Lefschetz Fibrations and nodal pseudoholomorphic curves

Michael Usher
November 29, 2004

Let (X, ω) be a symplectic 4-manifold, and j an ω-tame almost complex structure on X $\left(j^{2}=-1, \omega(\cdot, J \cdot)>0\right)$.
Definition 1. $u: \Sigma_{g} \rightarrow X$ is a j-holomorphic map if $\bar{\partial}_{j} u:=u_{*} \circ i-j \circ u_{*}=0 . C=\operatorname{Im} u$ is then a j-holomorphic curve of genus g.

Facts: 1) For $\alpha \in H^{2}(X ; \mathbb{Z})$ the expected complex dimension of the space $\mathcal{M}_{g}^{j}(\alpha)$ of unparametrized j-holomorphic curves $C=\operatorname{Im} u$ of genus g with $\operatorname{PD}\left(u_{*}\left[\Sigma_{g}\right]\right)=\alpha$ is

$$
d(g, \alpha)=g-1-\kappa_{X} \cdot \alpha
$$

$\left(\kappa_{X}=c_{1}\left(T^{*} X\right)\right)$.
2) For generic $j, \mathcal{M}_{g}^{j}(\alpha)$ is a smooth manifold of the expected dimension near each $C=\operatorname{Im} u$ for which u is somewhere (hence generically) injective.
3) (Gromov compactness) If $j_{n} \rightarrow j$, any sequence $C_{n} \in \mathcal{M}_{g}^{j_{n}}(\alpha)$ has a subsequence which either bubbles off a sphere or converges to some $C \in \mathcal{M}_{g}^{j}(\alpha)$.

If $\mathcal{M}_{g}^{j}(\alpha)$ were generically a compact manifold of (real) dimension $2 d(g, \alpha)$, and if for generic paths $j_{t}\left\{(t, C) \mid C \in \mathcal{M}_{g}^{j_{t}}(\alpha)\right\}$ were a compact manifold of dimension $2 d(g, \alpha)+1$, we could define invariants by picking a generic set Ω of $d(g, \alpha)$ points (to reduce the dimension of the moduli space to zero) and counting those $C \in \mathcal{M}_{g}^{j}(\alpha)$ which pass through Ω with appropriate signs. $\mathcal{M}_{g}^{j}(\alpha)$ isn't a compact manifold, due to:

- bubbling, but in dimension 4 the dimensions of the moduli spaces are such that this doesn't create problems; and
- the fact that a sequence of generically injective maps might converge to a multiple cover.

Ruan-Tian: Define $R T_{g}(\alpha)$ by counting solutions to $\bar{\partial}_{j} u(x)=\nu(x, u(x))$ for a generic "inhomogeneous term" ν. Owing to the multiple cover issue and the way ν is defined, the Ruan-Tian invariants take values in \mathbb{Q}.

If we restrict to embedded curves, so that g is given by the adjunction formula

$$
2 g_{\alpha}-2=\alpha^{2}+\kappa_{X} \cdot \alpha
$$

the dimensions $d\left(g_{\alpha}, \alpha\right)$ are such that the only possible noncompactness issue arises from embedded square-zero tori converging to multiple covers of other square-zero tori.
Taubes found a way of assigning integer weights with which multiple covers of square-zero tori should contribute to an invariant $G r(\alpha)$ which enumerates non-self-intersecting j-holomorphic curves (possibly disconnected with some of its square-zero toroidal components having multiplicity >1) passing through $\frac{1}{2}\left(\alpha^{2}-\kappa_{X} \cdot \alpha\right)$ points. $G r(\alpha)$ is integer-valued and independent of the almost complex structure j used to define it; it also agrees with the Seiberg-Witten invariant for a corresponding spin^{c} structure.

Theorem 1. (Ionel-Parker) There is a universal formula for $\operatorname{Gr}(\alpha)$ in terms of the invariants $R T_{g}(\beta)$.
Question 1. Given $n>0$, is there a similar integer-valued invariant " $\operatorname{Gr}_{n}(\alpha)$ " counting possibly-reducible curves $P D$ to α having n self-intersections, passing through $\frac{1}{2}\left(\alpha^{2}-\kappa_{X} \cdot \alpha\right)-n$ points?

Definition 2. A Lefschetz pencil on X^{4} is a map $f: X \backslash\left\{b_{1}, \ldots, b_{N}\right\} \rightarrow S^{2}$ such that
(i) Near each of the base points b_{i}, f is modelled in orientation-preserving complex coordinates by $f(z, w)=\frac{z}{w}$, and
(ii) f has just finitely many critical points, near each of which it is modelled by $f(z, w)=z w$.

Letting $X^{\prime} \rightarrow X$ be the blowup of X along the finite base locus $B=\left\{b_{1}, \ldots, b_{N}\right\}, f$ lifts to a Lefschetz fibration $f: X^{\prime} \rightarrow S^{2}$, with the exceptional divisors of the blowup appearing as sections.

Theorem 2. (Donaldson) Any symplectic manifold (X, ω) admits Lefschetz pencils, the closures of whose smooth fibers are symplectic submanifolds of X of arbitrarily large symplectic area.

Given a Lefschetz fibration $f: X \rightarrow S^{2}$, we can find almost complex structures j with respect to which f is a pseudoholomorphic map; a curve C contributing to $G r(\alpha)$ will then intersect each fiber $r=\langle\alpha$, $[$ fiber $]\rangle$ times, counted with (positive) multiplicities:

$$
C \cap f^{-1}(t) \in \operatorname{Sym}^{r} f^{-1}(t) \forall t
$$

Donaldson-Smith: Form a "relative Hilbert scheme" $F: X_{r}(f) \rightarrow S^{2}$ such that $F^{-1}(t)=S y m^{r} f^{-1}(t)$ when t is a regular value of f. A curve C contributing to $G r(\alpha)$ would then correspond to a section s_{C} of $X_{r}(f)$. Conversely, a section s gives rise to a surface $C_{s} \subset X$.
As long as f has no fibers with more than one critical point, $X_{r}(f)$ is a smooth manifold which admits a symplectic structure, and so we can define an invariant $D S_{f}(\alpha)$ as a count of J-holomorphic sections s of $X_{r}(f)$ such that $\left[C_{s}\right]=P D(\alpha)$, for J a generic almost complex structure on $X_{r}(f)$.

Theorem 3. (U.) Provided that the Lefschetz fibration $f: X \rightarrow S^{2}$ has fibers of large enough symplectic area,

$$
D S_{f}(\alpha)=G r(\alpha)
$$

Consequences: 1) $D S_{f}$ is independent of f provided that f has large enough fibers.
2) (Using results of Donaldson and Smith about $D S)$ If $b^{+}(X)>b_{1}(X)+1$ then $G r\left(\kappa_{X}\right)= \pm 1$ and $\operatorname{Gr}(\alpha)= \pm G r\left(\kappa_{X}-\alpha\right)$. This was previously known, but only as a consequence of Taubes-Seiberg-Witten theory.

Idea of proof: If j is such that $f: X \rightarrow S^{2}$ is pseudoholomorphic, there is an almost complex structure J_{j} on $X_{r}(f)$ such that
$C \subset X$ is a j-holomorphic curve $\Leftrightarrow \bar{\partial}_{J_{j}} s_{C}=0$.

However J_{j} is only Hölder-continuous near sections $s_{\text {mult }}$ corresponding to curves $C_{\text {mult }}$ having multiply-covered torus components; J_{j} therefore can't be used directly to evaluate $D S$. We perturb J_{j} to a nearby generic smooth J (which can be used to evaluate $D S$); owing to Gromov compactness and the dimension formula there will be finitely many J-holomorphic sections close to $s_{\text {mult }}$. One then shows the weight with which $C_{\text {mult }}$ contributes to the Gromov invariant in Taubes' definition agrees with the signed count of the J-holomorphic sections near $s_{\text {mult }}$.

Note that as far as $D S$ is concerned the individual sections near $s_{\text {mult }}$ aren't distinguished in any way from other J-holomorphic sections; in this way, $D S$ gives a way of counting holomorphic-curve-like objects without needing to treat multiple covers differently, much like the Ruan-Tian approach of counting solutions to an inhomogeneous PDE. But unlike the Ruan-Tian invariants, $D S$ is manifestly integer-valued.

Counting nodal curves

Suppose $C \subset X$ is a j-holomorphic curve PD to α with a single transverse self-intersection, say at q. Consider

$$
X_{1}=B l_{\Delta}(X \times X)
$$

this fibers over X with fiber over p equal to the blowup $B l_{p}(X)$ of X at p.
Proposition 1. For each p, there is a unique Lipschitz almost complex structure j_{p} on $B l_{p}(X) \rightarrow X$ such that the blowdown $\pi_{p}: B l_{p}(X)$ is $\left(j_{p}, j\right)$-holomorphic.

The proper transform of C under π_{p} will then be an embedded j_{p}-holomorphic curve in class $\pi_{p}^{*} \alpha-2 e$ exactly when $p=q$.
Iterating this construction, we get families $X_{n} \rightarrow X_{n-1}$ whose fiber X^{b} over $b \in X_{n-1}$ is X blown up n times, with b parametrizing the sites of the blowups.

This suggests that instead of looking for n-nodal curves representing $P D(\alpha) \in H^{2}(X ; \mathbb{Z})$, we could look for embedded curves representing Poincaré dual to

$$
\pi_{b}^{*} \alpha-2 \sum_{i=1}^{n} e_{i} \in H^{2}\left(X^{b} ; \mathbb{Z}\right)
$$

as b ranges over X_{n-1}. If we try to do this directly, though, we run into problems with both multiple covers and bubbling.
Let $f: X \rightarrow S^{2}$ be a Lefschetz fibration. For $p \in X, f \circ \pi_{p}$ is then also a Lefschetz fibration as long as p isn't a critical point of f. Iterating, where $X_{n-1}^{\prime} \subset X_{n-1}$ is the complement of a codimension-four set, for $b \in X_{n-1}^{\prime}$

$$
f^{b}=f \circ \pi_{b}: X^{b} \rightarrow S^{2}
$$

is a Lefschetz fibration, and so we can form the relative Hilbert scheme $X_{r}^{b}\left(f^{b}\right)$.

Write

$$
\mathcal{X}_{r}^{n}(f)=\left\{(b, D) \mid D \in X_{r}^{b}\left(f^{b}\right)\right\} .
$$

Proposition 2. $\mathcal{X}_{r}^{n}(f)$ is a smooth manifold and admits symplectic structures.

Theorem 4. For generic J within an appropriate class of complex structures on $\mathcal{X}_{r}^{n}(f)$, the space of J-holomorphic sections of $X_{r}^{b}\left(f^{b}\right)$ corresponding to surfaces in $X^{b} P D$ to $\pi_{b}^{*} \alpha-2 \sum_{i=1}^{n} e_{i}$ as b ranges over X_{n}^{\prime} is compact.

This allows us to define an integer-valued invariant $F D S_{f}^{n}(\alpha)$ counting such sections.

Define the class α to be simple if whenever $\alpha=\alpha_{1}+\cdots+\alpha_{k}$ and each α_{i} is PD to a symplectic immersion, α_{i} is primitive in $H^{2}(X ; \mathbb{Z})$. In such a case, there are no concerns with multiple covers and one may easily define an invariant $G r_{n}(\alpha)$ counting possible reducible curves $P D$ to α with n self-intersections.

Theorem 5. If α is simple then
$F D S_{f}^{n}(\alpha)=G r_{n}(\alpha)$ provided that the fibers of f have large enough symplectic area.
Conjecture 1. $F D S_{f}^{n}$ is independent of f and has a universal expression in terms of the Ruan-Tian invariants of X.
Theorem 6. If $b^{+}(X)>b_{1}(X)+1+4 n$ then either $F D S_{f}^{n}(\alpha)=0$ or there exists an almost complex structure j on X admitting (possibly reducible, non-reduced) j-holomorphic curves Poincaré dual to α and to $\kappa_{X}-\alpha$.

For α such that $F D S_{f}^{n}(\alpha)$ does not immediately vanish for dimensional reasons, one can show that the second alternative in Theorem 6 can't hold for generic j, but it can't be ruled out for all j.

