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This talk will discuss the equivalence of two
pseudoholomorphic invariants. The first is the
Gromov(-Taubes) Invariant

Let (X, ω) be a symplectic 4-manifold, j a generic
tame almost complex structure, and
α ∈ H2(X,Z).

Gr(α) counts the (possibly disconnected)
j-holomorphic submanifolds Poincaré dual to α

that pass through a generic set of
d(α) = 1

2 (α2 − κ · α) points. (κ = c1(T ∗X))

Main technical difficulty: Multiple covers
Our answer should be independent of j, but as we
vary j a family of embedded square-zero tori PD
to a class 2α can degenerate into double covers of
a family of tori PD to the class α.

.
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Taubes found a prescription for assigning
contributions of the m-fold covers of curves PD to
α to Gr(mα) in such a way that Gr does
nonetheless give an invariant (which moreover
equals the Seiberg-Witten invariant for a
corresponding spinc structure).

Gr counts pseudoholomorphic sets, whereas
Gromov-Witten (GW) invariants count
pseudoholomorphic maps u : Σ → X.
Using the GW viewpoint, the multiple cover issue
is resolved by instead counting solutions to
∂̄ju(x) = ν(x, u(x)) for a generic inhomogeneous
term ν. Still:

Theorem 1. (Ionel-Parker) Gr may be expressed
as a combination of GW invariants.
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Theorem 2. (Taubes) If b+(X) > 1, then
Gr(α) = ±Gr(κ− α).

Proof. Immediate from the “charge-conjugation
symmetry” in Seiberg-Witten theory and from
Gr = SW .

Goal: Understand Taubes duality symplectically
rather than via gauge theory.

We’ll do this by equating Gr with another
invariant which has earlier been shown to satisfy
the same duality. This invariant is constructed
from a Lefschetz fibration structure on X.
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Symplectic Lefschetz Fibrations
Assume [ω] ∈ H2(X,Z). Where L → X has
c1(L) = [ω], Donaldson showed that for k À 0
L⊗k has many “approximately holomorphic”
sections sk (|∂̄sk| ¿ |∂sk|)
Taking two of these gives a symplectic Lefschetz
pencil

fk : X 99K P1

x 7→ [s0
k(x) : s1

k(x)]

defined away from a finite base locus
Bk = {s0

k = s1
k = 0}.

fk lifts to the blowup X ′ along Bk to give a
symplectic Lefschetz fibration (SLF) f : X ′ → P1.

So after blowing up, X is viewed as a
P1-parametrized family of Riemann surfaces (Σt).

Gr(α) = Gr(π∗kα), so from now on we’ll replace X

with X ′.
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Let f : X → P1 be a SLF.
Assume j is an almost complex structure on X

with respect to which f is a pseudoholomorphic
map. How does the Lefschetz fibration f see a
j-holomorphic curve C?

Let r = [C] · [fiber]. C meets each fiber r times
(with multiplicities), so C is identified with a
family of elements in the symmetric products
SrΣt (t ∈ P1).

From the SLF f : X → P1, Donaldson and Smith
constructed the relative Hilbert scheme

F : Xr(f) → P1

whose fibers are F−1(t) = Srf−1(t).

So
curve C Ã section sC of Xr(f)
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From j, we can build an almost complex structure
Jj on Xr(f) by naively “taking the symmetric
product” of j, and then

C is j-holomorphic ⇔ ∂̄Jj sC = 0.

This suggests counting holomorphic submanifolds
of X by counting holomorphic sections of Xr(f).
Jj is only Hölder, though, so we can’t directly use
it to compute GW invariants in Xr(f).

Theorem 3. (Smith) 1) Given α ∈ H2(X,Z),
there is at most one homotopy class cα of sections
of Xr(f) which descend to sets Poincaré dual to
α.
2) d(α):=virdim(holomorphic submanifolds of X

PD to α) is also the virtual dimension of the
space of J-holomorphic sections of Xr(f) in class
cα (for a generic smooth J on Xr(f) which will
generally have nothing to do with any almost
complex structure on X).
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Definition 1. The standard surface count
DS(X,f)(α) is the Gromov-Witten invariant
counting sections in class cα which descend to
curves passing through a generic set of d(α)
points in X.

Theorem 4. (Smith) If fk : X 99K P1 is a
symplectic Lefschetz pencil lifting to a SLF
f : X ′ → P1 via the blowup πk : X ′ → X, then

DS(X′,f)(π∗kβ) = ±DS(X′,f)(π∗k(κX − β))

for sufficiently large k, assuming that
b+(X) > b1(X) + 1.

Theorem 5. (U) If f : (X, ω) → P1 is a SLF
and ω · α < ω · (fiber) then

Gr(α) = DS(X,f)(α).

8



Remarks: 1) The assumption on the fibers
allows us to rule out the possibility of bubbling
for the sections of Xr(f). In Donaldson’s
construction, the size of the fibers tends to
infinity with k, so the hypothesis can always be
satisfied in that context.
2) Since Gr(π∗kβ) = Gr(β), this combines with
Smith’s result to give a new proof of Taubes
duality under the stronger assumption
b+ > b1 + 1.
3) It follows that DS(X,f) is independent of the
fibration f , which was previously not known.

Outline of Proof
Because of the correspondence
MX

j (α) = MXr(f)
Jj (cα), we’d like to come as close

to using the (only Hölder!) almost complex
structure Jj to evaluate DS as possible.
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Why Jj is only Hölder: Suppose j is given locally
by T 0,1

j = 〈∂z̄ + b(z, w)∂w, ∂w̄〉. Recall that the
natural coordinates on SrC are the elementary
symmetric polynomials

σk =
∑

i1<···<ik

wi1 · · ·wik
.

Jj is given locally by

T 0,1
Jj = 〈∂z̄ +

r∑

d=1

bd(z, σ1, . . . , σr)∂σd
, ∂σ̄1 , . . . , ∂σ̄r 〉

where the functions bd on C× SrC descend from

b̂d(z, w1, . . . , wr) =
r∑

k=1

σd−1(w1, . . . , ŵk, . . . , wr)b(z, wk)

on C× Cr. Usually, smooth symmetric functions
on Cr only descend to Hölder-continuous
functions on SrC, so for general j, Jj will only be
Hölder.
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Note, though, that if b is holomorphic in w, then
so is b̂d, so since holomorphic symmetric functions
on Cr descend to holomorphic functions on SrC,
Jj will be smooth in this case. b being
holomorphic corresponds to j being integrable, so
if j is integrable, then so is Jj .

Pushing this a little farther, for a non-multiply
covered j-holomorphic curve C, if j happens to
be integrable near all of the branch points of the
restriction f |C , then Jj will be smooth on some
neighborhood of sC . It turns out to be possible to
compute Gr using an almost complex structure j

that has this property for all of the curves we
wish to count, so that Jj will be smooth near all
of the sections in the relevant moduli space,
allowing us to use Jj directly to compute DS.

C then contributes to Gr and sC to DS each with
some weight ±1, and we need to determine
whether these weights are the same.
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The weights are determined by spectral flows:
Where Dj

C is the (Fredholm, index-zero)
linearization of ∂̄j at the embedding of C, acting
on sections which preserve the incidence
conditions, we take a path of operators Dt

connecting Dj
C to a surjective, complex-linear

operator D̃ and count the number of t for which
Dt has a kernel; the contribution of C is −1
raised to that number.

Observation: If j̃ is integrable near C and makes
both C and the fibration holomorphic, then
1) Dj̃

C is complex-linear, and

2) Jj̃ is also integrable, so D
Jj̃
sC is also

complex-linear.
Strategy: Find a path jt of almost complex
structures making both C and the fibration
holomorphic, starting at j and ending at an
integrable almost structure j̃; for the spectral
flows, use the paths Djt

C and D
Jjt
sC .

The special choice of j we made earlier makes it
straightforward to find such a path, and:
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Proposition 1. In this situation, for all t

kerDjt

C = 0 ⇔ kerD
Jjt
sC = 0.

So the eigenvalue crossings for the two flows occur
at exactly the same times, and we conclude that
if C is not multiply covered, the contribution of C

to Gr is the same as that of sC to DS.

For multiply covered curves, this direct
comparison via spectral flows is not possible. If C

is an embedded j-holomorphic curve and m > 1,
we obtain a Jj- holomorphic section smC which is
completely contained in the diagonal stratum ∆
where Jj fails to be C1, and this issue can’t be
evaded by the methods I discussed earlier.

Taubes found weights r(C, m) (generally not
equal to ±1) with which m-fold covers of C

should contribute to Gr in order for Gr to be an
invariant.
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Even though Jj doesn’t fit into the usual GW
invariant machinery because it’s not C1, we can
still make sense of “the contribution of smC to
DS” (denoted r′(C, m)) thanks to Gromov
compactness: If we perturb Jj to a smooth,
regular, almost complex structure J which is
Hölder-close to Jj , the J-holomorphic sections
will all be close to the Jj-holomorphic sections.
So smC will have a well-defined “entourage” of
J-holomorphic sections nearby, and counting the
members of this entourage with signs in the usual
way gives the contribution r′(C,m).

We’d like to say, then, that r(C, m) = r′(C, m).
Both of these numbers are determined by the
restriction of j to a small neighborhood of C, so
we consider the effect of varying the almost
complex structure on such a small neighborhood
among those which make both C and the
fibration holomorphic.
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The two basic ingredients:
1) When j̃ is integrable and suitably
nondegenerate, rj̃(C, m) = r′

j̃
(C, m) = 1.

2) When we vary j along a generic path, r and r′

both remain constant except at certain points,
where they both transform according to certain
identical wall-crossing formulas.
For (1), that rj̃(C, m) = 1 is just part of the
definition of Gr (the only reason that this is the
natural choice, as far as I know, is that it causes
Gr to equal SW .) That r′

j̃
(C, m) = 1 is easy to

see: since j̃ is integrable, Jj̃ is as well (in
particular it’s smooth, so we can use it directly to
evaluate DS), and at least assuming
nondegeneracy smC will contribute +1 to DS.
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For (2), when Taubes introduced Gr he
discovered the ways in which the moduli spaces in
X could change under a generic variation in the
complex structure, and the specific wall crossing
formulas for the r(C, m) were forced on him in
order that Gr be independent of the choice of
almost complex structure. Since DS is likewise
independent of the almost complex structure used
to define it, the r′(C, m) necessarily satisfy the
same formulas.

By taking a path of almost complex structures
joining our original structure j to a structure j̃

which is integrable near C, we conclude that
because r and r′ are the same at the end of path
and change in the same way along it, they must
agree at the start as well. That Gr = DS then
follows.
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