Lefschetz Fibrations and Pseudoholomorphic Curves

Michael Usher, MIT
March 26, 2004

This talk will discuss the equivalence of two pseudoholomorphic invariants. The first is the Gromov(-Taubes) Invariant

Let (X, ω) be a symplectic 4-manifold, j a generic tame almost complex structure, and $\alpha \in H^{2}(X, \mathbb{Z})$.
$G r(\alpha)$ counts the (possibly disconnected) j-holomorphic submanifolds Poincaré dual to α that pass through a generic set of $d(\alpha)=\frac{1}{2}\left(\alpha^{2}-\kappa \cdot \alpha\right)$ points. $\left(\kappa=c_{1}\left(T^{*} X\right)\right)$

Main technical difficulty: Multiple covers Our answer should be independent of j, but as we vary j a family of embedded square-zero tori PD to a class 2α can degenerate into double covers of a family of tori PD to the class α.

Taubes found a prescription for assigning contributions of the m-fold covers of curves PD to α to $G r(m \alpha)$ in such a way that $G r$ does nonetheless give an invariant (which moreover equals the Seiberg-Witten invariant for a corresponding spin c structure).
$G r$ counts pseudoholomorphic sets, whereas Gromov-Witten (GW) invariants count pseudoholomorphic maps $u: \Sigma \rightarrow X$. Using the GW viewpoint, the multiple cover issue is resolved by instead counting solutions to $\bar{\partial}_{j} u(x)=\nu(x, u(x))$ for a generic inhomogeneous term ν. Still:

Theorem 1. (Ionel-Parker) Gr may be expressed as a combination of $G W$ invariants.

Theorem 2. (Taubes) If $b^{+}(X)>1$, then $G r(\alpha)= \pm G r(\kappa-\alpha)$.

Proof. Immediate from the "charge-conjugation symmetry" in Seiberg-Witten theory and from $G r=S W$.

Goal: Understand Taubes duality symplectically rather than via gauge theory.

We'll do this by equating $G r$ with another invariant which has earlier been shown to satisfy the same duality. This invariant is constructed from a Lefschetz fibration structure on X.

Symplectic Lefschetz Fibrations

Assume $[\omega] \in H^{2}(X, \mathbb{Z})$. Where $L \rightarrow X$ has $c_{1}(L)=[\omega]$, Donaldson showed that for $k \gg 0$ $L^{\otimes k}$ has many "approximately holomorphic" sections $s_{k}\left(\left|\bar{\partial} s_{k}\right| \ll\left|\partial s_{k}\right|\right)$

Taking two of these gives a symplectic Lefschetz pencil

$$
\begin{aligned}
f_{k}: X & \longrightarrow \mathbb{P}^{1} \\
x & \mapsto\left[s_{k}^{0}(x): s_{k}^{1}(x)\right]
\end{aligned}
$$

defined away from a finite base locus $B_{k}=\left\{s_{k}^{0}=s_{k}^{1}=0\right\}$.
f_{k} lifts to the blowup X^{\prime} along B_{k} to give a symplectic Lefschetz fibration (SLF) $f: X^{\prime} \rightarrow \mathbb{P}^{1}$.

So after blowing up, X is viewed as a \mathbb{P}^{1}-parametrized family of Riemann surfaces $\left(\Sigma_{t}\right)$. $G r(\alpha)=G r\left(\pi_{k}^{*} \alpha\right)$, so from now on we'll replace X with X^{\prime}.

Let $f: X \rightarrow \mathbb{P}^{1}$ be a SLF.
Assume j is an almost complex structure on X with respect to which f is a pseudoholomorphic map. How does the Lefschetz fibration f see a j-holomorphic curve C ?

Let $r=[C] \cdot[$ fiber $] . C$ meets each fiber r times (with multiplicities), so C is identified with a family of elements in the symmetric products $S^{r} \Sigma_{t}\left(t \in \mathbb{P}^{1}\right)$.
From the $\operatorname{SLF} f: X \rightarrow \mathbb{P}^{1}$, Donaldson and Smith constructed the relative Hilbert scheme

$$
F: X_{r}(f) \rightarrow \mathbb{P}^{1}
$$

whose fibers are $F^{-1}(t)=S^{r} f^{-1}(t)$.
So

$$
\text { curve } C \rightsquigarrow \text { section } s_{C} \text { of } X_{r}(f)
$$

From j, we can build an almost complex structure \mathbb{J}_{j} on $X_{r}(f)$ by naively "taking the symmetric product" of j, and then

$$
C \text { is } j \text {-holomorphic } \Leftrightarrow \bar{\partial}_{\mathbb{J}_{j}} s_{C}=0 \text {. }
$$

This suggests counting holomorphic submanifolds of X by counting holomorphic sections of $X_{r}(f)$. \mathbb{J}_{j} is only Hölder, though, so we can't directly use it to compute GW invariants in $X_{r}(f)$.
Theorem 3. (Smith) 1) Given $\alpha \in H^{2}(X, \mathbb{Z})$, there is at most one homotopy class c_{α} of sections of $X_{r}(f)$ which descend to sets Poincaré dual to α.
2) $d(\alpha):=$ virdim(holomorphic submanifolds of X $P D$ to α) is also the virtual dimension of the space of J-holomorphic sections of $X_{r}(f)$ in class c_{α} (for a generic smooth J on $X_{r}(f)$ which will generally have nothing to do with any almost complex structure on X).

Definition 1. The standard surface count $\mathcal{D} \mathcal{S}_{(X, f)}(\alpha)$ is the Gromov-Witten invariant counting sections in class c_{α} which descend to curves passing through a generic set of $d(\alpha)$ points in X.
Theorem 4. (Smith) If $f_{k}: X \rightarrow \mathbb{P}^{1}$ is a symplectic Lefschetz pencil lifting to a SLF $f: X^{\prime} \rightarrow \mathbb{P}^{1}$ via the blowup $\pi_{k}: X^{\prime} \rightarrow X$, then

$$
\mathcal{D} \mathcal{S}_{\left(X^{\prime}, f\right)}\left(\pi_{k}^{*} \beta\right)= \pm \mathcal{D} \mathcal{S}_{\left(X^{\prime}, f\right)}\left(\pi_{k}^{*}\left(\kappa_{X}-\beta\right)\right)
$$

for sufficiently large k, assuming that $b^{+}(X)>b_{1}(X)+1$.
Theorem 5. (U) If $f:(X, \omega) \rightarrow \mathbb{P}^{1}$ is a SLF and $\omega \cdot \alpha<\omega \cdot($ fiber $)$ then

$$
G r(\alpha)=\mathcal{D} \mathcal{S}_{(X, f)}(\alpha)
$$

Remarks: 1) The assumption on the fibers allows us to rule out the possibility of bubbling for the sections of $X_{r}(f)$. In Donaldson's construction, the size of the fibers tends to infinity with k, so the hypothesis can always be satisfied in that context.
2) Since $\operatorname{Gr}\left(\pi_{k}^{*} \beta\right)=\operatorname{Gr}(\beta)$, this combines with Smith's result to give a new proof of Taubes duality under the stronger assumption
$b^{+}>b_{1}+1$.
3) It follows that $\mathcal{D} \mathcal{S}_{(X, f)}$ is independent of the fibration f, which was previously not known.

Outline of Proof

Because of the correspondence $\mathcal{M}_{j}^{X}(\alpha)=\mathcal{M}_{\mathbb{J}_{j}}^{X_{r}(f)}\left(c_{\alpha}\right)$, we'd like to come as close to using the (only Hölder!) almost complex structure \mathbb{J}_{j} to evaluate $\mathcal{D} \mathcal{S}$ as possible.

Why \mathbb{J}_{j} is only Hölder: Suppose j is given locally by $T_{j}^{0,1}=\left\langle\partial_{\bar{z}}+b(z, w) \partial_{w}, \partial_{\bar{w}}\right\rangle$. Recall that the natural coordinates on $S^{r} \mathbb{C}$ are the elementary symmetric polynomials

$$
\sigma_{k}=\sum_{i_{1}<\cdots<i_{k}} w_{i_{1}} \cdots w_{i_{k}}
$$

\mathbb{J}_{j} is given locally by

$$
T_{\mathbb{J}_{j}}^{0,1}=\left\langle\partial_{\bar{z}}+\sum_{d=1}^{r} b_{d}\left(z, \sigma_{1}, \ldots, \sigma_{r}\right) \partial_{\sigma_{d}}, \partial_{\bar{\sigma}_{1}}, \ldots, \partial_{\bar{\sigma}_{r}}\right\rangle
$$

where the functions b_{d} on $\mathbb{C} \times S^{r} \mathbb{C}$ descend from
$\hat{b}_{d}\left(z, w_{1}, \ldots, w_{r}\right)=\sum_{k=1}^{r} \sigma_{d-1}\left(w_{1}, \ldots, \widehat{w_{k}}, \ldots, w_{r}\right) b\left(z, w_{k}\right)$
on $\mathbb{C} \times \mathbb{C}^{r}$. Usually, smooth symmetric functions on \mathbb{C}^{r} only descend to Hölder-continuous functions on $S^{r} \mathbb{C}$, so for general j, \mathbb{J}_{j} will only be Hölder.

Note, though, that if b is holomorphic in w, then so is \hat{b}_{d}, so since holomorphic symmetric functions on \mathbb{C}^{r} descend to holomorphic functions on $S^{r} \mathbb{C}$, \mathbb{J}_{j} will be smooth in this case. b being holomorphic corresponds to j being integrable, so if j is integrable, then so is \mathbb{J}_{j}.

Pushing this a little farther, for a non-multiply covered j-holomorphic curve C, if j happens to be integrable near all of the branch points of the restriction $\left.f\right|_{C}$, then \mathbb{J}_{j} will be smooth on some neighborhood of s_{C}. It turns out to be possible to compute $G r$ using an almost complex structure j that has this property for all of the curves we wish to count, so that \mathbb{J}_{j} will be smooth near all of the sections in the relevant moduli space, allowing us to use \mathbb{J}_{j} directly to compute $\mathcal{D} \mathcal{S}$.
C then contributes to $G r$ and s_{C} to $\mathcal{D} \mathcal{S}$ each with some weight ± 1, and we need to determine whether these weights are the same.

The weights are determined by spectral flows: Where D_{C}^{j} is the (Fredholm, index-zero) linearization of $\bar{\partial}_{j}$ at the embedding of C, acting on sections which preserve the incidence conditions, we take a path of operators D^{t} connecting D_{C}^{j} to a surjective, complex-linear operator \tilde{D} and count the number of t for which D^{t} has a kernel; the contribution of C is -1 raised to that number.

Observation: If \tilde{j} is integrable near C and makes both C and the fibration holomorphic, then

1) $D_{C}^{\tilde{j}}$ is complex-linear, and
2) $\mathbb{J}_{\tilde{j}}$ is also integrable, so $D_{s_{C}}^{\mathbb{J}_{\tilde{j}}}$ is also complex-linear.
Strategy: Find a path j_{t} of almost complex structures making both C and the fibration holomorphic, starting at j and ending at an integrable almost structure \tilde{j}; for the spectral flows, use the paths $D_{C}^{j_{t}}$ and $D_{s_{C}}^{\mathbb{J}_{j_{t}}}$. The special choice of j we made earlier makes it straightforward to find such a path, and:

Proposition 1. In this situation, for all t

$$
\operatorname{ker} D_{C}^{j_{t}}=0 \Leftrightarrow \operatorname{ker} D_{s_{C}}^{\mathbb{J}_{j_{t}}}=0
$$

So the eigenvalue crossings for the two flows occur at exactly the same times, and we conclude that if C is not multiply covered, the contribution of C to $G r$ is the same as that of s_{C} to $\mathcal{D S}$.

For multiply covered curves, this direct comparison via spectral flows is not possible. If C is an embedded j-holomorphic curve and $m>1$, we obtain a \mathbb{J}_{j} - holomorphic section $s_{m C}$ which is completely contained in the diagonal stratum Δ where \mathbb{J}_{j} fails to be C^{1}, and this issue can't be evaded by the methods I discussed earlier.

Taubes found weights $r(C, m)$ (generally not equal to ± 1) with which m-fold covers of C should contribute to $G r$ in order for $G r$ to be an invariant.

Even though \mathbb{J}_{j} doesn't fit into the usual GW invariant machinery because it's not C^{1}, we can still make sense of "the contribution of $s_{m C}$ to $\mathcal{D S}{ }^{\prime \prime}$ (denoted $\left.r^{\prime}(C, m)\right)$ thanks to Gromov compactness: If we perturb \mathbb{J}_{j} to a smooth, regular, almost complex structure J which is Hölder-close to \mathbb{J}_{j}, the J-holomorphic sections will all be close to the \mathbb{J}_{j}-holomorphic sections. So $s_{m C}$ will have a well-defined "entourage" of J-holomorphic sections nearby, and counting the members of this entourage with signs in the usual way gives the contribution $r^{\prime}(C, m)$.

We'd like to say, then, that $r(C, m)=r^{\prime}(C, m)$. Both of these numbers are determined by the restriction of j to a small neighborhood of C, so we consider the effect of varying the almost complex structure on such a small neighborhood among those which make both C and the fibration holomorphic.

The two basic ingredients:

1) When \tilde{j} is integrable and suitably nondegenerate, $r_{\tilde{j}}(C, m)=r_{\tilde{j}}^{\prime}(C, m)=1$.
2) When we vary j along a generic path, r and r^{\prime} both remain constant except at certain points, where they both transform according to certain identical wall-crossing formulas.
For (1), that $r_{\tilde{j}}(C, m)=1$ is just part of the definition of $G r$ (the only reason that this is the natural choice, as far as I know, is that it causes $G r$ to equal $S W$.) That $r_{\tilde{j}}^{\prime}(C, m)=1$ is easy to see: since \tilde{j} is integrable, $\mathbb{J}_{\tilde{j}}$ is as well (in particular it's smooth, so we can use it directly to evaluate $\mathcal{D S}$), and at least assuming nondegeneracy $s_{m C}$ will contribute +1 to $\mathcal{D} \mathcal{S}$.

For (2), when Taubes introduced $G r$ he discovered the ways in which the moduli spaces in X could change under a generic variation in the complex structure, and the specific wall crossing formulas for the $r(C, m)$ were forced on him in order that $G r$ be independent of the choice of almost complex structure. Since $\mathcal{D S}$ is likewise independent of the almost complex structure used to define it, the $r^{\prime}(C, m)$ necessarily satisfy the same formulas.

By taking a path of almost complex structures joining our original structure j to a structure \tilde{j} which is integrable near C, we conclude that because r and r^{\prime} are the same at the end of path and change in the same way along it, they must agree at the start as well. That $G r=\mathcal{D S}$ then follows.

