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Twisted geodesic flows and symplectic topology

Classical mechanics of a particle in a potential on a manifold

Lagrangian formulation

The dynamics of a classical particle moving on a Riemannian

manifold (M,g) are dictated by a Lagrangian

L : TM → R.

If the particle has mass 1 and is subjected to a conservative

force F = −∇U where U : M → R, we’ll have

L(q,v) =
1

2
|v|2 −U(q).
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Twisted geodesic flows and symplectic topology

Classical mechanics of a particle in a potential on a manifold

Lagrangian formulation

The principle of least (really, stationary) action says that the

trajectory q : [0,T] → M of the particle will be a critical point of

the action

S[q] =
∫ T

0
L(q(t), q̇(t))dt,

where q varies among paths with q(0),q(T) fixed.

The Euler-Lagrange equation states that these critical points q

are solutions to

d

dt

(

∂L

∂vi
(q(t), q̇(t))

)

=
∂L

∂qi
(q(t), q̇(t)),

where (q1, . . . ,qn,v1, . . . ,vn) is a standard coordinate chart on

TM.
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Twisted geodesic flows and symplectic topology

Classical mechanics of a particle in a potential on a manifold

Lagrangian formulation

If

L(q,v) =
1

2
|v|2 −U(q),

by taking the qi to form a normal coordinate chart around q(t)
with respect to g the Euler-Lagrange equation

d

dt

(

∂L

∂vi
(q(t), q̇(t))

)

=
∂L

∂qi
(q(t), q̇(t))

is easily seen to take the form

Dq̇

dt
= −∇U(q(t)).

This is consistent with Newton’s second law, and in particular

when the potential energy U is identically zero we find that the

possible trajectories are precisely geodesics.
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Twisted geodesic flows and symplectic topology

Classical mechanics of a particle in a potential on a manifold

Hamiltonian formulation

The Legendre transform

Given the Lagrangian L : TM → R (which should satisfy a

convexity hypothesis, e.g. it should grow quadratically in

sufficiently large |v|), its Legendre transform is the

“Hamiltonian”

H : T∗M → R

defined by

H(q,p) = sup
v∈TqM

(〈p,v〉−L(q,v)) .

At least for the Lagrangians that we’ll consider, the supremum

will be attained at the unique vp ∈ TqM satisfying

(d(L|TqM))vp = p.

If L(q,v) = 1
2 |p|

2 −U(q) then vp is just the metric dual to p, and

H(q,p) =
1

2
|p|2 +U(q).
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Twisted geodesic flows and symplectic topology

Classical mechanics of a particle in a potential on a manifold

Hamiltonian formulation

T∗M carries a canonical 1-form λcan = ∑pidqi, given by

(λcan)(q,p)(V) = p(π∗V).

Then

ω = −dλcan = ∑
i

dqi ∧dpi ∈ Ω2(T∗M)

is symplectic (i.e. closed and nondegenerate).Via the Legendre

transform, the Euler-Lagrange equation translates to the

statement that the trajectories (q(t),p(t)) in T∗M are given by

(q̇(t), ṗ(t)) = XH(q,p).

Here the Hamiltonian vector field XH is given by

ω(XH, ·) = dH.

One has LXH
ω = diXH

ω = ddH = 0, and dH(XH) = 0, so the flow

of XH preserves both the symplectic structure and the function

H.
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Twisted geodesic flows and symplectic topology

Magnetic flows

Lagrangian formulation

The simplest way to incorporate a velocity dependence in the

Lagrangian L : TM → R aside from the kinetic energy is to

choose a 1-form α ∈ Ω1(M) and put

L(q,v) =
1

2
|v|2 −α(v).

The Euler-Lagrange equation in this case works out (in normal

coordinates, where α = ∑j αjdqj) to

q̈i −∑
j

∂αi

∂qj
q̇j = −∑

j

∂αj

∂qi
q̇j,

i.e., for all w ∈ TM,

〈
Dq̇

dt
,w〉 = dα(q̇,w).
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Magnetic flows

Lagrangian formulation

Thus where B : TM → TM is the skew-symmetric endomorphism

given by 〈Bv,w〉 = dα(v,w) the equations of motion are

Dq̇

dt
= Bq̇.

In the case M ⊂ R
3, any skew-symmetric endomorphism is cross

product with a vector; say Bv = v×~β . So the equation of motion

is q̈ = q̇×~β , which empirically describes the motion of a particle

of unit mass and charge in the magnetic field ~β .



Twisted geodesic flows and symplectic topology

Magnetic flows

Lagrangian formulation

The statement that dα is exact translates to the statement that

the magnetic field ~β has a global vector potential: ~β = ∇×~γ.

One of Maxwell’s equations is ∇ ·~β = 0; this corresponds to the

statement that the form dα is closed. Thus our Lagrangian

formulation accomodates magnetic fields which have global

vector potentials, but not a general magnetic field ~β , for which

we’d just know that the 2-form σ given by

σ(v,w) = 〈v×~β ,w〉

is closed.

However, passing to the Hamiltonian picture we’ll be able to

remedy this.
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Magnetic flows

The twisted cotangent bundle

The Legendre transform of L(q,v) = 1
2 |v|

2 −α(v) (α ∈ Ω1(M))
works out to be H : T∗M → R given by

H(q,p) =
1

2
|p+α(q)|2.

So where K = 1
2 |p|

2 is the standard kinetic energy, we have

H = K ◦Tα where Tα : T∗M → T∗M is a fiberwise translation.

This implies that Tα sends the Hamiltonian vector field XH (on

the standard cotangent bundle (T∗M,−dλcan)) to the vector field

XK for the Hamiltonian K on the twisted cotangent bundle

(T∗M,ωdα), where

ωdα = −dλcan +π∗dα satisfies T∗
αωdα = −dλcan.

So we can view the flow as taking place on the symplectic

manifold (T∗M,ωdα) with the kinetic energy Hamiltonian

K = 1
2 |p|

2; this only involves dα and not α , and so dα can be

replaced by an arbitrary closed σ ∈ Ω2(M).
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Magnetic flows

The twisted cotangent bundle

Summary: If B : TM → TM is a skew-symmetric endomorphism

such that σ ∈ Ω2(M) given by σ(v,w) = 〈Bv,w〉 is closed, then

the twisted geodesic flow

Dq̇

dt
= Bq̇

arises as the Hamiltonian flow of the function K(q,p) = 1
2 |p|

2 on

the symplectic manifold

(T∗M,−dλcan +π∗σ).
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Closed orbits

Existence theorems

We consider the Hamiltonian flow XK of K(q,p) = 1
2 |p|

2 on the

symplectic manifold (T∗M,ωσ =−dλcan +π∗σ) where σ ∈ Ω2(M)
is closed. We’ll assume M is compact and without boundary.

Since dK(XK) = ωσ (XK,XK) = 0, this flow preserves the energy

levels {K = E}.

Question

Given E > 0, does there exist a closed orbit γ : R/TZ → T∗M of XK

on the energy level {K = E}?
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Twisted geodesic flows and symplectic topology

Closed orbits

Existence theorems

The untwisted case

If σ = 0, we’re just asking for closed geodesics.

Theorem (Fet-Lyusternik, 1952)

On any closed Riemannian manifold (M,g) there is at least one

(nonconstant) closed geodesic.

In the untwisted case, since replacing γ(t) by t 7→ γ(at) preserves

the geodesic condition and changes the energy from E to a2E,

it’s superfluous to prescribe the energy.

Note that there need not exist any contractible geodesics, and

there never exist any geodesics which are shorter than the

injectivity radius.
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Twisted geodesic flows and symplectic topology

Closed orbits

Existence theorems

The exact case

When σ = dα is exact, the problem has a Lagrangian

formulation, which has been used to prove, e.g.,

Theorem (Contreras-Macarini-Paternain, 2002)

If σ = dα and dimM = 2 then periodic orbits exist on all energy

levels.

Theorem (Contreras, 2003)

If σ = dα , periodic orbits exist on almost all energy levels.
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Twisted geodesic flows and symplectic topology

Closed orbits

Existence theorems

When σ is inexact the story is more complicated; for instance if

(M,g) is a hyperbolic surface and σ is the area form, then the

flow restricts to a certain energy level {E = E0} as the horocycle

flow, which is aperiodic (indeed, uniquely ergodic).

Also, if E > E0, the flow has no contractible periodic orbits on

energy level E.

However, for low energy levels, symplectic topology has

provided methods to prove the existence of contractible periodic

orbits.
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Twisted geodesic flows and symplectic topology

Closed orbits

Existence theorems

After work of Gürel, Kerman, Lu, Macarini, and most notably

Ginzburg, the current state of the art is:

Theorem (Schlenk, 2005)

If σ 6= 0 then contractible periodic orbits exist on almost all

sufficiently small energy levels (i.e., on each of the energy levels

{K = E} for E in a full-measure subset of some [0,E0]).

Theorem (U., 2008)

If σ is symplectic (i.e, if B : TM → TM is nonsingular) then

contractible periodic orbits exist on all sufficiently small energy

levels. Moreover, these periodic orbits can be taken to have

bounded period, and hence length tending to zero with the energy.
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Closed orbits

Existence theorems

Both of these theorems exploit facts about certain classes of

submanifolds of symplectic manifolds.

In Schlenk’s theorem, the key is that M ⊂ T∗M is

half-dimensional and non-Lagrangian (i.e., ωσ doesn’t vanish

identically on it). A result of Polterovich then says that M×S1 is

a displaceable subset of T∗(M×S1), and then some facts about

the Hofer–Zehnder capacity prove the result.



Twisted geodesic flows and symplectic topology

Closed orbits

Existence theorems

In the case of my theorem, the key is that M ⊂ T∗M is a

symplectic submanifold. In fact, one has the following more

general result:

Theorem (U.)

If (P,Ω) is a symplectic manifold with closed symplectic

submanifold M such that c1(TP)|M = 0, and if K : P → R attains a

Morse-Bott nondegenerate minimum (say 0) along M, then in any

given tubular neighborhood of M XK has periodic orbits with

bounded period on every sufficiently low energy level.

This was proven by Ginzburg-Gürel when {
∫

A Ω|A ∈ π2(M)} is

discrete; they also gave examples showing that the theorem fails

without some kind of nondegeneracy condition on K.
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Closed orbits

Floer homology

For suitable Hamiltonians H : P → R (having a standard form

outside a neighborhood of M) and sufficiently small intervals

[a,b], a version of Morse-Novikov homology on (a cover of) the

space of contractible loops in P gives rise to a chain complex

CF
[a,b]
∗ (H), generated by (lifts of) contractible 1-periodic orbits

of XH.

If H0 ≤ H1 one obtains a chain map CF
[a,b]
∗ (H0) → CF

[a,b]
∗ (H1),
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Step 1

Given a sufficiently small E and any δ > 0, find a periodic orbit

of XK with energy in (E−δ ,E+δ ) as follows. Where f : R → R is

a certain function which is flat outside the interval (E−δ ,E+δ )
and where H0 and H2 are certain standard Hamiltonians with

H0 ≤ f ◦K ≤ H2, establish properties of

HF
[a,b]
∗ (H0)

//

''NNNNNNNNNNN
HF

[a,b]
∗ (H2)

HF
[a,b]
∗ (f ◦K)

77ppppppppppp

which yield the existence of a nonconstant 1-periodic orbit of

Xf◦K, representing a particular grading k independent of E and

δ .

Reparametrizing this orbit gives a periodic orbit of XK with

energy in (E−δ ,E+δ ), with undetermined period.
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Closed orbits

Floer homology

Step 2 (Ginzburg-Gürel)

When c1(TP)|M = 0, the periods of the periodic orbits of XK can

be bounded in terms of their Floer homological grading.

So since we have, for all δ > 0, a periodic orbit with energy in

(E−δ ,E+δ ) in a given grading (and hence with bounded

period), the Arzelà-Ascoli theorem (using a sequence δk → 0)

gives an orbit with the desired energy.
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