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Throughout this talk, (M,ω) is a closed symplectic manifold and

S1 = R/Z.

H : S1 ×M → R smooth  time-dependent vector field XH,

given by ιXH
ω = d(H(t, ·))

 Hamiltonian flow {φ t
H}t∈R

φ0
H = Id, d

dt(φ
t
H(p)) = XH(t,φ t

H(p)).

H is called non-degenerate if, for each fixed point p ∈ M of φ1
H,

the linearization (φ1
H)∗ : TpM → TpM has all eigenvalues

different from 1.
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Let

L0M = {contractible loops γ : S1 → M}.

Define a 1-form aH ∈ Ω1(L0M) by

(aH)γ(ξ ) =
∫

S1
ωγ(t)(γ̇(t),ξ (t))dt−

∫

S1
(dH)γ(t)(ξ (t))dt.

aH vanishes at γ precisely if γ(t) = φ t
H(p) where p ∈ Fix(φ1

H).
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The 1-form aH on L0M is closed; the pullback of aH to the cover

L̃0M =
{(γ,w)|γ ∈ L0M,w : D2 → M,w|∂D2 = γ}

(γ,w) ∼ (γ ′,w′) iff γ = γ ′ and
∫

D2 w∗ω =
∫

D2 w′∗ω

is exact; specifically, the pullback is dAH where

AH([γ,w]) = −
∫

D2
w∗ω −

∫

S1
H(t,γ(t))dt.

Thus the set of critical points of AH comprises one orbit of the

covering group of L̃0M → L0M for each fixed point of φ1
H whose

orbit under {φ t
H} is contractible.

AH is a Morse function iff H is nondegenerate, and Hamiltonian

Floer homology is Morse-Novikov homology for

AH : L̃0M → R.
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As a group, the Floer chain complex is

CF∗(H)=
{
∑ci[γi,wi] |ci ∈ Q, [γi,wi] ∈ Crit(AH),AH([γi,wi]) ց−∞

}
.

The boundary operator (which depends on auxiliary data, in

particular on an almost complex structure J) counts negative

gradient flowlines of AH:

∂ [γ−,w−] = ∑n[γ−,w−],[γ+,w+][γ+,w+]

where n[γ−,w−],[γ+,w+] is a formal count of index-one solutions

u : R×S1 → M to

∂u

∂ s
+ J(u(s, t))

(
∂u

∂ t
−XH(t,u(s, t))

)
= 0

such that u(s, ·) → γ± as s →±∞ and [γ+,w+] = [γ+,w−#u].
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Theorem (Floer, Hofer-Salamon, Fukaya-Ono, Liu-Tian)

This can be carried out for a nondegenerate Hamiltonian H on an

arbitrary closed symplectic (M,ω) with coefficients in an

appropriate (Novikov) ring Λ; one has ∂ 2 = 0, and the resulting

homology HF∗(H) satisfies

HF∗(H) ∼= H∗(M,Q)⊗Λ,

independently of H

Corollary (variant of Arnold’s conjecture)

If H : S1 ×M → R is nondegenerate then the number of fixed

points of φ1
H is at least the sum of the Betti numbers of M.
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Main theme of this talk: Although the Floer homology HF∗(H) is

independent of H, the underlying chain complex CF∗(H) carries

a R-valued filtration, and this filtration carries interesting

information that is specific to the isotopy {φ t
H}0≤t≤1.
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Recall

AH([γ,w]) = −
∫

D2
w∗ω −

∫

S1
H(t,γ(t))dt

and

CF∗(H)=
{
∑ci[γi,wi] |ci ∈ Q, [γi,wi] ∈ Crit(AH),AH([γi,wi]) ց−∞

}
.

For

c = ∑ci[γi,wi] ∈ CF∗(H),

put

LH(c) = max
ci 6=0

AH([γi,wi]).

Then, for any λ ∈ R, define

CFλ
∗ (H) = {c ∈ CF∗(H)|LH(c) ≤ λ}.
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CFλ
∗ (H) = {c ∈ CF∗(H)|LH(c) ≤ λ}.

LH(c) = max
ci 6=0

AH([γi,wi]).

Whenever u : R×S1 → M contributes to the matrix element

n[γ−,w−],[γ+,w+]

for the Floer boundary operator, one has

AH([γ−,w−])−AH([γ+,w+]) =
∫ ∣∣∣∣

∂u

∂ s

∣∣∣∣
2

> 0.

Hence

LH(∂ c) < LH(c),

and in particular for any λ ∈ R the λ -filtered part CFλ
∗ (H) is

preserved by the boundary operator.
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Theorem

Given two normalized (
∫

M H(t, ·)ωn = 0) Hamiltonians H0, H1

such that φ1
H0

= φ1
H1

and the paths {φ t
Hi
}0≤t≤1 are homotopic rel

endpoints in the Hamiltonian diffeomorphism group, and given

sets of auxiliary data needed to define the boundary operators on

CF∗(Hi), there is an isomorphism of chain complexes

Φ : CF∗(H0) → CF∗(H1)

which, for each λ ∈ R, restricts to an isomorphism

CFλ
∗ (H0) → CFλ

∗ (H1).

Furthermore, the induced isomorphism Φ∗ : HF∗(H0) → HF∗(H1)
commutes with the Piunikhin-Salamon-Schwarz isomorphisms

ΨHi
: H∗(M;Q)⊗Λ ∼= HF∗(Hi).
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Thus the R-filtered chain isomorphism type of the Floer chain

complex is an invariant of the class of {φ t
H}0≤t≤1 in H̃am(M,ω).

Certain numerical invariants that can be extracted from this

filtered chain isomorphism type have proven useful in

Hamiltonian dynamics.
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Compare with the situation in Heegaard Floer homology: Given

a null-homologous knot K in a 3-manifold Y, one has a chain

complex ĈF(Y) whose chain homotopy type only depends on Y,

but with a filtration that carries information about K.

Differences:

In the Heegaard Floer case the filtration is by Z, rather than

R.

The Hamiltonian Floer differential strictly lowers the

filtration level.

In knot Floer homology only the filtered chain homotopy

type is a knot invariant, whereas in Hamiltonian Floer

theory the filtered chain isomorphism type is an invariant

of the Hamiltonian.
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We have the PSS isomorphism

ΨH : H∗(M;Q)⊗Λ → HF∗(H).

For

a ∈ H∗(M;Q)⊗Λ,

put

ρ(H;a) = inf{LH(c) |c represents ΨH(a) ∈ HF∗(H)}.

This depends only on (H,a) (and not on the auxiliary data used

to define the Floer boundary operator), and extends

continuously to all C0 functions H : S1 ×M → R (rather than just

smooth nondegenerate Hamiltonians).

(This is similar to the τ invariant in Heegaard Floer theory.)
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Example

If H(t,m) = f(m) for a sufficiently C2-small Morse function

f : M → R, then (CF∗(H),∂ ) coincides with the

Thom-Smale-Morse-Witten complex (CM∗(−f),∂Morse) of the

Morse function −f .

Consequently, in this case, setting a = [M] ∈ H∗(M;Q)⊗Λ,

ρ(H; [M]) = max
S1×M

(−H).

Theorem (Oh, U.)

If H : S1 ×M → R is autonomous (i.e., independent of the

S1-variable), and if XH has no nonconstant contractible periodic

orbits of period ≤ 1, then

ρ(H; [M]) = max
S1×M

(−H).
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This allows one to use the spectral invariant to estimate the

(π1-sensitive) Hofer-Zehnder capacity: by definition, if U ⊂ M

is open,

c◦HZ(U)= sup




maxH

∣∣∣∣∣∣

H is autonomous, suppH ⋐ S1 ×U,
and H has no nonconstant contractible

periodic orbits of period ≤ 1






Thus the previous theorem shows that

c◦HZ(U) ≤ sup{ρ(H; [M])|suppH ⋐ S1 ×U}
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Meanwhile:

Theorem (Frauenfelder-Ginzburg-Schlenk, U.)

If L ⊂ M is compact, suppH ⊂ S1 ×L, and φ1
K(L)∩L = ∅, then

ρ(H; [M]) ≤
∫ 1

0

(
max

M
K(t, ·)−min

M
K(t, ·)

)
dt =: ‖K‖.

Where the displacement energy is defined by

e(L,M) = inf{‖K‖|φ1
K(L)∩L = ∅}

for L compact and

e(S,M) = sup
L⋐S

e(L,M)

in general, it follows that:
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Theorem (U.)

For any subset S ⊂ M (where M is any closed symplectic manifold),

we have

c◦HZ(S) ≤ e(S,M).

Hofer–Zehnder proved this for M = R2n in the early ’90s, but for

general M it had only been proven up to a constant.

The result is sharp: for S equal to a small Darboux ball B2n(r)
one has c◦HZ(S) = e(S,M) = πr2.

Sample non-squeezing consequence: If Σ is any (possibly very

low-area) closed surface, N any closed or Stein 4-manifold, and

r < R, there is no symplectic embedding B4(R)×Σ →֒ B2(r)×N.
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Definition

The boundary depth of a nondegenerate Hamiltonian H on M is

β (H)= inf{β ≥0|(∀λ > 0)(CFλ
∗ (H)∩∂ (CF∗(H))⊂ ∂

(
CF

λ+β
∗ (H)

)
}.

Non-obviously, β (H) is finite (U. ’07); in fact one has (Oh, ’07)

β (H) ≤ ‖H‖.

Theorem (U.)

(i) ‖β (H)−β (K)‖ ≤ ‖H−K‖; hence β extends continuously to

all continuous H : S1 ×M → R (and not just nondegenerate

Hamiltonians)

(ii) If H ≤ 0, suppH ⊂ S1 ×L, and φ1
K(L)∩L = ∅, then

β (H) ≤ 2‖K‖. (1)
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Some applications can be obtained by combining bounds on β
such as (1) with properties of the spectral invariants in order to

deduce the existence of low-energy solutions u : R×S1 → M to
∂u
∂ s

+ J( ∂u
∂ t

−XH) = 0 having certain asymptotics.

A compactness argument allows one to show that this still works

for degenerate H; one then deduces that if H is supported in a

suitably small set the resulting u will be localized near this set.
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Applications of the boundary depth:

Theorem (U., generalizing Schwarz, et al.)

If estable(S,M) = 0 (e.g., if S is a non-Lagrangian submanifold with

dimS ≤ 1
2 dimM, or if S is a symplectic submanifold) and if

〈[ω ],π2(S)〉 = 0, then there is a neighborhood W of S such that if

H : S1 ×M → R is a Hamiltonian with suppH ⋐ S1 ×W and

satisfying a technical condition, then φ1
H has infinitely many

geometrically distinct nontrivial periodic points.

Theorem (U., generalizing Ginzburg, Kerman)

If N ⊂ M is a stable coisotropic submanifold, and if 〈[ω ],π2(N)〉 is

discrete, then e(N,M) > 0. In particular, any coisotropic

submanifold of contact type (in the sense of Bolle) has positive

displacement energy.
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