacent entries in ~v—for convenience suppose vk−1 = 0 and vk = 1
and define ~w ∈ {0,1}m+n by wk−1 = 1, wk = 0, and wl = vl for all other l. All of the factors
in α(~v) and α( ~w) except the (k − 1)th and kth are then identical. Meanwhile if we combine
the (k − 1)th and kth factors (using that φεik−1(~v) jk−1(v)

is a homomorphism and that the images
of all relevant segments are contained in Uεik−1(~v) jk−1(v)

) we see that the results for ~v and ~w are,
respectively, images under φεik−1(~v) jk−1(v)

of loops that are based homotopic to each other within
Uεik−1(~v) jk−1(v)

(essentially the homotopy is formed by deforming a path consisting of the bottom
and right edges of a rectangle to the path consisting of the left and top edges, and then applying
Γ ). Thus since φεik−1(~v) jk−1(v)

was assumed to be defined on π1 (not just on the space of loops), it
follows that the product of the (k − 1)th and kth terms in α(~v) and α( ~w) will be equal. Hence
if ~w is formed from ~v by swapping an adjacent 0 and 1 then α(~v) = α( ~w).

Of course, (1, . . . , 1, 0, . . . , 0)may be obtained from (0, . . . , 0, 1, . . . , 1) by repeatedly swapping
adjacent 0’s and 1’s. So iteratively applying the previous paragraph shows thatα(0, . . . , 0, 1, . . . , 1) =
α(1, . . . , 1, 0, . . . , 0). So by our earlier remarks we have finally shown that the γ0 and γ1 ver-
sions of (2) are equal whenever γ0 and γ1 represent the same class in π1(X , x0). Thus we have
a well-defined function φ : π1(X , x0)→ G.

Given that φ is well-defined it is almost immediate that it satisfies the required properties.
If γ ∈ PUk

(x0, x0) for k ∈ {0, 1} then in computing φ([ik ◦ γ]) via (2) we are free to set εi =
k for each i, and then the fact that φk : π1(U , x0) → G is a homomorphism quickly shows
that φ([ik ◦ γ]) = φk([γ]). Thus φ ◦ ik∗ = φk for k ∈ {0, 1}. Also φ is easily seen to be a
homomorphism: the outcome of applying φ in (2) to the concatenation of two loops is, after
obvious adjustments for parametrization, the product in G of φ applied to the first with φ
applied to the second. So since we long ago established that φ was the only possible map
π1(X , x0) that could satisfy these properties (as long as it was well-defined) this establishes the
required universal property and so completes the proof.

�

Example 5.8. For n≥ 2 let X = Sn, U0 = {~x ∈ Sn|xn+1 < 1/2}, and U1 = {~x ∈ Sn|xn+1 > −1/2}.
As one sees from sterographic projection, U0 and U1 are both contractible, and in particular have
π1 = 1. So by Example 5.4 and Theorem 5.7 we recover the fact that π1(Sn, (0, . . . , 1)) = 1.
Note here that the assumption that n ≥ 2 was necessary to imply that U0 ∩ U1 is path connected;
in particular the same example with n = 1 illustrates that the path-connectedness assumption on
U0 ∩U1 in Theorem 5.7 is necessary—otherwise we would incorrectly conclude that π1(S1, 0) = 1.

Before our next example we give a general definition. Recall first that a pointed topological
space is simply a pair (X , x0) where X is a topological space and x0 ∈ X .

Definition 5.9. Let (Y, y0) and (Z , z0) be two pointed topological spaces. The wedge sum of Y
and Z is the pointed topological space (Y ∨ Z , x0) where

Y ∨ Z =
Y
∐

Z

y0 ∼ z0

and x0 is the image of y0 (or, equivalently, of z0) under the quotient projection Y
∐

Z → Y ∨ Z .
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Example 5.10. Let (Y, y0), (Z , z0) be two copies of the pointed topological space (S1, 0), yielding
a new topological space S1 ∨ S1 with basepoint which we will still denote 0. You should be able to
convince yourself that S1∨S1 is homeomorphic to the symbol ‘8’, and also that S1∨S1 is homotopy
equivalent to C\{0,1}, so that computing the fundamental group of S1∨S1 will achieve our earlier
goal of computing the fundamental group of C\{0, 1}. Naively I would like to apply van Kampen’s
theorem with U0 = Y and U1 = Z (identifying Y and Z with their images under the quotient map
Y
∐

Z → Y ∨ Z = S1 ∨S1), but this does not quite work because Y and Z are not open in S1 ∨S1.
But we can easily fix this: let V0 ⊂ Y , V1 ⊂ Z be small open neighborhoods of y0 and z0 respectively
which are each homeomorphic to open intervals, and use U0 = Y ∨V1 and U1 = V0∨ Z. So U0 and
U1 are each homeomorphic to the symbol ‘α’ and hence are homotopy equivalent to S1 and so have
fundamental group Z. Meanwhile U0∩U1 is homeomorphic to the symbol ‘x ’ and so is contractible.
Thus van Kampen’s theorem gives a pushout square

(4) 1 //

��

Z

i0∗
��

Z
i1∗ // π1(S1 ∨ S1, 0)

(Of course the upper and left maps send the unique element of the trivial group 1 to the identity 0
in Z.)

According to Proposition 5.6, the pushout square (4) completely determines π1(S1∨S1, 0) up
to group isomorphism, so in some sense we can say that we have computed π1(S1 ∨ S1, 0). All
the same it may not quite feel like we have really done so—you are probably more accustomed
to defining a group by saying what its elements are and how the binary operation is defined
rather than by saying that it behaves in a particular way with respect to certain commutative
diagrams. I will eventually more explicitly exhibit a group that fits into a pushout square like
that in (4), and hence is isomorphic to π1(S1 ∨ S1, 0) by Proposition 5.6, but first let us see
how one can get concrete information out of the universal property satisfied by π1(S1 ∨ S1, 0)
without identifying another group to which it is isomorphic.

Proposition 5.11. There are elements a, b ∈ π1(S1 ∨ S1, 0) which both have infinite order such
that ab 6= ba (and, more generally, whenever either m, n ∈ Z are both nonzero or k, l ∈ Z are both
nonzero, am bn 6= bkal). Consequently C \ {0, 1} is not homeomorphic to C \ {0}.

Proof. Where GL(2,R) is the group of invertible 2 × 2 real matrices, define homomorphisms
φ0,φ1 : Z→ GL(2,R) by

φ0(m) =
�

1 m
0 1

�

φ1(n) =
�

1 0
n 1

�

(It is easy to check that these are indeed homomorphisms.) Where i0∗, i1∗ are as in (4), let
a = i0∗(1) and b = i1∗(1). So since i0∗ and i1∗ are homomorphisms, we have am = i0∗(m) and
bn = i1∗(n) for all m, n ∈ Z.

Now the universal property of pushouts that is satisfied by π1(S1 ∨ S1, x0) yields a homo-
morphism φ : π1(S1 ∨ S1, 0) → GL(2,R) such that φ ◦ i0∗ = φ0 and φ ◦ i1∗ = φ1. (Since the
group in the upper left of the pushout square is in this case trivial the commutativity condition
is satisfied vacuously.)

We then have, for m, n ∈ Z,

φ(am) = φ0(m) =
�

1 m
0 1

�

φ(bn) = φ1(n) =
�

1 0
n 1

�
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So since φ is a homomorphism,

φ(am bn) =
�

1 m
0 1

��

1 0
n 1

�

=
�

1+mn m
n 1

�

while

φ(bkal) =
�

1 0
k 1

��

1 l
0 1

�

=
�

1 l
k 1+ kl

�

So if am bn = bkal we would have φ(am bn) = φ(bkal) and hence in particular mn = 0 and
kl = 0 (by considering upper left and lower right entries). Thus indeed am bn 6= bkal whenever
either m and n are both nonzero or k and l are both nonzero.

It remains to prove the last sentence. We have shown that π1(S1 ∨ S1, 0) is nonabelian, so
it is certainly not isomorphic to the cyclic group π1(S1, 0). Thus S1 ∨ S1 and S1 are not based
homotopy equivalent. But C \ {0, 1} is based homotopy equivalent to S1 ∨ S1 while C \ {0} is
based homotopy equivalent to S1, so ifC\{0,1}were homeomorphic toC\{0}we would obtain
a based homotopy equivalence between S1 ∨ S1 and S1.

�

5.1. Free groups and free products. We now develop some of the theory of the sorts of groups
that arise from the pushout squares appearing in van Kampen’s theorem.

Definition 5.12. Let {Gα}α∈A be any collection of groups. A free product of {Gα}α∈A is a group
∗αGα together with homomorphisms iβ : Gβ → ∗αGα for each β ∈ A, obeying the following
universal property: for any other group G together with homomorphisms φβ : Gβ → G for all
β , there is a unique homomorphism φ : ∗α Gα→ G such that φ ◦ iβ = φβ for all β . In the case
that {Gα}α∈A is a finite collection {G1, . . . , Gm} we will often write G1 ∗ · · · ∗Gm instead of ∗αGα.

An easy modification of the proof of Theorem 5.6 shows that ∗αGα is unique up to isomor-
phism (if this isn’t clear to you then you should think about the proof of Theorem 5.6 until it
is. Note though that we haven’t yet shown that ∗αGα exists.). Similarly to Example 5.10 one
sees from van Kampen’s theorem that, under suitable hypotheses on Y and Z , the wedge sum
(Y ∨ Z , x0) obeys

π1(Y ∧ Z , x0)∼= π1(Y, y0) ∗π1(Z , z0)
(for these “suitable hypotheses” one could use the assumption that there are open neighbor-
hoods U of y0 in Y and V of z0 in Z such that the inclusions {y0} → U and {z0} → V are based
homotopy equivalences—just as in Example 5.10 the need for such an assumption arises from
the fact that van Kampen’s theorem does not directly apply to the cover Y ∨ Z = Y ∪ Z since
Y and Z are not open in Y ∨ Z). Thus for instance S1 ∨ S1 has fundamental group Z ∗ Z, and
S1∨RP2 has fundamental group Z∗Z2. By induction we likewise have π1((S1)∨n, x0)∼= Z∗n for
all n ∈ N (here of course (S1)∨n means the wedge sum of n copies of S1—perhaps most easily
visualized as a “flower with n petals”—and Z∗n means the free product of n copies of Z. The
version of van Kampen’s theorem in [H] allows one to generalize this to infinite wedge sums
and free products.

Definition 5.13. If S is a set, a free group on S is a group F(S) together with a function ι : S →
F(S) obeying the following universal property: if G is any group and f : S→ G is any function
then there is a unique homomorphism h: F(S)→ G such that h ◦ ι = f .

Again a straightforward modification of the proof of Theorem 5.6 shows that F(S) is uniquely
characterized up to isomorphism by this universal property.

Proposition 5.14. If S is any set, let {Gα|α ∈ S} be a family of groups parametrized by S, each of
which is isomorphic to Z. Then ∗α∈SGα is a free group on S.
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Proof. For each β ∈ S and let eβ denote a generator of Gβ (which we have assumed to be
isomorphic to Z). As part of the definition of ∗αGα, we have homomorphisms iβ : Gβ → ∗αGα;
write 1β = iβ(eβ).

Define ι : S→ ∗αGα by ι(β) = 1β
If f : S → G is any function where G is another group, for each β there is a unique homo-

morphism φβ : Gβ → G obeying φβ(eβ) = f (β). (Namely, each element of Gβ is given by en
β

for
some n ∈ Z, and so the unique such φ is defined by φβ(en

β
) = f (β)n.) The universal property

obeyed by ∗αGα then gives a unique homomorphism φ : ∗α Gα→ G obeying φ ◦ iβ = φβ for all
β . So for β ∈ S we have

(φ ◦ ι)(β) = φ(1β) = φ(iβ(eβ)) = φβ(eβ) = f (β)

and so φ ◦ ι = f . This proves the existence part of the universal property for F(S); for the
uniqueness part just observe that any homomorphism φ′ : ∗α Gα→ G obeying φ′ ◦ ι = f would
need to obey φ′(iβ(eβ)) = φβ(eβ), and so since eβ generates Gβ would obey φ′ ◦ iβ = φβ for
each β , so by the uniqueness part of the universal property for ∗αGα would be equal to φ. �

In particular it follows that π1((S1)∨n, 0) is a free group F({1, . . . , n}) on {1, . . . , n}. Note that
we have not yet given any group-theoretic argument for why F({1, . . . , n}) should even exist,
but what we have done consitutes a topological proof of the existence of F({1, . . . , n}): there is
indeed a well-defined group π1((S1)∨n, 0), and it satisfies the universal property characterizing
any free group F({1, . . . , n}).

You should be able to convince yourself that C \ {1, . . . , n} is based homotopy equivalent to
(S1)∨n, so the following shows that all of the spaces C \ {1, . . . , n} are mutually nonhomeomor-
phic as n varies through N.

Exercise 5.15. If G is a group let [G, G] denote the subgroup of G generated by all elements of
form aba−1 b−1 where a, b ∈ G.

(a) Prove that [G, G] is a normal subgroup of G, and that the quotient G
[G,G]

is an abelian

group which, together with the quotient map π : G → G
[G,G]

, satisfies the following universal
property: If H is any abelian group and if φ0 : G→ H is a homomorphism then there is a unique
homomorphism φ : G

[G,G]
→ H such that φ ◦π= φ0. ( G

[G,G]
is called the abelianization of G)

(b) Prove that if m 6= n, the free groups F({1, . . . , m}) and F({1, . . . , n}) are not isomorphic.
(Perhaps the easiest way to do this is by considering their abelianizations.)
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