
OBSERVATIONS ON THE HOFER DISTANCE BETWEEN CLOSED SUBSETS

MICHAEL USHER

ABSTRACT. We prove the elementary but surprising fact that the Hofer distance between two closed

subsets of a symplectic manifold can be expressed in terms of the restrictions of Hamiltonians to

one of the subsets; this helps explain certain energy-capacity inequalities that appeared recently

in [BM13] and [HLS13]. We also build on [U14] to obtain new vanishing results for the Hofer

distance between subsets, applicable for instance to singular analytic subvarieties of Kähler mani-

folds.

This note uses rather elementary arguments to deduce some results about the Hofer distance
between closed subsets, defined as the infimal Hofer norm of a Hamiltonian diffeomorphism that
maps one subset to the other. In the first section we give an alternative formula (Theorem 1.3)
for this distance, which helps explain some seemingly-unexpectedly-strong versions of energy-
capacity inequalities that appeared recently in [BM13] and [HLS13], and indeed shows that all
energy-capacity inequalities can be expressed in a similar strengthened form. The second section
contains new results about the rigid locus defined in [U14], in particular connecting it to the
Poisson bracket in Corollary 2.3, and uses these to expand the class of subsets on whose orbits
the Hofer distance is known to vanish identically. Specifically this vanishing is established for
all non-Lagrangian, half-dimensional submanifolds (Corollary 2.7) and all analytic subvarieties
(including singular ones) in Kähler manifolds (Theorem 2.15).

1. RESTRICTING THE HAMILTONIAN

There exists a rich history of results in symplectic topology asserting that, in order for a
Hamiltonian diffeomorphism φ of a symplectic manifold (M ,ω) to behave in a certain way
with respect to a subset A of M , the Hofer norm ‖φ‖H of φ must exceed some positive lower

bound. Here ‖φ‖H is by definition the infimal value of
∫ 1

0

�
maxM H(t, ·)−minM H(t, ·)

�
d t

among smooth compactly supported functions H : [0, 1] × M → R having time-one map φ1
H

equal to φ. Indeed, the original proofs that ‖ · ‖H is nondegenerate [Ho90],[LM95] proceed
by proving that, for A equal to a closed Darboux ball in M , there is a number cA > 0 such that
any Hamiltonian diffeomorphism φ such that φ(A)∩ A= ∅ must have ‖φ‖H ≥ cA; if (M ,ω) is
geometrically bounded [Che98] establishes a similar bound with A instead equal to a compact
Lagrangian submanifold of M , generalizing an earlier result of [P93]. Along similar lines, if A is
a compact Lagrangian submanifold of a tame symplectic manifold (M ,ω) and if U is either an
open set intersecting A or a compact Lagrangian submanifold that intersects A transversely (and
nontrivially) then there is a number cA,U > 0 such that one has the bound ‖φ‖H ≥ cA,U whenever

φ(A)∩Ū = ∅. (This is [U14, Theorem 4.9]; see also [BC06, Corollary 3.7], [FOOO09, Theorem
J], and [Cha12] for results which cover less general situations but have stronger bounds cA,U .)

Recently, similar results to some of those above have appeared in [BM13, Theorem 1.5(ii)]

and in [HLS13, Lemma 9, citing [LR]], but with a surprising twist.1 For certain rather specific
classes of symplectic manifolds (M ,ω) and Lagrangian submanifolds A, for any open set U

intersecting A these authors produce a positive constant cA,U which serves as a lower bound not

1We might also mention the results [MVZ12, Lemma 2.1, Theorem 2.17(vi)] about Lagrangian spectral invariants,

which in retrospect could be seen as anticipating this phenomenon.
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only for the Hofer norm but also for the apparently-smaller quantity

(1)

∫ 1

0

�
max

A
H(t, ·)−min

A
H(t, ·)

�
d t

whenever the time-one map of H : [0, 1] × M → R disjoins A from Ū . This appears counter-

intuitive: at time, say, 0.5 one would expect the values of H(0.5, ·) along φ0.5
H
(A) to be more

relevant to the question of whether the Hamiltonian isotopy {φ t
H
} generated by H moves A out

of Ū than the values of H(0.5, ·) along A, yet it is the latter that contributes to (1). The fact
that the maximum and minimum in (1) can be taken over A rather than M is consequential:

it plays a key role in the proof of the main result of [HLS13] on the C0-rigidity of coisotropic
submanifolds.

In this section we give a simple explanation for these results which give estimates for (1)
instead of only for the Hofer norm: they do not, as might first appear, represent some new
mysterious action-at-a-distance phenomenon in symplectic topology; rather, by means of ele-
mentary considerations about the relationships between Hamiltonians and their time-one maps
we will see that the sorts of Hofer norm bounds described above immediately imply identical

bounds on the quantity (1).2 In particular all of the bounds described in the first paragraph
of this section can be combined with Theorem 1.3 below to yield bounds on (1) in the style of
[BM13],[HLS13].

We now establish some basic notational conventions and definitions. Throughout the paper,
for a smooth manifold P (possibly with boundary) we denote by C∞

0
(P) the set of smooth,

compactly supported real-valued functions on P.
Let (M ,ω) be a symplectic manifold without boundary. If H ∈ C∞

0
([0, 1] × M), for each

t ∈ [0, 1] we let Ht = H(t, ·) and let XHt
be the vector field obeying ω(·, XHt

) = dHt . The

Hamiltonian isotopy {φ t
H
}t∈[0,1] is then characterized by the properties thatφ0

H
= 1M and

dφ t
H

d t
=

XHt
◦φ t

H
. As usual we denote by Ham(M ,ω) the group consisting of those diffeomorphisms φ

such that there exists H ∈ C∞
0
(M) with φ1

H
= φ.

For any closed subset B ⊂ M and any F ∈ C∞
0
(M) write

oscB F =max
B

F −min
B

F

The Hofer norm on Ham(M ,ω) is then defined by

‖φ‖H = inf

(∫ 1

0

oscM Ht d t

�����φ
1
H
= φ

)

For the rest of this section fix a closed subset A⊂ M , and let

L (A) = {φ(A)|φ ∈ Ham(M ,ω)}

denote the orbit of A under the Hamiltonian diffeomorphism group. We may then define
δ : L (A) × L (A) → R by setting, for A0, A1 ∈ L (A), δ(A0, A1) = inf{‖φ‖H |φ(A0) = A1}, or
equivalently (and more suggestively for our coming results)

δ(A0, A1) = inf

(∫ 1

0

oscM Ht d t

�����φ
1
H
(A0) = A1

)
.

It is easy to see that δ is a pseudometric on L (A) which is invariant under the action of
Ham(M ,ω). In the case that A is a Lagrangian submanifold the study of this pseudometric
dates back at least to [Oh97] and [Che00], and in the latter paper it is shown that if (M ,ω) is

2This is not to say that the aforementioned results in [BM13] and [HLS13] can be deduced from our argument

together with prior results: even just as bounds on the Hofer norm, their lower bounds cA,U are in some cases larger

than those given by other methods.
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geometrically bounded and A is a compact Lagrangian submanifold then δ is nondegenerate.
See [U14] (and also the following section) for results about the behavior of δ when A may not
be Lagrangian.

We first prove the following simple lemma:

Lemma 1.1. Given H ∈ C∞
0
([0, 1]×M) and a closed subset A⊂ M there is K ∈ C∞

0
([0, 1]×M)

such that:

(i) φ t
H
(A) = φ t

K
(A) for all t.

(ii) oscφ t
H (A)

Ht = oscφ t
H (A)

Kt for all t.

(iii) For all t ∈ [0, 1] there is a ∈ A such that K(t,φ t
K
(a)) = 0.

Proof. The proof splits into three cases depending on whether A and M are compact.
If A is noncompact then the fact that the support of H is compact implies that H(t, ·)|φ t

H (A)

takes the value 0 for all t, so we can simply take K = H.
Assuming from now on that A is compact, choose an arbitrary a0 ∈ A and define f : [0, 1]→ R

by f (t) = H(t,φ t
H
(a0)). If M is compact then the lemma will hold with K(t, m) = H(t, m)− f (t).

If M is not compact then this latter function might not be compactly supported, but since A is
compact we can find β ∈ C∞

0
(M) such that β = 1 on a neighborhood of ∪t{t} ×φ

t
H
(A). Then

the lemma will hold with K(t, m) = β(m)(H(t, m)− f (t)), since the Hamiltonian vector fields
of H and K coincide along ∪t{t} ×φ

t
H
(A). �

The following is well-known:

Proposition 1.2. For A0, A1 ∈ L (A) we have

δ(A0, A1) = inf

(∫ 1

0

oscφ t
H (A0)

Ht d t

�����φ
1
H
(A0) = A1

)
.

Proof. Choose any H ∈ C∞
0
([0, 1]×M) such thatφ1

H
(A0) = A1, and let ε > 0. Let K ∈ C∞

0
([0, 1]×

M) be as in the previous lemma, applied with A = A0. Define Φ : [0, 1] × M → [0, 1] × M

by Φ(t, m) = (t,φ t
H
(m)) and let Λ = Φ([0, 1] × A0). Choose a smooth function χ : [0, 1] ×

M → [0, 1] such that χ is identically equal to 1 on a neighborhood of the compact set Λ ∩
supp(K) and such that χ(t, m) = 0 at all (t, m) ∈ [0, 1]×M such that K(t, m) /∈ (minφ t

K (A0)
Kt −

ε/2, maxφ t
K (A0)

Kt + ε/2).

Now let K ′ = χK . Since for each t we have minφ t
K (A0)

Kt ≤ 0 ≤ maxφ t
K (A0)

Kt we see that,

for all t, oscM K ′
t
< oscφ t

K (A0)
Kt + ε = oscφ t

H (A0)
Ht + ε. The fact that K ′ coincides with K on

a neighborhood of Λ readily implies that φ t
K ′
(A0) = φ

t
K
(A0) for all t, and in particular that

φ1
K ′
(A0) = A1. Thus

δ(A0, A1)≤ inf

(∫ 1

0

oscφ t
H (A0)

Ht d t

�����φ
1
H
(A0) = A1

)
+ ε.

Since ε is arbitrary, we obtain the inequality “≤” in the statement of the proposition, while of
course the inequality “≥” is trivial. �

The main result of this section shows that, instead of taking the oscillation over the time-
dependent (and H-dependent) closed set φ t

H
(A0) as in Proposition 1.2, we can simply take it

over A0:

Theorem 1.3. For A0, A1 ∈ L (A), we have

δ(A0, A1) = inf

(∫ 1

0

oscA0
Ht d t

�����φ
1
H
(A0) = A1

)
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Proof. The plan of the proof is to show that, for any H ∈ C∞
0
([0, 1] × M), there exists K ∈

C∞
0
([0, 1]×M) having the properties that

(2) φ1
K
= φ1

H
and

∫ 1

0

oscφ t
K (A0)

Kt d t =

∫ 1

0

oscA0
Ht d t.

In view of Proposition 1.2 this will obviously imply the inequality “≤“ in the statement of the
theorem, while the inequality “≥” just follows from the fact that oscM Ht ≥ oscA0

Ht .

For a general G ∈ C∞
0
([0, 1]×M), consider the two functions

Ḡ(t, m) = −G(t,φ t
G
(m)) bG(t, m) = −G(1− t, m)

A standard calculation shows that Ḡ generates the Hamiltonian isotopy φ t

Ḡ
= (φ t

G
)−1. Mean-

while, bG is designed to have the property that a map γ: [0, 1] → M obeys γ′(t) = XGt
(γ(t))

if and only if the time-reversed map bγ(t) = γ(1− t) obeys bγ′(t) = X bGt
(bγ(t)). In other words,

time-one Hamiltonian flowlines for bG are precisely time-reversals of time-one flowlines of G; at
the level of isotopies this yields

φ t
bG = φ

1−t
G
◦ (φ1

G
)−1

In particular we have

φ1

Ḡ
= φ1
bG = (φ

1
G
)−1

With this said, given H : [0, 1]× M → R we now produce the function K : [0, 1]× M → R
promised in the first paragraph of the proof:

K = (ÒH) i.e., K(t, m) = −ÒH(t,φ t
ÒH(m)) = H
�
1− t,φ1−t

H
((φ1

H
)−1(m))
�

We can quickly verify that the two properties in (2) are satisfied: first of all,

φ1
K
= φ1

(ÒH)
= (φ1
ÒH)
−1 = ((φ1

H
)−1)−1 = φ1

H
.

Meanwhile, we have φ t
K
= (φ t
ÒH)
−1 and so, for (t, m) ∈ [0, 1]×M ,

K(t,φ t
K
(m)) = −ÒH(t,φ t

ÒH(φ
t
K
(m))) = −ÒH(t, m) = H(1− t, m).

From this we see immediately that, for all t,

oscφ t
K (A0)

Kt = oscA0
H1−t

and hence ∫ 1

0

oscφ t
K (A0)

Kt d t =

∫ 1

0

oscA0
H1−t d t =

∫ 1

0

oscA0
Ht d t,

proving the second part of (2) and hence the theorem. �

Remark 1.4. In cases where the Hamiltonian H is time-independent simply setting K = H in
the above proof will of course lead to a Hamiltonian obeying (2), in view of the conservation of

energy property H ◦φ t
H
= H. In this situation one has ÒH = H, and so the Hamiltonian produced

by our proof is indeed just H. However in the time-dependent case ÒH and H will generally be
distinct and the Hamiltonian K in the proof will generate a different isotopy from the identity

to φ1
H

than does H.

Remark 1.5. Since δ is symmetric and since oscA1
Ht = oscA1

Ĥ1−t , it follows from Theorem 1.3

that we also have

δ(A0, A1) = inf

(∫ 1

0

oscA1
Ht d t

�����φ
1
H
(A0) = A1

)
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One can also prove this directly in the style of the above proof, by setting K equal to
d
(H) instead

of (ÒH) and observing that one then has K(t,φ t
K
(m)) = H(1−t,φ1

H
(m)) for all (t, m) ∈ [0, 1]×M .

To connect this to the sorts of estimates described in at the beginning of this section, recall
that the displacement energy of the closed set A is by definition

e(A) = inf
�
‖φ‖H
��φ(A)∩ A=∅
	

.

For another subset U ⊂ M (presumably intersecting A) we likewise define

e(A, U) = inf
�
‖φ‖H
��φ(A)∩ Ū = ∅
	

.

As originally formulated, the results described in the first paragraph of this section (and many
others like them) are lower bounds for e(A) or e(A, U) for various classes of A and U .

Corollary 1.6. We have

e(A) = inf

(∫ 1

0

oscA Ht d t

�����φ
1
H
(A)∩ A= ∅

)
and

e(A, U) = inf

(∫ 1

0

oscA Ht d t

�����φ
1
H
(A)∩ Ū =∅

)

Proof. Since A is assumed to be closed we have by definition e(A) = e(A, A), so the first equation
is a special case of the second. For the second, simply note that, as an easy consequence of the
definitions,

e(A, U) = inf
�
δ(A, A′)|A′ ∈ L (A), A′ ∩ Ū = ∅

	

and apply Theorem 1.3. �

The estimates in [BM13],[HLS13] that motivated this section were lower bounds for the
right-hand side in the above corollary; we thus see that any of the numerous methods for esti-
mating e(A, U) in fact yields a similar estimate for this right-hand side.

2. NEW PROPERTIES OF THE RIGID LOCUS

An immediate consequence of Theorem 1.3 is that, for any closed subset A⊂ M , if a function

H ∈ C∞
0
([0, 1] × M) obeys H|[0,1]×A = 0, then δ(A,φ1

H
(A)) = 0.3 We will obtain below in

Proposition 2.2 a strengthening of this result, in preparation for which we now recall some
terminology from [U14].

Again fixing a closed subset A⊂ M , we write

Σ̄A = {φ ∈ Ham(M ,ω)|δ(A,φ(A)) = 0}.

(The notation refers to the fact that this is the closure of the stabilizer ΣA of A with respect to
the Hofer topology on Ham(M ,ω); in particular Σ̄A is a subgroup of Ham(M ,ω), see [U14,
Proposition 2.2].) The rigid locus of A is then defined to be the set

RA =
⋂

φ∈Σ̄A

φ−1(A)

So obviously RA ⊂ A (take φ = 1M ). It is easy to see that if RA = A then δ is nondegenerate on
L (A). A less obvious fact (originally proven as [U14, Lemma 4.2(iii)]; this is also a special case
of Proposition 2.1 below) is that if RA =∅ then δ vanishes identically on L (A).

Our main results in this section are strong new restrictions on the structure of the rigid locus
RA (Corollaries 2.3 and 2.6) which are then applied in Corollary 2.7 and Theorem 2.15 to obtain

3Of course this is not surprising in the special case that A is a coisotropic submanifold, since then the hypothesis

implies that φ1
H (A) = A.
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new classes of subsets A for which it always holds that RA = ∅ and hence that the pseudometric
δ vanishes identically.

For any open subset U ⊂ M let HamU denote the subgroup of Ham(M ,ω) consisting of
Hamiltonian diffeomorphisms generated by (extensions by zero of) Hamiltonians H ∈ C∞

0
([0, 1]×

U).

Proposition 2.1. For any closed set A⊂ M we have

HamM\RA
⊂ Σ̄A.

Proof. The proof is very similar to that of [U14, Lemma 4.2(iii)], which concerns the case that
RA = ∅. Given x ∈ M \ RA we may find ψx ∈ Σ̄A such that ψx(x) /∈ A; since A is closed we can
then find a neighborhood Ux of x such that ψx(Ux)∩ A=∅. Then

ψx HamUx
ψ−1

x
= Hamψx (Ux )

⊂ Σ̄A

(indeed every element of Hamψx (Ux )
preserves A). So since Σ̄A is a subgroup of Ham(M ,ω) and

ψx ∈ Σ̄A it follows that HamUx
≤ Σ̄A.

We have thus found an open cover {Ux}x∈M\RA
of M \RA with the property that each HamUx

is contained in Σ̄A. But the fragmentation lemma of [Ba78, III.3.2] (applied to the symplectic
manifold M \RA, which is an open subset of M) asserts that HamM\RA

is generated by ∪x HamUx
,

so that HamM\RA
⊂ Σ̄A. �

The following shows that a Hamiltonian which only vanishes on RA, not necessarily on all of
A, continues to have the property that its flow sends A to sets which lie a distance zero away
from A.

Proposition 2.2. Suppose that H ∈ C∞
0
([0, 1] × M) has H|[0,1]×RA

= 0. Then φs
H
∈ Σ̄A for all

s ∈ [0, 1].

Proof. Where H s(t, m) = sH(st, m) for s ∈ [0, 1], we have φ1
Hs = φs

H
, so since H s|[0,1]×RA

= 0

whenever H|[0,1]×RA
= 0 it suffices to prove the result for s = 1.

So assume that H|[0,1]×RA
= 0 and for any natural number n let fn : R → R be a smooth,

nondecreasing function such that fn(s) = s for |s| ≥ 1

n
and fn(s) = 0 for |s|< 1

2n
. Then ‖ fn ◦H −

H‖C0 ≤ 1

n
, and so φ1

fn◦H
→ φ1

H
as n → ∞ with respect to the Hofer topology on Ham(M ,ω).

But fn ◦H vanishes on the neighborhood {|H|< 1

2n
} of [0, 1]×RA and has support contained in

the (compact) support of H, so φ1
fn◦H
∈ HamM\RA

. Thus by Proposition 2.1, φ1
fn◦H
∈ Σ̄A for all

n. But Σ̄A is closed in the Hofer topology, so it follows that φ1
H
∈ Σ̄A also. �

For the rest of the paper we will focus on autonomous Hamiltonians H ∈ C∞
0
(M). We con-

tinue to denote by φ t
H

the Hamiltonian flow of the function on [0, 1]×M defined by (t, m) 7→
H(m).

For a general closed subset B ⊂ M we denote

IB =
�

H ∈ C∞
0
(M)
��H|B = 0
	

.

Corollary 2.3. Where {F, G} =ω(X F , XG) is the Poisson bracket, the subset IRA
⊂ C∞

0
(M) is closed

under {·, ·}.

Proof. Let F, G ∈ IRA
. It follows immediately from the definition of RA (and the fact that Σ̄A is

a subgroup of Ham(M ,ω)) that RA is preserved by all elements of Σ̄A, so since Proposition 2.2
asserts that φ t

F
∈ Σ̄A for all t, we have φ t

F
(RA) = RA for all t. So the fact that G ∈ IRA

implies

that G ◦φ t
F

vanishes identically on RA for all t. Thus for x ∈ RA we have

{F, G}(x) = (dG)x(X F ) =
d

d t
G(φ t

F
(x))

����
t=0

= 0,
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i.e. {F, G} ∈ IRA
. �

Remark 2.4. Corollary 2.3 imposes rather strong restrictions on the possible geometry of the
rigid locus RA of any closed subset. It is a standard (and easily checked) fact that if B ⊂ M is a
submanifold then IB is closed under {·, ·} if and only if B is coisotropic. Thus if the rigid locus
is a submanifold then it is coisotropic.

Also we recover the fact ([U14, Corollary 4.5]) that, if A ⊂ M is a submanifold, δ can be
nondegenerate on L (A) only if A is coisotropic: indeed if δ were nondegenerate we would
have RA = A, and as just noted, given that RA = A is a submanifold RA is coisotropic.

Corollary 2.5. Let x ∈ RA, and suppose that F1, . . . , Fk ∈ IRA
have the property that (dF1)x , . . . , (dFk)x ∈

T ∗
x
M are linearly independent. Then the map

ψ: Rk→ M

(a1, . . . , ak) 7→ φ
1∑

ai Fi
(x)

has image contained in RA, and restricts to a sufficiently small ball around the origin as an embed-

ding.

Proof. The linearization ofψ at ~0 ∈ Rk sends the standard basis vectors e1, . . . , ek to (X F1
)x , . . . , (X Fk

)x ,

and these are linearly independent by the assumption that (dF1)x , . . . , (dFk)x ∈ T ∗
x
M are linearly

independent. Thus the restriction of ψ to a suitably small neighborhood of ~0 is an immersion,
and its restriction to a smaller neighborhood is an embedding.

Because each function
∑

ai Fi belongs to IRA
, by Proposition 2.2 we have φ1∑

ai Fi

∈ Σ̄A for each

~a. Since RA is preserved by the action of any element of Σ̄A, and since x ∈ RA, for each ~a ∈ Rk

it follows that ψ(~a) = φ1∑
ai Fi

(x) ∈ RA. �

The following resolves a question that was raised in [U14, Section 4.2].

Corollary 2.6. Let A⊂ M be any closed subset such that RA 6= ∅ and suppose that N ⊂ M is any

submanifold which is closed as a subset. If dim N < 1

2
dim M then N does not contain RA, while if

N is connected and dim N = 1

2
dim M then N does not properly contain RA.

Proof. Suppose to the contrary that we have RA ⊂ N where N is as in the statement of the
corollary. Let k = dim M − dim N , and choose any x ∈ RA. We can then obtain functions
F1, . . . , Fk as in Corollary 2.5 by taking a coordinate chart around x in which N appears as

{~0} ×Rdim M−k and then multiplying the first k coordinate functions by a cutoff function which

is equal to 1 on a small neighborhood of x . Hence Corollary 2.5 gives an embedding Bk(δ) ,→
RA ⊂ N of a small k-dimensional ball Bk(δ), with image containing x .

If dim N < 1

2
dim M this immediately gives a contradiction since in this case k > dim N but we

have just embedded a k-dimensional ball into N . In the remaining case that dim N = 1

2
dim M

(so dim N = k) the k-dimensional ball that we have embedded into RA ⊂ N necessarily contains
a neighborhood of x in N . Since x ∈ RA was chosen arbitrarily this proves that RA is open in
N . But as an immediate consequence of its definition, RA is also closed. So since N is assumed
connected and by hypothesis RA 6= ∅, it must be that RA = N . �

Corollary 2.7. Let A⊂ M be a submanifold of dimension 1

2
dim M which is connected and closed

as a subset. Then the pseudometric δ on L (A) either vanishes identically or is nondegenerate. In

particular if A is not Lagrangian then δ vanishes identically.

Proof. Taking N = A in Corollary 2.6, since one always has RA ⊂ A we see that the hypothesis
implies that either RA = A or RA = ∅, i.e. (by [U14, Lemma 4.2]) either δ is nondegenerate
or δ vanishes identically. If A is not Lagrangian (equivalently, not coisotropic) then the first
alternative cannot hold (by [U14, Corollary 4.5], or Corollary 2.3 above). �
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Remark 2.8. As mentioned earlier, Chekanov showed in [Che00] that if (M ,ω) is geometrically
bounded and A is a compact Lagrangian submanifold then δ is nondegenerate. The same paper
contains an example (attributed to Sikorav) of a compact Lagrangian submanifold of a non-
geometrically-bounded symplectic manifold for which δ vanishes identically.

Remark 2.9. For submanifolds of codimension strictly between 1 and 1

2
dim M it is possible for

δ to neither be nondegenerate nor vanish identically, as explained in [U14, Remark 1.5].

Remark 2.10. Corollary 2.6 also evidently implies (again taking N = A) that if A ⊂ M is a

connected closed submanifold of dimension at most 1

2
dim M and if B ⊂ A is any proper closed

subset then RB =∅ and so δ vanishes identically on L (B).

2.1. Subvarieties. In this subsection we prove Theorem 2.15, asserting that δ vanishes iden-
tically on L (A) whenever A is a (possibly singular) complex analytic subvariety of a Kähler
manifold. Accordingly let (M ,ω, J) be a Kähler manifold (so ω is a symplectic form and J is
an ω-compatible integrable almost complex structure). We then obtain a Riemannian metric
g : T M ×M T M → R defined by g(v, w) =ω(v, Jw) =ω(−J v, w). Define maps θω,θg : T M →

T ∗M by θω(v) = ω(v, ·) and likewise θg(v) = g(v, ·). Thus θg = −θω ◦ J . Since ω is non-

degenerate, θω and θg are invertible, and we see that θ−1
g
= J ◦ θ−1

ω . Define the dual metric

g∗ : T ∗M ×M T ∗M → R by g∗(α,β) = g(θ−1
g
(α),θ−1

g
(β)). Of course by the definition of θg we

have g∗(α,β) = α(θ−1
g
(β)).

Proposition 2.11. Let U ⊂ M be an open subset and let f : U → C be a holomorphic function,

written as f = u+ iv where u, v : U → R. Then the Poisson bracket of u and v is given everywhere

on U by

{u, v}= g∗(du, du) = g∗(dv, dv)

Proof. In our present notation the Hamiltonian vector field of u is given by Xu = −θ
−1
ω (du). So

{u, v}=ω(Xu, X v) = dv(Xu) = −dv(θ−1
ω (du)) = dv(Jθ−1

g
(du))

But the Cauchy–Riemann equation for the holomorphic function f amounts to the statement

that dv ◦ J = du, so the above gives {u, v}= du(θ−1
g
(du)) = g∗(du, du).

Meanwhile since J is an isometry with respect to g, the adjoint of J is an isometry with
respect to g∗, and so the fact that dv ◦ J = du implies that g∗(dv, dv) = g∗(du, du). �

Definition 2.12. Let A be a closed subset of the Kähler manifold (M ,ω, J) and let x ∈ X . A
holomorphic reducing chart (U , V,ψ, f ) for A around x consists of the following data:

• A connected open neighborhood U ⊂ M of x having compact closure.
• An open set V ⊂ Cn, and a holomorphic chart ψ: V → M such that Ū ⊂ψ(V ).
• A holomorphic function f : V → C such that f |ψ−1(RA)

= 0 where RA is the rigid locus

of A

Proposition 2.13. If (U , V,ψ, f ) is a holomorphic reducing chart for A around x then there is an

open subset V ′ ⊂ V which contains ψ−1(Ū) such that, for each j = 1, . . . , n,

�
U , V ′,ψ|V ′ ,

∂ f

∂ z j

�
is

also a holomorphic reducing chart for A around x.

Proof. Let β : M → [0, 1] be a smooth function which is identically equal to 1 on some open
set U ′ containing Ū but whose support is compact and contained in ψ(V ). Define F : M → C
to be equal to β · ( f ◦ψ−1) on ψ(V ) and to 0 on M \ψ(V ), and let u and v be, respectively, the
real and imaginary parts of F . Since f |ψ−1(RA)

= 0, we have u|RA
= v|RA

= 0. So by Corollary 2.3,

{u, v}|RA
= 0.

Now the restriction of F = u + iv to U ′ is holomorphic, so by Proposition 2.11 we have
{u, v}|U ′ = g∗(du, du) = g∗(dv, dv). So since {u, v}|RA

= 0 we obtain dF = 0 at each point of
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RA ∩ U ′. Letting V ′ = ψ−1(U ′), we have F |V ′ = f ◦ (ψ|V ′)
−1, so we deduce that d f = 0 at each

point of (ψ|V ′)
−1(RA). The fact that each

�
U , V ′,ψ|V ′ ,

∂ f

∂ z j

�
is a holomorphic reducing chart then

follows immediately from the definition. �

Corollary 2.14. If (U , V,ψ, f ) is a holomorphic reducing chart for A around x such that f is not

identically zero on ψ−1(U), then x /∈ RA.

Proof. By Proposition 2.13 and induction, for each multi-index α we obtain a holomorphic re-

ducing chart for A around x of the form

�
U , Vα,ψ|Vα ,

∂ |α| f

∂ zα

�
where Vα is a neighborhood of Ū . If

it were the case that x ∈ RA we would then obtain that f vanishes to infinite order at ψ−1(x).

But since ψ−1(U) is connected and f is holomorphic this implies that f |ψ−1(U) is identically
zero. �

Theorem 2.15. Let A be a complex analytic subvariety of positive codimension in a Kähler man-

ifold (M ,ω, J), or more generally any closed subset of a complex analytic subvariety of positive

codimension. Then RA =∅, and so δ vanishes identically on L (A).

Proof. By definition, M is covered by the images of holomorphic charts ψα : Vα → M each

having the property that ψ−1
α (A) is contained in the zero locus of some holomorphic function

fα : Vα → C that is not identically zero on any nonempty open subset. Since RA ⊂ A, then, if
U is any connected open subset whose closure is compact and contained in ψα(Vα) the tuple
(U , Vα,ψα, fα) is a holomorphic reducing chart for A around any point of U . Such a U can be
found for any x ∈ψα(Vα), so Corollary 2.14 shows that ψα(Vα)∩ RA = ∅. So since the various
ψα(Vα) cover M , RA = ∅. �

Remark 2.16. As Remark 2.10 and the proof of Theorem 2.15 illustrate, arguments that show
that a point x does not lie in the rigid locus of some subset A often also show that x /∈ RB

whenever B is a closed subset of A. It seems natural to expect that one always has the inclusion
RB ⊂ RA whenever B ⊂ A, but I do not know a proof of this statement.
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