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Let E // M
θ

vv U_
i

be a vector bundle over a closed manifold M,

with rank(E) = dimM, and θ ∈ Γ(E) a section transverse to 0E

(e.g., E = T∗M, θ ∈ Ω1(M)).
Standard facts:

(i) If ε : M → E is a sufficiently C1-small section, then θ + ε has

exactly as many zeros as θ .



Zeros of 1-forms The Novikov complex The Hamiltonian Floer complex Filtration-based invariants

Let E // M
θ

vv U_
i

be a vector bundle over a closed manifold M,

with rank(E) = dimM, and θ ∈ Γ(E) a section transverse to 0E

(e.g., E = T∗M, θ ∈ Ω1(M)).
Standard facts:

(i) If ε : M → E is a sufficiently C1-small section, then θ + ε has

exactly as many zeros as θ .



Zeros of 1-forms The Novikov complex The Hamiltonian Floer complex Filtration-based invariants

Let E // M
θ

vv U_
i

be a vector bundle over a closed manifold M,

with rank(E) = dimM, and θ ∈ Γ(E) a section transverse to 0E

(e.g., E = T∗M, θ ∈ Ω1(M)).
Standard facts:

(i) If ε : M → E is a sufficiently C1-small section, then θ + ε has

exactly as many zeros as θ .

0



Zeros of 1-forms The Novikov complex The Hamiltonian Floer complex Filtration-based invariants

Let E // M
θ

vv U_
i

be a vector bundle over a closed manifold M,

with rank(E) = dimM, and θ ∈ Γ(E) a section transverse to 0E

(e.g., E = T∗M, θ ∈ Ω1(M)).
Standard facts:

(i) If ε : M → E is a sufficiently C1-small section, then θ + ε has

exactly as many zeros as θ .

0



Zeros of 1-forms The Novikov complex The Hamiltonian Floer complex Filtration-based invariants

(ii) If ε : M → E is a sufficiently C0-small section, then θ + ε has

at least as many zeros as θ .

0
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When E = T∗M, a standard choice of Ck-small perturbation of

θ ∈ Ω1(M) is θ +df , where f is a Ck+1-small function.

So the preceding shows that, if θ ∈ Ω1(M) vanishes transversely,

(i) θ +df has exactly as many zeros as θ if f is C2-small; and

(ii) θ +df has at least as many zeros as θ if f is C1-small.
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Curiously, when θ is closed, something stronger is true:

Stability Theorem (Cornea-Ranicki, U.)

If θ ∈ Ω1(M) vanishes transversely and satisfies dθ = 0, there is

δ > 0 such that, whenever

osc(f) := max f −min f < δ and (θ +df) ⋔ 0T∗M,

one has

#(θ +df)−1(0) ≥ #θ−1(0).

In fact, choosing a metric on M and letting V be the vector field

metrically dual to θ , one can take

δ = inf

{

∫

γ
θ
∣

∣

∣

∣

γ : R → M nonconstant, γ̇ = V(γ)

}
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θ does need to be closed for the theorem to hold; for instance

the non-closed form

ydx +(x2 −1)dy

can have its two zeros eliminated by adding d(2yχ(y)) where χ
is a cutoff function supported near zero
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The proof of the stability theorem uses the filtrations on the

Novikov complexes of θ and θ +df .

Given a transversely vanishing closed 1-form θ , choose an

abelian cover

Γ � M̃

π
��

M

so that π∗θ = dA , and use a Riemannian metric on M̃ pulled

back from a suitably generic one on M.
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Thus

Crit(A ) = (π∗θ)−1(0) ⊂ M̃

consists of an orbit of Γ for every zero of θ ∈ Ω1(M).
The Novikov chain complex is

CN∗(A ) =

{

∞

∑
i=1

nipi

∣

∣

∣

∣

∣

ni ∈ Z,pi ∈ Crit(A ),A (pi) ց−∞

}

.

CN∗(A ) is a free module of rank #θ−1(0) over the Novikov ring

ΛΓ,[θ ] (this is a completion of the group ring of Γ, depending on

the de Rham cohomology class [θ ]; if [θ ] = 0 we can choose

Γ = {0} and then ΛΓ,[θ ] = Z).
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One has

CN∗(A ) ∼= (ΛΓ,[θ ])
#θ−1(0)

The goal is to show that #(θ +df)−1(0) ≥ #θ−1(0); since

π∗(θ +df) = d(A +π∗f),

to achieve our goal it suffices to construct a monomorphism

CN∗(A )  CN∗(A +π∗f).
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The boundary operator on CN∗(A ) “counts negative gradient

flowlines of A ”:

∂p = ∑
q

n(p,q)q

where

n(p,q) =





signed count of isolated, finite-energy

solutions γ : R → M̃ to γ̇ = −∇A (γ)
with γ(−∞) = p, γ(∞) = q.



 .

Note that, if n(p,q) 6= 0, then A (p)−A (q) ≥ δ > 0.
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CN∗(A ) admits a R-valued filtration: take CNλ
∗ (A ) ≤ CN∗(A )

equal to the set of all formal sums ∑nipi of critical points pi of

A having A (pi) ≤ λ . Note that

∂ : CNλ
∗ (A ) → CNλ−δ

∗−1 (A ).

The goal is to compare the sizes of the zero sets of θ and θ +df

for f C0-small; these are the ranks, respectively, of the

ΛΓ,[θ ]-modules CN∗(A ) and CN∗(A +π∗f).
These complexes are related by various maps, and the proof

involves analyzing the effects of these maps on the filtrations.
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One has:

A chain map

Φ+
− : CN∗(A ) → CN∗(A +π∗f)

constructed by counting isolated solutions to

γ̇(s) = −∇M̃
A (s,γ(s)) (1)

where A (s, ·) =

{

A s ≪ 0

A +π∗f s ≫ 0

For suitably-chosen A (s, ·), one has

(A +π∗f)(γ(∞))−A (γ(−∞)) =
∫ ∞

−∞

d

ds
(A (s,γ(s)))ds ≤ max f

for any solution γ to (1), which translates to the statement

that Φ+
− restricts as a map

CNλ
∗ (A ) → CNλ+max f

∗ (A +π∗f).
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One has:

A chain map

Φ+
− : CN∗(A ) → CN∗(A +π∗f)

which restricts as

CNλ
∗ (A ) → CNλ+max f

∗ (A +π∗f).

A similar map

Φ−
+ : CN∗(A +π∗f) → CN∗(A )

which restricts as

CNλ
∗ (A +π∗f) → CNλ−min f

∗ (A ),

so

Φ−
+ ◦Φ+

− : CNλ
∗ (A ) → CN

λ+osc(f)
∗ (A )
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A map

K : CN∗(A ) → CN∗+1(A ),

constructed from a (path of (paths from A to A )), which

restricts as

K : CNλ
∗ (A ) → CN

λ+osc(f)
∗+1 (A )

and obeys

Φ−
+ ◦Φ+

−− I = ∂K +K∂ .
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But recall that ∂ strictly lowers the filtration by δ , so if osc(f) < δ
we have

Φ−
+ ◦Φ+

− = I +A

where A strictly lowers the filtration.

But then ∑∞
k=0(−A)k is a well-defined inverse to I +A.

Thus Φ+
− : CN∗(A ) → CN∗(A +π∗f) has a left inverse, so

#(θ +df)−1(0) = rankCN∗(A +π∗f) ≥ rankCN∗(A ) = #θ−1(0).
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Now let (M,ω) be a closed symplectic manifold (ω ∈ Ω2(M)
nondegenerate, dω = 0). Write S1 = R/Z.

Any smooth H : S1 ×M → R ;

time-dependent “Hamiltonian vector

field” XH : ω(XH(t, ·), ·) = d(H(t, ·))

;

Hamiltonian flow {φ t
H}t∈R :

d
dt(φ

t
H(p)) = XH(t,φ t

H(p)).

On

L0M = {contractible loops γ : S1 → M}

consider the 1-form

(θH)γ(ξ ) =
∫ 1

0
(ω(γ̇(t),ξ (t))−dH(ξ (t)))dt.
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The zeros of θH are precisely those contractible loops γ of the

form γ(t) = φ t
H(p) where p ∈ Fix(φ1

H).
θH is closed, and vanishes transversely if all fixed points of φ1

H

are nondegenerate. Lifting to a suitable cover π : L̃0M → L0M,

we have

π∗θH = dAH where AH([γ,u]) = −
∫

D2
u∗ω −

∫ 1

0
H(t,γ(t))dt.

Formally, the Floer chain complex of H is the Novikov chain

complex of this “action functional” on L̃0M.
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Theorem (Floer, Hofer-Salamon, Liu-Tian, Fukaya-Ono)

This construction can be carried out on any closed symplectic

manifold, producing a chain complex CF∗(H) whose homology

HF∗(H) is, independently of H, canonically isomorphic to

H∗(M,Q)⊗Λ.

Corollary (Variant of Arnol’d conjecture)

If all fixed points of H are nondegenerate then

#Fix(φ1
H) ≥ ∑

i

bi(M;Q).
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While the just-stated results are about arbitrary

(nondegenerate) H, interesting information specific to H can be

obtained from the R-filtration on the chain complex:

CFλ
∗ (H) =

{

∞

∑
i=1

ai[γi,ui]

∣

∣

∣

∣

[γi,ui] ∈ Crit(AH)
λ ≥ AH([γi,ui]) ց−∞

}

.

Analogy: In Heegaard Floer homology one constructs a chain

complex whose chain homotopy type depends only on the

manifold; the choice of a knot induces a filtration which carries

significant information about the knot.
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The same argument as in case of a closed one-form on a

compact manifold shows that (where we set

‖H‖ =
∫ 1

0

(

max
p∈M

H(t,p)−min
p∈M

H(t,p)

)

dt

for H : S1 ×M → R):

Theorem

If H : S1 ×M → R is a nondegenerate Hamiltonian, there is δ > 0

such that for any nondegenerate Hamiltonian K with

‖H−K‖ < δ , we have

#Fix(φ1
K) ≥ #Fix(φ1

H).

Again, this is somewhat surprising, since φ1
K is only “C−1-close”

to φ1
H.
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Theorem (U.)

Given H, the filtered chain isomorphism type of CF∗(H) is

independent of the other auxiliary data involved in its

construction, and (for H suitably normalized) in fact depends only

on the homotopy class rel endpoints of the path {φ t
H}0≤t≤1 in the

group of Hamiltonian diffeomorphisms.

Hence invariants of the filtered chain isomorphism type of

CF∗(H) are invariants of the representative of {φ t
H}0≤t≤1 in H̃am.

Because the standard maps CF∗(H) → CF∗(K) restrict as

CFλ
∗ (H) → CF

λ+‖H−K‖
∗ (K) (where

‖H‖ =
∫ 1

0

(

maxp∈M H(t,p)−minp∈M H(t,p)
)

dt), such invariants

are often continuous with respect to the C0 norm on the space of

Hamiltonians (and with respect to the “Hofer norm” on H̃am).
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One example of such an invariant is the Oh–Schwarz spectral

invariant: Recall there is a canonical isomorphism

HF∗(H) ∼= H∗(M)⊗Λ. So for a ∈ H∗(M)⊗Λ we can put

ρ(H;a) = inf{filtration level of c|c ∈ CF∗(H) represents a}.

Remark

The above makes sense when φ1
H is nondegenerate, but the

definition can be extended to arbitrary H by continuity.

ρ is very similar to the τ invariant in knot Floer homology.
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ρ has diverse applications (e.g., in Entov-Polterovich’s theory of

quasimorphisms on H̃am); I’ll focus here on its applications to

displacement energy.

For compact K ⊂ M, put

e(K,M) = inf{‖H‖|φ1
H(K)∩K = ∅}.

Now

‖H‖=
∫ 1

0

(

max
p∈M

H(t,p)−min
p∈M

H(t,p)

)

dt,

whereas φ1
H is constructed from dH, so

it’s a bit surprising that e(K,M) would

ever be finite but positive.



Zeros of 1-forms The Novikov complex The Hamiltonian Floer complex Filtration-based invariants

ρ has diverse applications (e.g., in Entov-Polterovich’s theory of

quasimorphisms on H̃am); I’ll focus here on its applications to

displacement energy.

For compact K ⊂ M, put

e(K,M) = inf{‖H‖|φ1
H(K)∩K = ∅}.

Now

‖H‖=
∫ 1

0

(

max
p∈M

H(t,p)−min
p∈M

H(t,p)

)

dt,

whereas φ1
H is constructed from dH, so

it’s a bit surprising that e(K,M) would

ever be finite but positive.



Zeros of 1-forms The Novikov complex The Hamiltonian Floer complex Filtration-based invariants

ρ has diverse applications (e.g., in Entov-Polterovich’s theory of

quasimorphisms on H̃am); I’ll focus here on its applications to

displacement energy.

For compact K ⊂ M, put

e(K,M) = inf{‖H‖|φ1
H(K)∩K = ∅}.

Now

‖H‖=
∫ 1

0

(

max
p∈M

H(t,p)−min
p∈M

H(t,p)

)

dt,

whereas φ1
H is constructed from dH, so

it’s a bit surprising that e(K,M) would

ever be finite but positive.



Zeros of 1-forms The Novikov complex The Hamiltonian Floer complex Filtration-based invariants

ρ has diverse applications (e.g., in Entov-Polterovich’s theory of

quasimorphisms on H̃am); I’ll focus here on its applications to

displacement energy.

For compact K ⊂ M, put

e(K,M) = inf{‖H‖|φ1
H(K)∩K = ∅}.

Now

‖H‖=
∫ 1

0

(

max
p∈M

H(t,p)−min
p∈M

H(t,p)

)

dt,

whereas φ1
H is constructed from dH, so

it’s a bit surprising that e(K,M) would

ever be finite but positive.



Zeros of 1-forms The Novikov complex The Hamiltonian Floer complex Filtration-based invariants

Write p2 : S1 ×M → M for the projection.

Theorem (U., generalizing Frauenfelder-Ginzburg-Schlenk)

For any Hamiltonian G : S1 ×M → R we have

ρ(G; [M]) ≤ e(p2(supp(G)),M).

Theorem (U., generalizing Oh)

If G is independent of the S1 factor, and if all nonconstant

contractible periodic orbits of XG have period > 1, then

ρ(G; [M]) = max(−G).



Zeros of 1-forms The Novikov complex The Hamiltonian Floer complex Filtration-based invariants

Write p2 : S1 ×M → M for the projection.

Theorem (U., generalizing Frauenfelder-Ginzburg-Schlenk)

For any Hamiltonian G : S1 ×M → R we have

ρ(G; [M]) ≤ e(p2(supp(G)),M).

Theorem (U., generalizing Oh)

If G is independent of the S1 factor, and if all nonconstant

contractible periodic orbits of XG have period > 1, then

ρ(G; [M]) = max(−G).



Zeros of 1-forms The Novikov complex The Hamiltonian Floer complex Filtration-based invariants

Corollary

Where the Hofer–Zehnder capacity cHZ(K) is defined as

sup

{

maxG

∣

∣

∣

∣

G : M → R, supp(G) ⊂ K, all nonconstant

periodic orbits of XG have period > 1

}

,

one has

cHZ(K) ≤ e(K,M).

This inequality cHZ ≤ e is sharp, as can be seen by explicit

examples with K equal to a closed ball.

Gromov’s nonsqueezing theorem follows as a quick

consequence, as do some (new) generalizations, e.g., if Σ2n−2k is

closed and N2n−2 is closed or Stein then Σ×B2k(r)
symplectically embeds in N×B2(R) only if r ≤ R.
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Another filtration-based invariant: the boundary depth. Set

β (H)= inf
{

β ≥ 0|(∀λ > 0)(CFλ
∗ (H)∩∂ (CF∗(H)) ⊂ ∂

(

CF
λ+β
∗ (H)

)}

Non-obviously, β (H) is finite (U.); in fact one has (Oh)

β (H) ≤ ‖H‖.

As with the spectral invariant, the definition above assumes H

nondegenerate, but then extends continuously to degenerate H.

Theorem (U.)

If H ≥ 0 everywhere or H ≤ 0 everywhere, then

β (H) ≤ 2e(p2(supp(H)),M).
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An application of the boundary depth:

Theorem (U., generalizing Ginzburg, Kerman)

If N ⊂ M is a coisotropic submanifold ((TN)⊥ω ⊂ TN) satisfying

certain intrinsic conditionsa, then e(N,M) > 0.

anamely, N is stable (in the sense of Ginzburg) and 〈ω,π2(N)〉 is discrete.
Alternately, 〈[ω],π2(N)〉 is discrete and N admits a metric making its characteristic
foliation totally geodesic and having no contractible leafwise geodesics.

Idea of proof: For U ⊃ N consider a Hamiltonian HU supported

in U whose associated XHU
generates a reparametrization of the

leafwise geodesic flow of N. If e(N,M) = 0, then the β (HU)
become arbitrarily small, and this forces the existence of a

geodesic that violates the assumptions on N.

β can also be used to show that certain Hamiltonian

diffeomorphisms supported near subsets S that do have

e(S,M) = 0 necessarily have infinitely many nontrivial periodic

points.
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