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Abstract. This survey of the main results of [13] and [14] discusses how,
using constructions of S. Donaldson and I. Smith [3], one can exploit the
existence of Lefschetz fibrations on symplectic 4-manifolds to deduce
facts about the Gromov–Taubes invariants of such manifolds.

1 Gromov–Witten and Gromov–Taubes invariants

Let (X,ω) be a symplectic 4-manifold, α ∈ H2(X,Z), and A = PD(α). For
some time, it has been realized that counting pseudoholomorphic curves represent-
ing the class A should give rise to interesting symplectic invariants of (X,ω). When
one sets about carefully defining such invariants, though, one inevitably runs into
certain technical difficulties, the most serious of which arises from the fact that the
moduli space of pseudoholomorphic curves in class A can have an undesirably-large
boundary component consisting of multiple covers.

If one attempts to restrict to embedded curves representing A, all such curves
will (by the adjunction formula) have genus g(α) = 1 + 1

2 (α2 + κX · α), and the

expected complex dimension of the space of such curves is d(α) = 1
2 (α2 − κX · α).

(Here κX denotes the canonical class of (X,ω), i.e., the first Chern class of T ∗X
considered as a complex vector bundle using any almost complex structure j on
X tamed by ω.) From these formulas, one can verify that, for generic j, the only
source of noncompactness of the moduli spaces arises from the fact that, for some
T ∈ H2(X,Z) and m > 1, a sequence of embedded square-zero tori representing a
class mT might converge to a double cover of a torus in class T . One would like to
define the invariant by choosing some generic ω-tame almost complex structure j
and counting embedded j-holomorphic curves with sign, but the scenario described
above and pictured in Figure 1 (which depicts a possible parametrized moduli space
of embedded curves in classes T and 2T for a family of almost complex structures
varying from j0 to j1) shows that this cannot be expected to work: one cannot
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assign weights ±1 to all the curves representing 2T in Figure 1 in a way that yields
the same result for j0 as for j1.

Two approaches which emerged in the mid-1990s to surmounting this issue are
the following:

Approach 1.1 (Ruan-Tian [7]) Define the Gromov–Witten invariant

Ψα,g(α),d(α)([Mg(α),d(α)]; pt, . . . , pt)

to be the number of maps u, counted with sign, from curves Σ of genus g(α) to
X which satisfy u∗[Σ] = A, Ω ⊂ Im(u), and (∂̄j u)(x) = ν(x, u(x)), where Ω is a
generic set of d(α) points, j is a generic ω-tame almost complex structure on X,
and ν is a generic inhomogeneous term (see [7] for the precise definition).

Approach 1.2 (Taubes [12]) For C a pseudoholomorphic square-zero torus,
find general weights r(C,m), depending only on the spectral flows of the operators
Dι obtained by twisting the linearization of the ∂̄ operator at C by the four real
line bundles over C, with the property that if m-fold covers of C are counted as
contributing to the invariant for the class m[C] with multiplicity r(C,m), the total
count does not change under the wall crossing scenario pictured in Figure 1. Count
pseudoholomorphic curves which are not square-zero tori with signs according to
the usual prescription. Define the Gromov invariant Gr(α) by, for generic j and
Ω, counting each j-holomorphic curve (connected or not) with total homology class
A which passes through Ω with a weight equal to the product of the weights of its
components.

Formulas for the r(C,m) are given on p. 832 of [12]; they are determined
uniquely by the requirements that the quantity Gr(α) defined using them be inde-
pendent of the choice of almost complex structure and that, if j is integrable on a
neighborhood of C and the four operators Dι are all surjective, then r(C,m) = 1
for every m.

Note that, in Approach 1.1, the multiple-cover problem is eliminated by the
fact that, if the inhomogeneous term ν depends nontrivially on x, then multi-
ple covers of the “(j, ν)-holomorphic curves” being counted will not themselves be
(j, ν)-holomorphic curves. From the standpoint of producing invariants, the Ruan–
Tian approach is the more powerful one, since it extends without difficulty to give
invariants which count curves of arbitrary genus in any symplectic manifold which
satisfies a semipositivity condition which prevents bubble trees containing multi-
ply covered spheres of negative Chern number from contributing large boundary
components to the moduli spaces (semipositive manifolds include all symplectic
4-manifolds, as well as Calabi–Yau manifolds and many others in arbitrary dimen-
sion). Meanwhile, the methods involved in the definition of the Gromov–Taubes
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invariant seem to be uniquely adapted to counting curves in 4-manifolds with genus
given by the adjunction formula (indeed, E. Ionel’s lecture at this conference ad-
dressed some of the very considerable difficulties involved in trying to construct an
analogue of the Gromov–Taubes invariant for Calabi–Yau 3-folds).

On the other hand, in certain ways the Gromov–Taubes invariant seems more
natural, since the objects it counts are genuine pseudoholomorphic curves, rather
than maps which satisfy a perturbed Cauchy–Riemann equation. Taubes was
led to his invariant while studying the Seiberg–Witten equations on symplectic
4-manifolds; he discovered that when the perturbation term in those equations is
sent to infinity in a certain direction, the vanishing loci of the sections of a line bun-
dle which occur as one of the components of solutions to the equations converge in
the sense of currents to a pseudoholomorphic curve. These vanishing loci of course
are only sets and in particular do not come equipped with maps into the manifold,
so an invariant counting pseudoholomorphic sets (as Gr does), rather than (ap-
proximately) pseudoholomorphic maps (as does the invariant of Ruan-Tian) was
better-suited to Taubes’ work.

Notwithstanding the above distinctions, it should be mentioned that a theorem
of E. Ionel and T. Parker [4] shows that Gr may be expressed as a (somewhat
complicated) combination of the Ruan-Tian invariants, reflecting the fact that, in
spirit, these invariants are counting the same things.

From early on in Gromov–Witten theory it has been understood that, in order
to get the appropriate invariants, certain perturbations would have to be made:
for instance, when the manifold is Kähler and so has a natural integrable complex
structure, in formulating the definition of Gromov–Witten invariants it is useful to
perturb that complex structure to a nearby nonintegrable almost complex struc-
ture (as was noted as early as [15, p. 134], for instance). One reason that the
Ruan–Tian count of pseudoholomorphic maps is comparatively easy to define is
that one may perturb the notion of what it means to be a pseudoholomorphic map
in such a way that multiple covers of perturbed-pseudoholomorphic maps are no
longer perturbed-pseudoholomorphic. Meanwhile, there does not seem to be an
obvious way of perturbing what it means for a set to be pseudoholomorphic in
such a way that multiple covers of perturbed-pseudoholomorphic sets are no longer
perturbed-pseudoholomorphic. Hence, if one wants to define invariants counting
pseudoholomorphic sets, one will be obliged to explicitly include the effects of mul-
tiple covers, which Taubes discovered in [12] to be a rather complicated affair for
embedded curves in dimension four, and which at this writing has not even been
shown to be possible in the symplectic category in other contexts.

The present article surveys work relating to a construction of Donaldson and
Smith which, in dimension four, uses a Lefschetz fibration structure on a blowup of
X to effectively provide a perturbation of what it means to be a pseudoholomor-
phic set in a way that breaks the multiple cover symmetry. This enables one to
define Gromov-type invariants more easily, although such invariants might a priori
depend on the choice of Lefschetz fibration. A result of the author discussed below
shows that they do not; more specifically, they agree with the Gromov–Taubes in-
variant. Along with results of [3] and [10], this yields new proofs of various results
concerning pseudoholomorphic curves in symplectic 4-manifolds which had previ-
ously only been known as consequences of Seiberg–Witten theory and of Taubes’
famous theorem [11] relating the Seiberg–Witten and Gromov invariants. More-
over, the Donaldson–Smith invariant may be refined to invariants which at least
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in simple cases agree with an invariant counting nodal curves in the 4-manifold,
and the methods of [3] may be extended to prove vanishing results for these new
invariants.

2 Symplectic Lefschetz fibrations and the standard surface count

Let us assume that [ω] ∈ H2(X,Z); note that by slightly perturbing ω to make
it rational and then scaling, we can always deform ω through symplectic forms to
arrange that this be the case, and that doing so will not alter the Gromov invariants
since these are unchanged under symplectic deformation. According to [2], then,
some blowup X ′ of (X,ω) admits the structure of a symplectic Lefschetz fibration,
i.e., a map f : X ′ → S2 whose generic fiber is a smooth symplectic 2-submanifold
and which is modelled near each of its finitely many critical points by the function
(z, w) 7→ zw in complex coordinates compatible with the orientations of X and S2.
To briefly recall how such a structure is obtained,1 note first that the integrality
of ω allows us to find a complex line bundle L → X admitting a connection with
curvature −2πiω; this should be viewed as analagous to a positive line bundle in
Kähler geometry. A reference almost complex structure on X then gives rise to
a Dolbeault operator ∂̄ on sections of L. In Kähler geometry, high tensor powers
of a positive line bundle become very ample and thus admit many holomorphic
sections. In the almost Kähler setting we cannot hope for this, but results of [1]
show that, for large k, L⊗k will admit many sections s satisfying an “approximate
holomorphicity” condition that may loosely be summed up as | ∂̄ s| � |∂s|. Taking
two of these sections s0 and s1 then gives rise to a map

f : X \B → CP 1

x 7→ [s0(x) : s1(x)],

where B is the common vanishing locus of s0 and s1 and so (under favorable cir-
cumstances) will be a finite set. Moreover, at least if s0 and s1 satisfy certain
transversality properties, f will lift to a map f : X ′ → CP 1 defined on all of the
blowup X ′ of X at B, with the exceptional divisors of the blowup appearing as
sections of f . The fibers of f can be arranged to be symplectic (essentially as a
result of the approximate holomorphicity of s0 and s1), and the behavior near crit-
ical points may be taken to be such that f defines a symplectic Lefschetz fibration.
Note that the fibers of f are Poincaré dual to the pullback of the class k[ω], so
that by taking k large we can obtain symplectic Lefschetz fibrations on blowups of
X whose fibers have arbitrarily large symplectic area. Results of [9] allow one to
assume that the singular fibers contain only one node, which is nonseparating.

Since if π : X ′ → X is a blowup we have Gr(α) = Gr(π∗α), it follows that
to understand the Gromov invariants of symplectic 4-manifolds it suffices to un-
derstand the Gromov invariants of symplectic Lefschetz fibrations. Accordingly,
let f : X → S2 be a symplectic Lefschetz fibration on a 4-manifold X. In order
to exploit the Lefschetz fibration structure to study pseudoholomorphic curves, we
shall restrict attention to almost complex structures j on X with respect to which f
is a pseudoholomorphic map. Such almost complex structures may be constructed
by pushing forward the standard complex structure from the complex coordinate
charts near the critical points and then extending to the rest of X (on which f

1This sketch omits several highly nontrivial technical points, for which the reader is referred
to [1] and [2]
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is a genuine fibration) by means of a connection on the fibration (as is seen for
instance in Section 4 of [3]). Moreover, Lemma 2.1 of [13] shows that there are
sufficiently many such structures that for a generic choice of one of them (say j),
all moduli spaces of j-holomorphic curves representing classes of smaller symplectic
area than the fibers of f will be of the correct dimension, and, if the moduli spaces
are cut down by incidence conditions to be zero-dimensional, they will consist only
of curves which miss the critical points of f .

Let C be a j-holomorphic curve in X (possibly reducible, and with its compo-
nents allowed to have multiplicity larger than 1) with no fiber components, as is
of course assured to be the case if 〈[ω], [C]〉 < 〈[ω], [fiber]〉. Now our assumption
on j ensures that the fibers themselves are j-holomorphic, so all intersections be-
tween C and any fiber f−1(t) will contribute positively to the intersection number
r := [C] · [fiber]. As such, C ∩ f−1(t) is a subset of f−1(t) consisting of points
with positive multiplicities which add up to the number r; putting it less clumsily,
C ∩ f−1(t) is naturally viewed as an element of the symmetric product Srf−1(t).
Thus, giving the curve C is equivalent to giving a family of elements of the sym-
metric products Srf−1(t) as t ranges over S2.

In [3], Donaldson and Smith construct the relative Hilbert scheme associated
to a Lefschetz fibration f and an integer r > 0 as a space Xr(f) with a map
F : Xr(f)→ S2 whose fiber over a regular value t of F is naturally identified with
Srf−1(t), and moreover show that Xr(f) is a smooth symplectic manifold as long
as no fiber of f contains more than one node. Thus, the curve C of the previous
paragraph, by determining elements of the various spaces Srf−1(t), gives rise to a
section sC of Xr(f). Conversely, a continuous section s of Xr(f) naturally “sweeps
out” a cycle Cs in X determined as the union of all the points occurring in the
various divisors s(t).

From j, we may form an almost complex structure Jj on Xr(f) as follows. Note
first that since a generic point of Xr(f) is a set {p1, . . . , pr} of points in X such that
each f(pi) = f(pj), a tangent vector at {p1, . . . , pr} is obtained by taking tangent
vectors vi ∈ TpiX with the property that the “horizontal parts” f∗vi ∈ Tf(pi)S

2

are all equal. We then simply define

Jj{v1, . . . , vr} = {jv1, . . . , jvr};
observe that the horizontal parts f∗jvi are all equal by virtue of the fact that f is a
j-holomorphic map. Jj may then be extended to nongeneric points by continuity.

With Jj understood, it is then easy to see that, in the above notation

C is j-holomorphic ⇔ ∂̄Jj sC = 0. (2.1)

This indicates that an alternate approach to counting j-holomorphic curves
in X might be to count Jj-holomorphic sections in Xr(f); perhaps we should use
some Ruan–Tian-type invariant for Xr(f). This is indeed what we will do, but
it should be mentioned that using Jj to directly evaluate such an invariant is not
an option, by virtue of the fact that, as originally observed in [8], Jj is typically
only Hölder-continuous at the diagonal stratum in Xr(f) consisting of divisors with
one or more points repeated. (Non-differentiable almost complex structures cannot
be used in the evaluation of Gromov–Witten invariants because the construction
of such invariants invokes the implicit function theorem for a map which is only
as smooth as the almost complex structures being used.) The right approach is
suggested by the following:



6 Michael Usher

Theorem 2.1 ([10], Section 4) Given α ∈ H2(X,Z), there is at most one
homotopy class cα of sections of Xr(f) with the property that sections s in the class
cα descend to sets Cs ⊂ X which are Poincaré dual to α. Furthermore, the complex
index of the ∂̄ operator acting on sections in the class cα for any almost complex
structure on Xr(f) is d(α) = 1

2 (α2 − κX · α)

Recall that d(α) is none other than the expected dimension of the space of
pseudoholomorphic submanifolds of X Poincaré dual to α. From this we see that,
for a generic set Ω of d(α) points in X, both the moduli space

Mj
X(α)

consisting of j-holomorphic subvarieties of X Poincaré dual to α and passing
through Ω where j is a generic almost complex structure on X and the moduli
space

MJ
Xr(f)(cα)

consisting of J-holomorphic sections of Xr(f) in the class cα with Ω ⊂ Cs where J
is a generic, smooth almost complex structure on Xr(f) (which will typically have
nothing to do with j or with any other almost complex structure on X) will be
finite sets.

Definition 2.2 ([3] for α = κX , [10] in general) The standard surface count
DSf (α) is defined as the Gromov–Witten invariant which counts the elements of
MJ

Xr(f)(cα) for generic J and Ω with sign according to the spectral flow.

Quite standard and elementary arguments in Gromov–Witten theory show that
DSf (α) is independent of the choice of J and Ω in the definition. Its dependence
on f is a rather subtler question, though we shall see in the coming section that it
is in fact independent of f as long as the fibers have large enough area (which, we
recall, may always be arranged using Donaldson’s construction).

Returning to the point of view advocated at the end of the introduction, we
note that by the correspondence (2.1) we have

Mj
X(α) =MJj

Xr(f)(cα),

so that by perturbing the almost complex structure Jj to some generic, smooth
almost complex structure J onXr(f) and then counting the elements ofMJ

Xr(f)(cα)

we are effectively perturbing the notion of what it means to be a pseudoholomorphic
subset of X Poincaré dual to α, and using this perturbed notion to define an
invariant. Noting that sections can never be multiply covered, we see that using this
perturbed notion of pseudoholomorphicity evades the multiple cover issue. Happily,
although these constructions are rather difficult to carry through in detail in any
specific cases, we shall see below that it is possible to prove general theorems about
the behavior of DS which yield interesting information about pseudoholomorphic
curves in symplectic 4-manifolds.

3 Relation to the Gromov–Taubes invariant

That the information contained by DSf ultimately relates to the four-manifold
and not just to the Lefschetz fibration f is ensured by the following.

Theorem 3.1 ([13]) Let f : (X,ω) → S2 be a symplectic Lefschetz fibration
and α ∈ H2(X,Z) any class such that ω·α < ω·(fiber). Then DS (X,f)(α) = Gr(α).
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Proof The proof of Theorem 3.1 occupies the bulk of [13]; we shall only briefly
summarize it here. One first needs to find a rather special type of almost complex
structure j on X with which to evaluate Gr(α). j should make f a pseudoholomor-

phic map, and the curves C in the zero-dimensional moduli space Mj
X(α) which

contribute to Gr(α) should obey a number of special properties with respect to
f , the most subtle of which is that on some neighborhood of C there should exist
some other integrable complex structure j̃ which both preserves TC and makes
f : X → S2 pseudoholomorphic. Generic almost complex structures j making f
pseudoholomorphic will not have moduli spaces whose curves all satisfy this prop-
erty, since one usually encounters obstructions to constructing such a j̃ near the
critical points of the restrictions f |C . However, it is shown in Section 3 of [13] that
one may delicately perturb a generic initial choice j ′ to a j which does satisfy this
property. Further, there will exist a path jt of almost complex structures defined
near C which connects j0 = j̃ to j1 = j, with each jt preserving TC and making f
pseudoholomorphic.

For each t, we can use Taubes’ definition from [12] to determine the numbers
rt(C) with which C would contribute to Gr(α) if we were using jt to evaluate
Gr. Now, via the correspondence (2.1), we can define numbers r′t(C) which may
be viewed as the contribution of sC to DS “using Jjt to evaluate DS” as follows:
take a generic smooth almost complex structure Jt on Xr(f) which is Hölder-
close to our (only Hölder-continuous) almost complex structure Jjt . By Gromov
compactness, all J-holomorphic sections of Xr(f) will be close to one and only
one Jjt -holomorphic section, and we take r′t(C) to be the signed count of those
J-holomorphic sections which are close to the section sC , with the signs obtained
according to the spectral flow in the usual way.

For t = 0 the fact that j̃ = j0 is integrable near C is easily seen to imply
that Jj0 is integrable (and so smooth) near sC , and so we may use Jj0 directly to
evaluate r′0(C); no perturbation is needed. Indeed, the integrability of Jj0 implies
that r′0(C) = 1, which fortuitously agrees with the Taubes weight r0(C) = 1 since
j0 is integrable. We now consider the effect of varying t up to 1. In Section 5 of [12],

Taubes carefully analyzed the changes that the spaces Mjt
X(α) can undergo under

a generic variation in the almost complex structure; in order to obtain an invariant
(i.e., a total count which does not depend on the almost complex structure), he
was obliged to have the rt(C) remain constant for all but finitely many values of
t, at which they had to obey certain specific wall-crossing formulas. Borrowing
his analysis of the moduli spaces, one can likewise see (as is shown in Section 5
of [13]) that the fact that DS is already known to be independent of the almost
complex structure J used to define it implies that the numbers r′t(C) must obey
identical wall-crossing formulas to those of rt(C). The matching initial conditions
r0(C) = r′0(C) = 1 combined with the fact that rt and r′t change in the same way
as t varies then proves that r1(C) = r′1(C). In other words, for each C which
contributes to Gr(α), the corresponding section sC contributes to DSf (α) with the
same weight; thanks to the correspondence (2.1), this implies that the invariants
agree.

Theorem 3.1 had been conjectured by Smith in [10] based partly on the follow-
ing result, which bore a striking resemblance to the duality Gr(α) = ±Gr(κX −α)
which arises from the charge-conjugation symmetry in Seiberg–Witten theory com-
bined with Taubes’ equivalence [11] between SW and Gr (note that Theorems
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3.1 and 3.2 provide a new proof of this duality for symplectic 4-manifolds with
b+ > b1 + 1):

Theorem 3.2 ([10]) If b+(X) > b1(X) + 1 and if f : X ′ → S2 is a sym-
plectic Lefschetz fibration on a blowup π : X ′ → X of X obtained by Donaldson’s
construction with k sufficiently large, then

DSf (π∗α) = ±DSf (π∗(κX − α)). (3.1)

We shall first outline the proof of this theorem in the comparatively easy case
when

ω · α > ω · κX . (3.2)

In this case, since holomorphic curves cannot have negative symplectic area, the
right hand side of Equation 3.1 is clearly zero. As for the left hand side, one can
check using the adjunction formula and the fact that the fibers of f are Poincaré
dual to k[ω] that if α′ ∈ H2(X ′,Z) is obtained from π∗α by adding the Poincaré
dual of each exceptional divisor of the blowup, we have DSf (α′) = DSf (α) and

r := 〈α′, fiber〉 > 2g − 2,

where g is the genus of the fibers of the fibration f .
From f , the relative Picard scheme is constructed in [3] as a smooth symplectic

manifold Pr(f) with a map G : Pr(f) → S2 whose fiber G−1(t) over a regular
value t of f is naturally identified with the Picard variety Picrf−1(t) of degree-r
holomorphic line bundles on f−1(t). We then have an Abel-Jacobi map

AJ : Xr(f)→ Pr(f)

which takes an element of Xr(f) (i.e., an effective divisor of degree r on some
f−1(t)) to its associated line bundle on f−1(t). Now for L ∈ Picrf−1(t) ⊂ Pr(f),
the preimage AJ−1(L) consists of the vanishing loci of holomorphic sections of L, so
that AJ−1(L) = PH0(L). We have h1(L) = h0(κf−1(t)⊗L∗) = 0 since κf−1(t)⊗L∗
has degree 2g − 2 − r < 0, and so Riemann-Roch tells us that h0(L) = r − g + 1,
independently of L. Examining AJ slightly more carefully, one can see that it is a
submersion, so that (thanks to the fact that r > 2g−2) AJ defines a CP r−g-bundle
Xr(f)→ Pr(f).

Now a computation of Section 5 of [3] shows that the real index of the ∂̄
operator acting on sections of Pr(f) is 1 + b1(X)− b+(X), which is assumed to be
negative in the statement of the theorem. Thus generic almost complex structures
J ′ on Pr(f) will admit no holomorphic sections. Since AJ : Xr(f) → Pr(f) is a
fibration over Pr(f) whose fibers CP r−g admit natural complex structures, it is
straightforward to find almost complex structures J on Xr(f) such that AJ is a
(J, J ′)-holomorphic map. But then J is an almost complex structure on Xr(f)
which admits no pseudoholomorphic sections at all, since any such section, when
composed with AJ , would give a J ′-holomorphic section of Pr(f). Using this J
to evaluate the invariant, we immediately conclude that DSf (α′) = 0, proving the
theorem in the case of present concern.

When r ≤ 2g − 2, the structure of the Abel–Jacobi map is more complicated.
Recall that in Donaldson’s construction the number of exceptional sections is k2[ω]2,
so r = 〈α′, fiber〉 = k2[ω]2 +kα · [ω]. Meanwhile by the adjunction formula 2g−2 =
k2[ω]2 + kκX · [ω], so if the degree k of the pencil is sufficiently high, then r/(g− 1)
will be close to two. In this case, Serre duality gives rise to an embedding of
X2g−2−r(f) in Pr(f). The Abel–Jacobi map may then be seen to generically restrict
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over X2g−2−r(f) as a CP r−g+1-bundle, while over the rest of Pr(f) it is a CP r−g-
bundle. The almost complex structures on X2g−2−r(f), Pr(f), and Xr(f) may then
be chosen so that any holomorphic section of Xr(f) in the class cα′ is sent by AJ
to a holomorphic section of X2g−2−r(f) in class cκX′−α′ . A detailed analysis of this
correspondence, performed in Section 6 of [10], then yields the duality theorem.

4 Refinements

Taubes’ discovery that, when b+(X) > 1, Gr(α) = 0 whenever ω·α > ω·κX long
seemed to be one of the many rather mysterious consequences of Seiberg–Witten
theory; however, Theorems 3.1 and 3.2 hopefully shed somewhat more light on it, at
least when b+ > b1 + 1. Theorem 3.1 shows that, in counting j-holomorphic curves
in X (or, equivalently, Jj-holomorphic sections of Xr(f)) according to Taubes’
prescription, we obtain the same information if we use the perturbed notion of
pseudoholomorphicity provided by the Donaldson–Smith approach of counting J-
holomorphic sections of Xr(f) for arbitrary J . The proof of Theorem 3.2 then shows
that, when ω ·α > ω ·κX , there is a particular choice of this perturbed J for which
the moduli space of sections counted by the invariant is empty, so that obviously the
invariant must vanish. Now, our identification of an empty moduli space contains
strictly more information than the vanishing result, since in principle an invariant
like Gr(α) could vanish while receiving contributions from a wide variety of sources
which happen to cancel each other out. One might hope to deduce further results
from this.

In this direction, recall that Gr(α) counts all of the j-holomorphic submanifolds
of X, including disconnected ones and even ones with multiply-covered square-
zero toroidal components, which are Poincaré dual to α. It is natural to want
an invariant which, say, only counts connected curves, or more generally counts
possibly-reducible curves while keeping track of their decomposition into reducible
components. The scenario pictured in Figure 1 prevents us from doing this in
full, but we can at least keep track of the non-toroidal components and make the
following definition.

Definition 4.1 Let α ∈ H2(X;Z). Let

α = β1 + · · ·+ βm + c1τ1 + · · ·+ cnτn

be a decomposition of α into distinct summands, where none of the βi satisfies
β2
i = κX · βi = 0, while the τi are distinct classes which are primitive in the lattice
H2(X;Z) and all satisfy τ 2

i = κX · τi = 0. Then

Gr(α;β1, . . . , βm, c1τ1, · · · , cnτn)

is the invariant counting ordered (m + n)-tuples (C1, . . . , Cm+n) of transversely
intersecting smooth pseudoholomorphic curves in X, where

(i) for 1 ≤ i ≤ m, Ci is a connected curve Poincaré dual to βi which passes
through some prescribed generic set of d(βi) points;

(ii) for m + 1 ≤ k ≤ m + n, Ck is a union of connected curves Poincaré dual
to classes lk,1τk, · · · , lk,pτk decorated with positive integer multiplicities mk,q

with the property that
∑

q

mk,qlk,q = ck.
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The weight of each component of each such curve is to be determined according to the
prescription given in the definition of the Gromov invariant in [12] (in particular,
the components Ck,q in class lk,qτk are given the weight r(Ck,q,mk,q) specified in
Section 3 of [12]), and the contribution of the entire curve is the product of the
weights of its components. As notation, we set Gr(0; 0) = 1.

The objects counted by Gr(α;α1, . . . , αn) will then be reducible curves with
smooth irreducible components and a total of

∑
αi · αj nodes arising from inter-

sections between these components. Gr(α) is the sum over all decompositions of α
into classes which are pairwise orthogonal under the cup product of the

d(α)!∏
(d(αi)!)

Gr(α;α1, . . . , αn);

in turn, one has

Gr(α;α1, . . . , αn) =

n∏

i=1

Gr(αi;αi).

It is natural to attempt to make similar refinements on the Donaldson–Smith
side. Now Theorem 2.1 tells us that all of the sections s of Xr(f) with Cs Poincaré
dual to α are homotopic regardless of how Cs itself decomposes into components.
Thus, if Jt is a one-parameter family of almost complex structures on Xr(f), in

the parametrized moduli space PM(Jt)
Xr(f)(cα) = {(s, t)|s ∈ MJt

Xr(f)(cα)} we might

in principle have an interval whose left endpoint corresponds to a curve which
decomposes into reducible components in a different fashion than does the curve
corresponding to its right endpoint. If this were to happen, the signed count of
J-holomorphic sections with a given decomposition type could not be expected to
be independent of the choice of almost complex structure J .

Let ∆ be the diagonal stratum in Xr(f) consisting of divisors with one or
more points repeated. A more careful analysis reveals that if st is an interval of
Jt-holomorphic sections, then the decomposition type of the st has the potential to
change at precisely those t for which the number of nontransverse intersections of
st with ∆ jumps. For a generic family of almost complex structures Jt, assuming
the moduli spaces MJt

Xr(f)(cα) have been cut down by incidence conditions to be

zero-dimensional, one expects finitely many t for which some s ∈ MJt
Xr(f)(cα) has

a one-real dimensional tangency to ∆. This prevents such families of almost com-
plex structures from being used to define refinements of DS which keep track of
how the descendant curves of the sections being counted decompose into reducible
components.

On the other hand, if we require the members of the family Jt to preserve
the diagonal stratum ∆, then all nontransverse intersections of a Jt-holomorphic
section with ∆ will be two-real dimensional. As such, for a generic one-parameter
family of such sections, no nontransverse intersections will arise. More generally,
if we impose d(α) − n incidence conditions, so that the expected dimension of the
space of J-holomorphic sections in class cα with n tangencies to the diagonal is
zero, the parametrized moduli spaces for one-parameter families of almost complex
structures will not contain any sections with more than n tangencies to the diagonal.
Thus, the decomposition types of the sections with n tangencies to the diagonal
will remain constant on the intervals within such a parametrized moduli space.
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Requiring ∆ to be pseudoholomorphic does introduce an additional possible
source of noncompactness in our moduli spaces: sequences of the sections with
isolated intersections with the diagonal that we wish to count might converge to
sections entirely contained in ∆. By restricting attention to only certain decompo-
sition types, we may rule this out, and obtain:

Theorem 4.2 Let α = α1+· · ·+αn, with none of the αi equal to mβ for a class
β with β2 = κX · β = 0, and with αi · e ≥ −1 with equality only if αi = e whenever

e is the class of a (−1)-sphere. Then the number D̃Sf (α;α1, . . . , αn) which counts
with sign the J-holomorphic sections s of Xr(f) with Ω ⊂ Cs and Cs equal to a
union of surfaces Poincaré dual to the αi for an almost complex structure J generic
among those which preserve ∆ and a generic set Ω of d(α)−∑i<j αi ·αj points is

independent of the generic pair (J,Ω) used to define it.

The sections s contributing to D̃Sf (α;α1, . . . , αn) will each have
∑
i<j αi · αj

tangencies to ∆, one for each intersection between the reducible components of
the descendant curve Cs. In fact, it can be shown that (because J preserves T∆),
if s is any J-holomorphic section, then all intersection points between reducible
components of Cs will contribute positively to the intersection number of those
components (similarly to the situation with genuine pseudoholomorphic curves).

Once we know we have an invariant D̃Sf (α;α1, . . . , αn), we can evaluate it by
taking J to be close to some Jj , and the proof of Theorem 3.1 then goes through
with only minor technical changes to show that:

Theorem 4.3 If α = α1 + · · ·+αn is a decomposition as in Theorem 4.2, then

(
∑
d(αi))!∏

(d(αi)!)
Gr(α;α1, . . . , αn) = D̃Sf (α;α1, . . . , αn)

provided that the degree of the fibration is large enough that 〈[ωX′ ], fiber〉 > [ωX′ ]·α.

The complete proofs of Theorems 4.2 and 4.3 will appear in [14].
One might then hope that the proof of Theorem 3.2 could be used to glean

information about D̃Sf and hence about Gr(α;α1, . . . , αn). Unfortunately, this
is not the case, as a result of the fact that the special almost complex struc-
tures considered by Smith cannot be taken to preserve the diagonal. If such
an argument could be used, we would be able to conclude that each invariant
Gr(α;α1, . . . , αn) vanishes whenever α has larger symplectic area than the canon-

ical class and D̃Sf (α;α1, . . . , αn) is defined. However, the manifold considered in
[6] admits a symplectic form such that, for certain primitive classes α, β, γ, and
δ each with positive symplectic area, the canonical class is 2(α + β + γ) but the
invariant Gr(2(α + β + γ) + δ;α, β, γ, α + β + γ + δ) is nonzero. (This provides
a counterexample to a statement of which the author had previously mistakenly
announced a proof, which had been based on an attempt to refine DS using almost
complex structures which do not preserve ∆.)

Another way in which Gr may sometimes be refined is by counting pseudoholo-
morphic curves in a given homology class which, instead of being embedded, have
a prescribed number of self-intersections. In general, it is somewhat unclear what
the proper analogue of the Gromov–Taubes invariant in this context should be,
since the multiple cover problem is more serious than in the embedded case. The
expected complex dimension of the space of pseudoholomorphic curves Poincaré
dual to the class α having n self-intersections is d(α) − n, and if some for some
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m > 1 α/m is an integral class with d(α) − n ≤ d(α/m), any attempts to define
an invariant will be complicated by the possibility of a sequence of the curves we
wish to count converging to an m-fold cover of a curve Poincaré dual to α/m. (In
the embedded case where n = 0, one can see from the formula for d(α) and the
adjunction formula that the only classes α with d(α) ≥ 0 for which this issue can
arise are classes of square-zero tori, which can be handled by Taubes’ prescription.
It is not clear how to generalize Taubes’ prescription to the various cases which can
arise when n > 0, especially those for which d(α/m) is strictly larger than d(α)−n.)

With this caveat in place, we make the following:

Definition 4.4 A class α ∈ H2(X,Z) is called strongly n-semisimple if there
exist no decompositions α = α1 + · · · + αl such that each αi has d(αi) ≥ 0 and
is Poincaré dual to the image of a symplectic immersion, and α1 is equal to mβ
(m > 1) where β satisfies d(β) ≥ max{0, d(α1) − n + α1 · (α − α1)}. α is called
weakly n-semisimple if the only decompositions α = α1 + · · · + αn as above which
exist have α2

1 = κX · α1 = 0.

For instance, every class is weakly 0-semisimple, while the only classes which
are not weakly 1-semisimple are those classes α such that there exists a class
β ∈ H2(X;Z) such that β · (α − 2β) = 0 and β is Poincaré dual either to a
symplectic sphere of square 0 or a symplectic genus-two curve of square 1, while
α− 2β is Poincaré dual to some embedded (and possibly disconnected) symplectic
submanifold. For strong semisimplicity, one needs to add the assumption that α
is not Poincaré dual to a symplectic immersion having a component which is a
square-zero torus in a non-primitive homology class.

For weakly- or strongly n-semisimple classes α, there is an obvious analogue of
the Gromov–Taubes invariant Grn(α), defined by counting j-holomorphic curves C
which are unions of curves Ci Poincaré classes αi carrying multiplicities mi which
are equal to 1 unless Ci is a square-zero torus with

∑
miαi = α, such that C has n

transverse double points and passes through a generic set of d(α)− n points of X;
each such C contributes the product of the Taubes weights r(Ci,mi) to the count
Grn(α). Here a double point arising as an intersection of the components Ci and
Cj is counted as contributing a multiplicity mimj toward the total n. Since the
condition of n-semisimplicity is engineered to rule out the only additional possible
source of noncompactness of the relevant moduli spaces, the proof that Gr(α) is
independent of the choice of almost complex structure used to define it goes through
to show the same result for Grn(α).

While in ordinary Gromov–Taubes theory it is difficult to find an analogue of
Gr for nodal curves in most homology classes, it does turn out to be possible to
build a more general candidate for such an invariant by mixing the Donaldson–
Smith approach with a family blowup construction along the lines of that used in
[5]. To motivate this, consider a curve C Poincaré dual to α having just one double
point p (which might be either a transverse intersection of two of its reducible
components or a self-intersection of one component), which is to be counted by a
putative invariant Gr1(α). Let X2 denote the blowup of the diagonal in X × X;
note that X2 fibers naturally over X, the fiber Xq over q ∈ X being the blowup
of X at q. Now where e is the Poincaré dual of the exceptional divisor, for q 6= p
the proper transform of C in Xq still has a double point and will be Poincaré dual
to either α or α − e depending on whether q ∈ C. For q = p, however, the proper
transform of C will be an embedded curve Poincaré dual to α − 2e. Thus, the
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curves in which we are interested correspond to those curves contributing to one of
the GrXp(α− 2e) as p ranges over X.

Iterating this construction, one obtains fibrations Xn+1 → Xn whose fiber Xb

over b ∈ Xn is an n-fold blowup of X, with b parameterizing the set of points which
are blown up. This converts the problem of counting curves Poincaré dual to α
with n nodes to the problem of enumerating embedded curves Poincaré dual to
α−2

∑n
l=1 el where the ei are the exceptional divisors of the n blowups, as b ranges

over Xn. By itself, this doesn’t significantly simplify the problem of defining the
invariants Grn(α) for α which are not n-semisimple, since over various substrata
of the parameter space Xn one will find undesirably-large boundary components
of the moduli spaces that we are concerned with (though we should mention that
in the algebraic category Liu has developed in [5] a method for analyzing these
strata in order to obtain an invariant). In [14], though, it is shown that from a
symplectic Lefschetz fibration f : X → S2, by lifting f to maps f b on the various
blowups Xb we can obtain a family of relative Hilbert schemes X nr (f)→ S2 ×X ′n
over a subset X ′n ⊂ Xn whose complement has codimension 4 such that the total
space X nr (f) is smooth and symplectic and each restriction over S2 × {b} is the
relative Hilbert scheme Xb

r(f
b) constructed from f b : Xb → S2. This allows one

to define a family standard surface count FDSnf which enumerates holomorphic

sections of the various Xb
r(f b) as b ranges over X ′n; in spite of the noncompactness

of the parameter space X ′n, it is shown in Lemma 3.5 of [14] that if the almost
complex structure on X nr (f) is chosen generically from an appropriate family, the
relevant moduli spaces will be compact and in particular will not contain sections of
Xbm
r (f bm) for a sequence bm converging to an element of the codimension-four set

Xn \X ′n. Since working in families has allowed us to eliminate the nodes from our
curves, FDSnf can be evaluated using a generic almost complex structure on X nr (f);
no special behavior with respect to the diagonal stratum is necessary. When we
perturb the tautological almost complex structure Jj to a generic one, the sections
corresponding the multiple covers which stand in the way of defining Grn(α) are
perturbed to non-multiple sections on the same footing as all of the others.

Using an Abel–Jacobi map from X nr (f) to a family of relative Picard schemes
Pnr (f), one then constructs an almost complex structure J like that in the proof
of Theorem 3.2; if the class α has larger area than the canonical class, the relevant
moduli space for this almost complex structure is then guaranteed to be empty
as long as b+(X) > b1(X) + 1 + 4n. (The extra 4n term is the dimension of the
family Xn over which we are working, the point being that we need to ensure that
there are no holomorphic sections of any of the relative Picard schemes Pr(f

b) as
b ranges over Xn, so that we require indPr(f) ∂̄+ dimXn < 0.) More generally,

still assuming that b+(X) > b1(X) + 1 + 4n, we find that regardless of the area of
α, as in the proof of Theorem 3.2 a nonvanishing invariant FDSnf (α) would give
rise to J-holomorphic sections of one of the members of the family X n2g−2−r(f) in
the class cκX′−α′ for generic J on X n2g−2−r(f). Appealing to Gromov compactness
and the correspondence between Jj-holomorphic sections and j-holomorphic curves,
one then finds that if FDSnf (α) 6= 0 there is a particular j for which there exist
j-holomorphic curves Poincaré dual to both classes α and κX − α.

This outline should make plausible the following theorem; the proofs (and the
somewhat-cumbersome precise statements) of the various lemmas indicated above
appear in [14]:
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Theorem 4.5 (i) If b+(X) > b1(X) + 1 + 4n, then for all α ∈ H2(X;Z)
either FDSnf (α) = 0 or there exists an almost complex structure j on X
simultaneously admitting j-holomorphic curves Poincaré dual to α and κX−
α.

(ii) If α is strongly n-semisimple, then FDSnf (α) = n!Grn(α).

As is explained in the introduction to [14], the second alternative in part (i)
above can be ruled out for generic almost complex structures j; however, the j in
the statement of the theorem cannot be taken generically.

We note that unless α is strongly n-semisimple, so that there exists an invariant
Grn(α) which only depends on the four-manifold with which it is possible to equate
FDSnf (α), it is unclear whether or not FDSnf (α) depends on the choice of Lefschetz
fibration f . In light of the situation with the ordinary invariant DSf , it is natural to
conjecture that FDSnf is in fact independent of f and agrees with some combination
of Ruan–Tian invariants. If this is the case, FDS would seem to be an appropriate
candidate for a generalization of the Gromov–Taubes invariant to nodal curves. It
would also be interesting to know whether, in the case where X is Kähler, FDS
might be related to the invariants constructed by Liu in [5] using family Seiberg–
Witten theory and algebro-geometric methods.
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