◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

*C*⁰ stability in Morse theory, Floer theory, and symplectic topology

Mike Usher

University of Georgia

May 26, 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Let $E \xrightarrow{\not e} M$ be a vector bundle over a closed manifold M, with rank(E) = dimM, and $\theta \in \Gamma(E)$ a section transverse to 0_E (e.g., $E = T^*M$, $\theta \in \Omega^1(M)$).

Standard facts:

(i) If $\varepsilon: M \to E$ is a sufficiently C^1 -small section, then $\theta + \varepsilon$ has *exactly* as many zeros as θ .

(日) (日) (日) (日) (日) (日) (日)

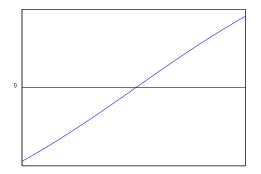
Let $E \xrightarrow{\note} M$ be a vector bundle over a closed manifold M, with rank(E) = dimM, and $\theta \in \Gamma(E)$ a section transverse to 0_E (e.g., $E = T^*M$, $\theta \in \Omega^1(M)$). Standard facts:

(i) If $\varepsilon: M \to E$ is a sufficiently C^1 -small section, then $\theta + \varepsilon$ has *exactly* as many zeros as θ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Let $E \xrightarrow{\not{a}} M$ be a vector bundle over a closed manifold M, with rank(E) = dimM, and $\theta \in \Gamma(E)$ a section transverse to 0_E (e.g., $E = T^*M$, $\theta \in \Omega^1(M)$). Standard facts:

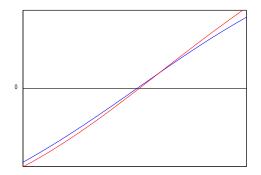
(i) If $\varepsilon : M \to E$ is a sufficiently C^1 -small section, then $\theta + \varepsilon$ has *exactly* as many zeros as θ .



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Let $E \xrightarrow{\not{a}} M$ be a vector bundle over a closed manifold M, with rank(E) = dimM, and $\theta \in \Gamma(E)$ a section transverse to 0_E (e.g., $E = T^*M$, $\theta \in \Omega^1(M)$). Standard facts:

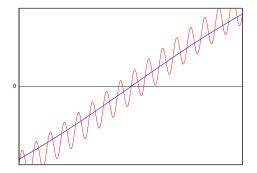
(i) If $\varepsilon : M \to E$ is a sufficiently C^1 -small section, then $\theta + \varepsilon$ has *exactly* as many zeros as θ .



・ロット (雪) (日) (日)

э

(ii) If $\varepsilon : M \to E$ is a sufficiently C^0 -small section, then $\theta + \varepsilon$ has *at least* as many zeros as θ .



(日) (日) (日) (日) (日) (日) (日)

When $E = T^*M$, a standard choice of C^k -small perturbation of $\theta \in \Omega^1(M)$ is $\theta + df$, where f is a C^{k+1} -small function. So the preceding shows that, if $\theta \in \Omega^1(M)$ vanishes transversely, (i) $\theta + df$ has exactly as many zeros as θ if f is C^2 -small; and (ii) $\theta + df$ has at least as many zeros as θ if f is C^1 -small.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

When $E = T^*M$, a standard choice of C^k -small perturbation of $\theta \in \Omega^1(M)$ is $\theta + df$, where f is a C^{k+1} -small function. So the preceding shows that, if $\theta \in \Omega^1(M)$ vanishes transversely, (i) $\theta + df$ has exactly as many zeros as θ if f is C^2 -small; and (ii) $\theta + df$ has at least as many zeros as θ if f is C^1 -small.

Curiously, when θ is *closed*, something stronger is true:

Stability Theorem (Cornea-Ranicki, U.)

If $\theta \in \Omega^1(M)$ vanishes transversely and satisfies $d\theta = 0$, there is $\delta > 0$ such that, whenever

$$osc(f) := \max f - \min f < \delta \text{ and } (\theta + df) \pitchfork 0_{T^*M},$$

one has

$$#(\theta + df)^{-1}(0) \ge #\theta^{-1}(0).$$

In fact, choosing a metric on M and letting V be the vector field metrically dual to θ , one can take

$$\delta = \inf \left\{ \int_{\gamma} \theta \, \middle| \, \gamma \colon \mathbb{R} \to M \text{ nonconstant}, \, \dot{\gamma} = V(\gamma) \right\}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○ ○ ○

Curiously, when θ is *closed*, something stronger is true:

Stability Theorem (Cornea-Ranicki, U.)

If $\theta \in \Omega^1(M)$ vanishes transversely and satisfies $d\theta = 0$, there is $\delta > 0$ such that, whenever

 $osc(f) := \max f - \min f < \delta \text{ and } (\theta + df) \pitchfork 0_{T^*M},$

one has

$$#(\theta + df)^{-1}(0) \ge #\theta^{-1}(0).$$

In fact, choosing a metric on M and letting V be the vector field metrically dual to θ , one can take

$$\delta = \inf \left\{ \int_{\gamma} \theta \left| \gamma \colon \mathbb{R} \to M \text{ nonconstant}, \dot{\gamma} = V(\gamma) \right\} \right\}$$

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Curiously, when θ is *closed*, something stronger is true:

Stability Theorem (Cornea-Ranicki, U.)

If $\theta \in \Omega^1(M)$ vanishes transversely and satisfies $d\theta = 0$, there is $\delta > 0$ such that, whenever

$$osc(f) := \max f - \min f < \delta \text{ and } (\theta + df) \pitchfork 0_{T^*M},$$

one has

$$#(\theta + df)^{-1}(0) \ge #\theta^{-1}(0).$$

In fact, choosing a metric on *M* and letting *V* be the vector field metrically dual to θ , one can take

$$\delta = \inf \left\{ \left. \int_{\gamma} \theta \right| \gamma \colon \mathbb{R} \to M \text{ nonconstant}, \, \dot{\gamma} = V(\gamma) \right\}$$

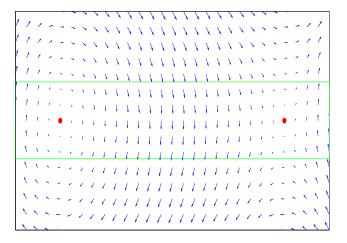
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○ ○ ○

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

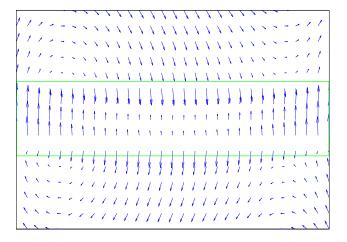
 $\boldsymbol{\theta}$ does need to be closed for the theorem to hold; for instance the non-closed form

$$ydx + (x^2 - 1)dy$$

can have its two zeros eliminated by adding $d(2y\chi(y))$ where χ is a cutoff function supported near zero



◆ロ▶ ◆昼▶ ◆臣▶ ◆臣▶ ●臣 - の久(で)



▲ロ▶▲圖▶▲圖▶▲圖▶ ▲国 ● のへで

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

The proof of the stability theorem uses the **filtrations** on the **Novikov complexes** of θ and $\theta + df$.

Given a transversely vanishing closed 1-form θ , choose an abelian cover

so that $\pi^* \theta = d \mathscr{A}$, and use a Riemannian metric on \tilde{M} pulled back from a suitably generic one on M.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

The proof of the stability theorem uses the **filtrations** on the **Novikov complexes** of θ and $\theta + df$.

Given a transversely vanishing closed 1-form θ , choose an abelian cover $\Gamma \circlearrowright \tilde{M}$

$$\overset{\circlearrowright}{=} \begin{array}{c} \tilde{M} \\ \downarrow^{\pi} \\ M \end{array}$$

so that $\pi^* \theta = d\mathscr{A}$, and use a Riemannian metric on \tilde{M} pulled back from a suitably generic one on M.

Thus

$$Crit(\mathscr{A}) = (\pi^*\theta)^{-1}(0) \subset \tilde{M}$$

consists of an orbit of Γ for every zero of $\theta \in \Omega^1(M)$. The Novikov chain complex is

$$CN_*(\mathscr{A}) = \left\{ \sum_{i=1}^{\infty} n_i p_i \middle| n_i \in \mathbb{Z}, p_i \in Crit(\mathscr{A}), \mathscr{A}(p_i) \searrow -\infty \right\}$$

 $CN_*(\mathscr{A})$ is a free module of rank $\#\theta^{-1}(0)$ over the **Novikov ring** $\Lambda_{\Gamma,[\theta]}$ (this is a completion of the group ring of Γ , depending on the de Rham cohomology class $[\theta]$; if $[\theta] = 0$ we can choose $\Gamma = \{0\}$ and then $\Lambda_{\Gamma,[\theta]} = \mathbb{Z}$).

・ロト・西ト・ヨト・ヨー うへぐ

Thus

$$Crit(\mathscr{A}) = (\pi^*\theta)^{-1}(0) \subset \tilde{M}$$

consists of an orbit of Γ for every zero of $\theta \in \Omega^1(M)$. The **Novikov chain complex** is

$$CN_*(\mathscr{A}) = \left\{ \sum_{i=1}^{\infty} n_i p_i \middle| n_i \in \mathbb{Z}, p_i \in Crit(\mathscr{A}), \mathscr{A}(p_i) \searrow -\infty \right\}.$$

 $CN_*(\mathscr{A})$ is a free module of rank $\#\theta^{-1}(0)$ over the **Novikov ring** $\Lambda_{\Gamma,[\theta]}$ (this is a completion of the group ring of Γ , depending on the de Rham cohomology class $[\theta]$; if $[\theta] = 0$ we can choose $\Gamma = \{0\}$ and then $\Lambda_{\Gamma,[\theta]} = \mathbb{Z}$).

・ロト・雪・・曲・・曲・・ しゃ

Thus

$$Crit(\mathscr{A}) = (\pi^*\theta)^{-1}(0) \subset \tilde{M}$$

consists of an orbit of Γ for every zero of $\theta \in \Omega^1(M)$. The **Novikov chain complex** is

$$CN_*(\mathscr{A}) = \left\{ \sum_{i=1}^{\infty} n_i p_i \middle| n_i \in \mathbb{Z}, p_i \in Crit(\mathscr{A}), \mathscr{A}(p_i) \searrow -\infty \right\}.$$

 $CN_*(\mathscr{A})$ is a free module of rank $\#\theta^{-1}(0)$ over the **Novikov ring** $\Lambda_{\Gamma,[\theta]}$ (this is a completion of the group ring of Γ , depending on the de Rham cohomology class $[\theta]$; if $[\theta] = 0$ we can choose $\Gamma = \{0\}$ and then $\Lambda_{\Gamma,[\theta]} = \mathbb{Z}$).

$$CN_*(\mathscr{A}) \cong (\Lambda_{\Gamma,[\theta]})^{\#\theta^{-1}(0)}$$

The goal is to show that $#(\theta + df)^{-1}(0) \ge #\theta^{-1}(0)$; since

 $\pi^*(\theta + df) = d(\mathscr{A} + \pi^* f),$

to achieve our goal it suffices to construct a monomorphism

 $CN_*(\mathscr{A}) \rightarrowtail CN_*(\mathscr{A} + \pi^* f).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

One has

$$CN_*(\mathscr{A}) \cong (\Lambda_{\Gamma,[\theta]})^{\#\theta^{-1}(0)}$$

The goal is to show that $#(\theta + df)^{-1}(0) \ge #\theta^{-1}(0)$; since

$$\pi^*(\theta + df) = d(\mathscr{A} + \pi^* f),$$

to achieve our goal it suffices to construct a monomorphism

$$CN_*(\mathscr{A}) \rightarrowtail CN_*(\mathscr{A} + \pi^* f).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The boundary operator on $CN_*(\mathscr{A})$ "counts negative gradient flowlines of \mathscr{A} ":

$$\partial p = \sum_{q} n(p,q)q$$

where

$$n(p,q) = \begin{pmatrix} \text{signed count of isolated, finite-energy} \\ \text{solutions } \gamma \colon \mathbb{R} \to \tilde{M} \text{ to } \dot{\gamma} = -\nabla \mathscr{A}(\gamma) \\ \text{with } \gamma(-\infty) = p, \gamma(\infty) = q. \end{pmatrix}.$$

Note that, if $n(p,q) \neq 0$, then $\mathscr{A}(p) - \mathscr{A}(q) \geq \delta > 0$.

The boundary operator on $CN_*(\mathscr{A})$ "counts negative gradient flowlines of \mathscr{A} ":

$$\partial p = \sum_{q} n(p,q)q$$

where

$$n(p,q) = \begin{pmatrix} \text{signed count of isolated, finite-energy} \\ \text{solutions } \gamma \colon \mathbb{R} \to \tilde{M} \text{ to } \dot{\gamma} = -\nabla \mathscr{A}(\gamma) \\ \text{with } \gamma(-\infty) = p, \gamma(\infty) = q. \end{pmatrix}.$$

Note that, if $n(p,q) \neq 0$, then $\mathscr{A}(p) - \mathscr{A}(q) \geq \delta > 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

 $CN_*(\mathscr{A})$ admits a \mathbb{R} -valued filtration: take $CN_*^{\lambda}(\mathscr{A}) \leq CN_*(\mathscr{A})$ equal to the set of all formal sums $\sum n_i p_i$ of critical points p_i of \mathscr{A} having $\mathscr{A}(p_i) \leq \lambda$. Note that

 $\partial: CN^{\lambda}_{*}(\mathscr{A}) \to CN^{\lambda-\delta}_{*-1}(\mathscr{A}).$

The goal is to compare the sizes of the zero sets of θ and $\theta + df$ for $f \ C^0$ -small; these are the ranks, respectively, of the $\Lambda_{\Gamma,[\theta]}$ -modules $CN_*(\mathscr{A})$ and $CN_*(\mathscr{A} + \pi^*f)$. These complexes are related by various maps, and the proof involves analyzing the effects of these maps on the filtrations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(日) (日) (日) (日) (日) (日) (日)

 $CN_*(\mathscr{A})$ admits a \mathbb{R} -valued filtration: take $CN_*^{\lambda}(\mathscr{A}) \leq CN_*(\mathscr{A})$ equal to the set of all formal sums $\sum n_i p_i$ of critical points p_i of \mathscr{A} having $\mathscr{A}(p_i) \leq \lambda$. Note that

$$\partial: CN^{\lambda}_*(\mathscr{A}) \to CN^{\lambda-\delta}_{*-1}(\mathscr{A}).$$

The goal is to compare the sizes of the zero sets of θ and $\theta + df$ for $f \ C^0$ -small; these are the ranks, respectively, of the $\Lambda_{\Gamma,[\theta]}$ -modules $CN_*(\mathscr{A})$ and $CN_*(\mathscr{A} + \pi^*f)$. These complexes are related by various maps, and the proof involves analyzing the effects of these maps on the filtrations.

 $CN_*(\mathscr{A})$ admits a \mathbb{R} -valued filtration: take $CN_*^{\lambda}(\mathscr{A}) \leq CN_*(\mathscr{A})$ equal to the set of all formal sums $\sum n_i p_i$ of critical points p_i of \mathscr{A} having $\mathscr{A}(p_i) \leq \lambda$. Note that

$$\partial: CN^{\lambda}_{*}(\mathscr{A}) \to CN^{\lambda-\delta}_{*-1}(\mathscr{A}).$$

The goal is to compare the sizes of the zero sets of θ and $\theta + df$ for $f \ C^0$ -small; these are the ranks, respectively, of the $\Lambda_{\Gamma,[\theta]}$ -modules $CN_*(\mathscr{A})$ and $CN_*(\mathscr{A} + \pi^* f)$. These complexes are related by various maps, and the proof involves analyzing the effects of these maps on the filtrations.

 $CN_*(\mathscr{A})$ admits a \mathbb{R} -valued filtration: take $CN_*^{\lambda}(\mathscr{A}) \leq CN_*(\mathscr{A})$ equal to the set of all formal sums $\sum n_i p_i$ of critical points p_i of \mathscr{A} having $\mathscr{A}(p_i) \leq \lambda$. Note that

$$\partial: CN^{\lambda}_{*}(\mathscr{A}) \to CN^{\lambda-\delta}_{*-1}(\mathscr{A}).$$

The goal is to compare the sizes of the zero sets of θ and $\theta + df$ for $f \ C^0$ -small; these are the ranks, respectively, of the $\Lambda_{\Gamma,[\theta]}$ -modules $CN_*(\mathscr{A})$ and $CN_*(\mathscr{A} + \pi^* f)$. These complexes are related by various maps, and the proof involves analyzing the effects of these maps on the filtrations.

• A chain map

$$\Phi^+_-\colon \mathit{CN}_*(\mathscr{A}) \to \mathit{CN}_*(\mathscr{A} + \pi^* f)$$

constructed by counting isolated solutions to

$$\dot{\gamma}(s) = -\nabla^{\tilde{M}} \mathscr{A}(s, \gamma(s))$$
 (1)

where
$$\mathscr{A}(s,\cdot) = \begin{cases} \mathscr{A} & s \ll 0\\ \mathscr{A} + \pi^* f & s \gg 0 \end{cases}$$

For suitably-chosen $\mathscr{A}(s, \cdot)$, one has

$$(\mathscr{A} + \pi^* f)(\gamma(\infty)) - \mathscr{A}(\gamma(-\infty)) = \int_{-\infty}^{\infty} \frac{d}{ds} (\mathscr{A}(s, \gamma(s))) ds \le \max f$$

for any solution γ to (1), which translates to the statement that Φ^+_- restricts as a map

$$CN^{\lambda}_{*}(\mathscr{A}) \to CN^{\lambda+\max f}_{*}(\mathscr{A}+\pi^{*}f).$$

A chain map

$$\Phi^+_-\colon \mathit{CN}_*(\mathscr{A})\to \mathit{CN}_*(\mathscr{A}+\pi^*f)$$

constructed by counting isolated solutions to

$$\dot{\gamma}(s) = -\nabla^{\tilde{M}} \mathscr{A}(s, \gamma(s))$$
 (1)

where
$$\mathscr{A}(s,\cdot) = \begin{cases} \mathscr{A} & s \ll 0\\ \mathscr{A} + \pi^* f & s \gg 0 \end{cases}$$

For suitably-chosen $\mathscr{A}(s, \cdot)$, one has

$$(\mathscr{A} + \pi^* f)(\gamma(\infty)) - \mathscr{A}(\gamma(-\infty)) = \int_{-\infty}^{\infty} \frac{d}{ds} (\mathscr{A}(s, \gamma(s))) ds \le \max f$$

for any solution γ to (1), which translates to the statement that Φ^+_- restricts as a map

$$CN^{\lambda}_{*}(\mathscr{A}) \to CN^{\lambda+\max f}_{*}(\mathscr{A} + \pi^{*}f).$$

A chain map

$$\Phi^+_-\colon \mathit{CN}_*(\mathscr{A})\to \mathit{CN}_*(\mathscr{A}+\pi^*\!f)$$

which restricts as

$$CN^{\lambda}_{*}(\mathscr{A}) \to CN^{\lambda+\max f}_{*}(\mathscr{A} + \pi^{*}f).$$

• A similar map

$$\Phi^-_+\colon {C\!N}_*(\mathscr{A}+\pi^*f)\to {C\!N}_*(\mathscr{A})$$

which restricts as

$$CN^{\lambda}_*(\mathscr{A} + \pi^* f) \to CN^{\lambda-\min f}_*(\mathscr{A}),$$

SO

$$\Phi^-_+ \circ \Phi^+_- \colon CN^{\lambda}_*(\mathscr{A}) \to CN^{\lambda+osc(f)}_*(\mathscr{A})$$

A chain map

$$\Phi^+_-\colon \mathit{CN}_*(\mathscr{A})\to \mathit{CN}_*(\mathscr{A}+\pi^*\!f)$$

which restricts as

$$CN^{\lambda}_*(\mathscr{A}) \to CN^{\lambda+\max f}_*(\mathscr{A} + \pi^* f).$$

• A similar map

$$\Phi_+^-\colon CN_*(\mathscr{A}+\pi^*f)\to CN_*(\mathscr{A})$$

which restricts as

$$CN^{\lambda}_*(\mathscr{A} + \pi^* f) \to CN^{\lambda-\min f}_*(\mathscr{A}),$$

SO

$$\Phi^-_+ \circ \Phi^+_- \colon CN^{\lambda}_*(\mathscr{A}) \to CN^{\lambda+osc(f)}_*(\mathscr{A})$$

• A chain map

$$\Phi^+_-\colon \mathit{CN}^\lambda_*(\mathscr{A})\to \mathit{CN}^{\lambda+\max f}_*(\mathscr{A}+\pi^*f).$$

• A similar map

$$\Phi^{-}_{+} \colon CN^{\lambda}_{*}(\mathscr{A} + \pi^{*}f) \to CN^{\lambda-\min f}_{*}(\mathscr{A}),$$

SO

$$\Phi^-_+ \circ \Phi^+_- \colon \mathit{CN}^{\lambda}_*(\mathscr{A}) \to \mathit{CN}^{\lambda + \mathit{osc}(f)}_*(\mathscr{A})$$

A map

$$K\colon \mathit{CN}_*(\mathscr{A})\to \mathit{CN}_{*+1}(\mathscr{A}),$$

constructed from a (path of (paths from \mathscr{A} to \mathscr{A})), which restricts as

$$K\colon \operatorname{CN}^{\lambda}_*(\mathscr{A}) \to \operatorname{CN}^{\lambda+\operatorname{osc}(f)}_{*+1}(\mathscr{A})$$

and obeys

$$\Phi_+^- \circ \Phi_-^+ - I = \partial K + K \partial.$$

But recall that ∂ *strictly lowers* the filtration by δ , so if $osc(f) < \delta$ we have

$$\Phi_+^-\circ\Phi_-^+=I+A$$

where *A* strictly lowers the filtration. But then $\sum_{k=0}^{\infty} (-A)^k$ is a well-defined inverse to I + A. Thus $\Phi^+_-: CN_*(\mathscr{A}) \to CN_*(\mathscr{A} + \pi^* f)$ has a left inverse, so

 $\#(\theta + df)^{-1}(0) = \operatorname{rank} CN_*(\mathscr{A} + \pi^* f) \ge \operatorname{rank} CN_*(\mathscr{A}) = \#\theta^{-1}(0).$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

But recall that ∂ *strictly lowers* the filtration by δ , so if $osc(f) < \delta$ we have

$$\Phi_+^-\circ\Phi_-^+=I+A$$

where *A* strictly lowers the filtration. But then $\sum_{k=0}^{\infty} (-A)^k$ is a well-defined inverse to I + A. Thus Φ^+_- : $CN_*(\mathscr{A}) \to CN_*(\mathscr{A} + \pi^* f)$ has a left inverse, so

$$\#(\theta + df)^{-1}(0) = \operatorname{rank}CN_*(\mathscr{A} + \pi^* f) \ge \operatorname{rank}CN_*(\mathscr{A}) = \#\theta^{-1}(0).$$

Now let (M, ω) be a closed symplectic manifold ($\omega \in \Omega^2(M)$ nondegenerate, $d\omega = 0$). Write $S^1 = \mathbb{R}/\mathbb{Z}$.

Any smooth $H: S^1 \times M \to \mathbb{R} \rightsquigarrow$

time-dependent "Hamiltonian vector field" X_H : $\omega(X_H(t, \cdot), \cdot) = d(H(t, \cdot))$

Hamiltonian flow $\{\phi_H^t\}_{t \in \mathbb{R}}$: $\frac{d}{dt}(\phi_H^t(p)) = X_H(t, \phi_H^t(p)).$

On

$$\mathscr{L}_0 M = \{ \text{contractible loops } \gamma \colon S^1 \to M \}$$

consider the 1-form

$$(\theta_H)_{\gamma}(\xi) = \int_0^1 \left(\omega(\dot{\gamma}(t), \xi(t)) - dH(\xi(t)) \right) dt$$

Now let (M, ω) be a closed symplectic manifold ($\omega \in \Omega^2(M)$ nondegenerate, $d\omega = 0$). Write $S^1 = \mathbb{R}/\mathbb{Z}$.

Any smooth $H: S^1 \times M \to \mathbb{R} \rightsquigarrow$

time-dependent "Hamiltonian vector field" $X_H : \omega(X_H(t, \cdot), \cdot) = d(H(t, \cdot))$

Hamiltonian flow $\{\phi_H^t\}_{t \in \mathbb{R}}$: $\frac{d}{dt}(\phi_H^t(p)) = X_H(t, \phi_H^t(p)).$

On

$$\mathscr{L}_0 M = \{ \text{contractible loops } \gamma \colon S^1 \to M \}$$

consider the 1-form

$$(\theta_H)_{\gamma}(\xi) = \int_0^1 \left(\omega(\dot{\gamma}(t), \xi(t)) - dH(\xi(t)) \right) dt$$

Now let (M, ω) be a closed symplectic manifold ($\omega \in \Omega^2(M)$ nondegenerate, $d\omega = 0$). Write $S^1 = \mathbb{R}/\mathbb{Z}$.

Any smooth $H: S^1 \times M \to \mathbb{R} \rightsquigarrow$

time-dependent "Hamiltonian vector field" $X_H : \omega(X_H(t, \cdot), \cdot) = d(H(t, \cdot))$

 $\ \ \, \underset{\frac{d}{dt}(\phi_{H}^{t}(p))=X_{H}(t,\phi_{H}^{t}(p)). }{ \ \ \, \underset{\frac{d}{dt}(\phi_{H}^{t}(p))=X_{H}(t,\phi_{H}^{t}(p)). }$

On

 $\mathscr{L}_0 M = \{ \text{contractible loops } \gamma \colon S^1 \to M \}$

consider the 1-form

$$(\theta_H)_{\gamma}(\xi) = \int_0^1 \left(\omega(\dot{\gamma}(t), \xi(t)) - dH(\xi(t)) \right) dt$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Now let (M, ω) be a closed symplectic manifold ($\omega \in \Omega^2(M)$ nondegenerate, $d\omega = 0$). Write $S^1 = \mathbb{R}/\mathbb{Z}$.

Any smooth $H: S^1 \times M \to \mathbb{R} \rightsquigarrow$

time-dependent "Hamiltonian vector field" $X_H : \omega(X_H(t, \cdot), \cdot) = d(H(t, \cdot))$

 $\ \ \, \underset{\frac{d}{dt}(\phi_{H}^{t}(p))=X_{H}(t,\phi_{H}^{t}(p)). }{ \ \ \, \underset{\frac{d}{dt}(\phi_{H}^{t}(p))=X_{H}(t,\phi_{H}^{t}(p)). }$

On

$$\mathscr{L}_0 M = \{ \text{contractible loops } \gamma : S^1 \to M \}$$

consider the 1-form

$$(\theta_H)_{\gamma}(\xi) = \int_0^1 \left(\omega(\dot{\gamma}(t), \xi(t)) - dH(\xi(t)) \right) dt$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

The zeros of θ_H are precisely those contractible loops γ of the form $\gamma(t) = \phi_H^t(p)$ where $p \in Fix(\phi_H^1)$.

 θ_H is closed, and vanishes transversely if all fixed points of ϕ_H^1 are nondegenerate. Lifting to a suitable cover $\pi \colon \widetilde{\mathscr{L}_0 M} \to \mathscr{L}_0 M$, we have

$$\pi^* \theta_H = d\mathscr{A}_H$$
 where $\mathscr{A}_H([\gamma, u]) = -\int_{D^2} u^* \omega - \int_0^1 H(t, \gamma(t)) dt$.

Formally, the **Floer chain complex** of *H* is the Novikov chain complex of this "action functional" on $\widetilde{\mathscr{L}_0M}$.

The zeros of θ_H are precisely those contractible loops γ of the form $\gamma(t) = \phi_H^t(p)$ where $p \in Fix(\phi_H^1)$. θ_H is closed, and vanishes transversely if all fixed points of ϕ_H^1 are nondegenerate. Lifting to a suitable cover $\pi : \widetilde{\mathscr{L}_0M} \to \mathscr{L}_0M$, we have

$$\pi^* \theta_H = d\mathscr{A}_H$$
 where $\mathscr{A}_H([\gamma, u]) = -\int_{D^2} u^* \omega - \int_0^1 H(t, \gamma(t)) dt$.

Formally, the **Floer chain complex** of *H* is the Novikov chain complex of this "action functional" on $\widetilde{\mathscr{L}_0M}$.

The zeros of θ_H are precisely those contractible loops γ of the form $\gamma(t) = \phi_H^t(p)$ where $p \in Fix(\phi_H^1)$. θ_H is closed, and vanishes transversely if all fixed points of ϕ_H^1 are nondegenerate. Lifting to a suitable cover $\pi : \widetilde{\mathscr{L}_0M} \to \mathscr{L}_0M$, we have

$$\pi^* \theta_H = d\mathscr{A}_H$$
 where $\mathscr{A}_H([\gamma, u]) = -\int_{D^2} u^* \omega - \int_0^1 H(t, \gamma(t)) dt$.

Formally, the **Floer chain complex** of *H* is the Novikov chain complex of this "action functional" on $\widetilde{\mathscr{L}_0M}$.

Theorem (Floer, Hofer-Salamon, Liu-Tian, Fukaya-Ono)

This construction can be carried out on any closed symplectic manifold, producing a chain complex $CF_*(H)$ whose homology $HF_*(H)$ is, independently of H, canonically isomorphic to $H_*(M, \mathbb{Q}) \otimes \Lambda$.

Corollary (Variant of Arnol'd conjecture)

If all fixed points of H are nondegenerate then

$$\#Fix(\phi_H^1) \ge \sum_i b_i(M;\mathbb{Q}).$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

While the just-stated results are about arbitrary (nondegenerate) H, interesting information **specific to** H can be obtained from the \mathbb{R} -filtration on the chain complex:

$$CF_*^{\lambda}(H) = \left\{ \sum_{i=1}^{\infty} a_i[\gamma_i, u_i] \middle| \begin{array}{c} [\gamma_i, u_i] \in Crit(\mathscr{A}_H) \\ \lambda \ge \mathscr{A}_H([\gamma_i, u_i]) \searrow -\infty \end{array} \right\}$$

Analogy: In Heegaard Floer homology one constructs a chain complex whose chain homotopy type depends only on the manifold; the choice of a knot induces a filtration which carries significant information about the knot.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

While the just-stated results are about arbitrary (nondegenerate) H, interesting information **specific to** H can be obtained from the \mathbb{R} -filtration on the chain complex:

$$CF_*^{\lambda}(H) = \left\{ \sum_{i=1}^{\infty} a_i[\gamma_i, u_i] \middle| \begin{array}{c} [\gamma_i, u_i] \in Crit(\mathscr{A}_H) \\ \lambda \ge \mathscr{A}_H([\gamma_i, u_i]) \searrow -\infty \end{array} \right\}$$

Analogy: In Heegaard Floer homology one constructs a chain complex whose chain homotopy type depends only on the manifold; the choice of a knot induces a filtration which carries significant information about the knot.

The same argument as in case of a closed one-form on a compact manifold shows that (where we set

$$\|H\| = \int_0^1 \left(\max_{p \in M} H(t,p) - \min_{p \in M} H(t,p) \right) dt$$

for $H: S^1 \times M \to \mathbb{R}$):

Theorem

If $H: S^1 \times M \to \mathbb{R}$ is a nondegenerate Hamiltonian, there is $\delta > 0$ such that for any nondegenerate Hamiltonian K with $\|H - K\| < \delta$, we have

 $\#Fix(\phi_K^1) \ge \#Fix(\phi_H^1).$

Again, this is somewhat surprising, since ϕ_K^1 is only " C^{-1} -close" to ϕ_H^1 .

Theorem (U.)

Given H, the filtered chain isomorphism type of $CF_*(H)$ is independent of the other auxiliary data involved in its construction, and (for H suitably normalized) in fact depends only on the homotopy class rel endpoints of the path $\{\phi_H^t\}_{0 \le t \le 1}$ in the group of Hamiltonian diffeomorphisms.

Hence invariants of the filtered chain isomorphism type of $CF_*(H)$ are invariants of the representative of $\{\phi_H^t\}_{0 \le t \le 1}$ in Ham. Because the standard maps $CF_*(H) \to CF_*(K)$ restrict as $CF_*^{\lambda}(H) \to CF_*^{\lambda+||H-K||}(K)$ (where $||H|| = \int_0^1 (\max_{p \in M} H(t,p) - \min_{p \in M} H(t,p)) dt$), such invariants are often continuous with respect to the C^0 norm on the space of Hamiltonians (and with respect to the "Hofer norm" on Ham).

Theorem (U.)

Given H, the filtered chain isomorphism type of $CF_*(H)$ is independent of the other auxiliary data involved in its construction, and (for H suitably normalized) in fact depends only on the homotopy class rel endpoints of the path $\{\phi_H^t\}_{0 \le t \le 1}$ in the group of Hamiltonian diffeomorphisms.

Hence invariants of the filtered chain isomorphism type of $CF_*(H)$ are invariants of the representative of $\{\phi_H^t\}_{0 \le t \le 1}$ in Ham. Because the standard maps $CF_*(H) \to CF_*(K)$ restrict as $CF_*^{\lambda}(H) \to CF_*^{\lambda+||H-K||}(K)$ (where $||H|| = \int_0^1 (\max_{p \in M} H(t,p) - \min_{p \in M} H(t,p)) dt$), such invariants are often continuous with respect to the C^0 norm on the space of Hamiltonians (and with respect to the "Hofer norm" on Ham).

Theorem (U.)

Given H, the filtered chain isomorphism type of $CF_*(H)$ is independent of the other auxiliary data involved in its construction, and (for H suitably normalized) in fact depends only on the homotopy class rel endpoints of the path $\{\phi_H^t\}_{0 \le t \le 1}$ in the group of Hamiltonian diffeomorphisms.

Hence invariants of the filtered chain isomorphism type of $CF_*(H)$ are invariants of the representative of $\{\phi_H^t\}_{0 \le t \le 1}$ in Ham. Because the standard maps $CF_*(H) \to CF_*(K)$ restrict as $CF_*^{\lambda}(H) \to CF_*^{\lambda+||H-K||}(K)$ (where $||H|| = \int_0^1 (\max_{p \in M} H(t,p) - \min_{p \in M} H(t,p)) dt$), such invariants are often continuous with respect to the C^0 norm on the space of Hamiltonians (and with respect to the "Hofer norm" on Ham).

One example of such an invariant is the **Oh–Schwarz spectral invariant**: Recall there is a canonical isomorphism $HF_*(H) \cong H_*(M) \otimes \Lambda$. So for $a \in H_*(M) \otimes \Lambda$ we can put

 $\rho(H;a) = \inf\{\text{filtration level of } c | c \in CF_*(H) \text{ represents } a\}.$

- The above makes sense when ϕ_H^1 is nondegenerate, but the definition can be extended to arbitrary *H* by continuity.
- ρ is very similar to the τ invariant in knot Floer homology.

One example of such an invariant is the **Oh–Schwarz spectral invariant**: Recall there is a canonical isomorphism $HF_*(H) \cong H_*(M) \otimes \Lambda$. So for $a \in H_*(M) \otimes \Lambda$ we can put

 $\rho(H;a) = \inf\{\text{filtration level of } c | c \in CF_*(H) \text{ represents } a\}.$

- The above makes sense when ϕ_H^1 is nondegenerate, but the definition can be extended to arbitrary *H* by continuity.
- ρ is very similar to the τ invariant in knot Floer homology.

One example of such an invariant is the **Oh–Schwarz spectral invariant**: Recall there is a canonical isomorphism $HF_*(H) \cong H_*(M) \otimes \Lambda$. So for $a \in H_*(M) \otimes \Lambda$ we can put

 $\rho(H;a) = \inf\{\text{filtration level of } c | c \in CF_*(H) \text{ represents } a\}.$

- The above makes sense when ϕ_H^1 is nondegenerate, but the definition can be extended to arbitrary *H* by continuity.
- ρ is very similar to the τ invariant in knot Floer homology.

One example of such an invariant is the **Oh–Schwarz spectral invariant**: Recall there is a canonical isomorphism $HF_*(H) \cong H_*(M) \otimes \Lambda$. So for $a \in H_*(M) \otimes \Lambda$ we can put

 $\rho(H;a) = \inf\{\text{filtration level of } c | c \in CF_*(H) \text{ represents } a\}.$

- The above makes sense when ϕ_H^1 is nondegenerate, but the definition can be extended to arbitrary *H* by continuity.
- ρ is very similar to the τ invariant in knot Floer homology.

 ρ has diverse applications (e.g., in Entov-Polterovich's theory of quasimorphisms on \widetilde{Ham}); I'll focus here on its applications to **displacement energy**.

For compact $K \subset M$, put

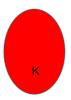
$$e(K,M) = \inf\{||H|| | \phi_H^1(K) \cap K = \varnothing\}.$$

Now

$$\|H\| = \int_0^1 \left(\max_{p \in M} H(t,p) - \min_{p \in M} H(t,p) \right) dt,$$

whereas ϕ_H^1 is constructed from dH, so it's a bit surprising that e(K,M) would ever be finite but positive. ρ has diverse applications (e.g., in Entov-Polterovich's theory of quasimorphisms on \widetilde{Ham}); I'll focus here on its applications to **displacement energy**. For compact $K \subset M$, put

$$e(K,M) = \inf\{||H|| | \phi_H^1(K) \cap K = \varnothing\}.$$

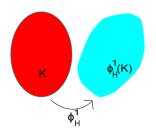


Now

$$||H|| = \int_0^1 \left(\max_{p \in M} H(t,p) - \min_{p \in M} H(t,p) \right) dt,$$
whereas ϕ^1 is constructed from dH so

whereas ϕ_H^{-1} is constructed from dH, so it's a bit surprising that e(K,M) would ever be finite but positive. ρ has diverse applications (e.g., in Entov-Polterovich's theory of quasimorphisms on \widetilde{Ham}); I'll focus here on its applications to **displacement energy**. For compact $K \subset M$, put

$$e(K,M) = \inf\{\|H\| | \phi_H^1(K) \cap K = \varnothing\}.$$

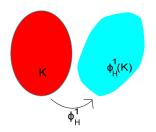


Now

$$\|H\| = \int_0^1 \left(\underset{p \in M}{\max} H(t,p) - \underset{p \in M}{\min} H(t,p) \right) dt,$$

whereas ϕ_H^1 is constructed from dH, so it's a bit surprising that e(K,M) would ever be finite but positive. ρ has diverse applications (e.g., in Entov-Polterovich's theory of quasimorphisms on \widetilde{Ham}); I'll focus here on its applications to **displacement energy**. For compact $K \subset M$, put

$$e(K,M) = \inf\{\|H\| | \phi_H^1(K) \cap K = \varnothing\}.$$



Now

$$\|H\|=\int_0^1\left(\max_{p\in M}H(t,p)-\min_{p\in M}H(t,p)\right)dt,$$

whereas ϕ_H^1 is constructed from dH, so it's a bit surprising that e(K,M) would ever be finite but positive. Write $p_2: S^1 \times M \to M$ for the projection.

Theorem (U., generalizing Frauenfelder-Ginzburg-Schlenk)

For any Hamiltonian $G: S^1 \times M \to \mathbb{R}$ we have

 $\rho(G; [M]) \leq e(p_2(supp(G)), M).$

Theorem (U., generalizing Oh)

If G is independent of the S¹ factor, and if all nonconstant contractible periodic orbits of X_G have period > 1, then

 $\rho(G;[M]) = \max(-G).$

・ロト・日本・日本・日本・日本

Write $p_2: S^1 \times M \to M$ for the projection.

Theorem (U., generalizing Frauenfelder-Ginzburg-Schlenk)

For any Hamiltonian $G: S^1 \times M \to \mathbb{R}$ we have

 $\rho(G; [M]) \leq e(p_2(supp(G)), M).$

Theorem (U., generalizing Oh)

If G is independent of the S^1 factor, and if all nonconstant contractible periodic orbits of X_G have period > 1, then

 $\rho(G;[M]) = \max(-G).$

Corollary

Where the Hofer–Zehnder capacity $c_{HZ}(K)$ is defined as

$$\sup \left\{ \max G \middle| \begin{array}{c} G \colon M \to \mathbb{R}, supp(G) \subset K, \ all \ nonconstant \\ periodic \ orbits \ of X_G \ have \ period > 1 \end{array} \right.$$

one has

$c_{HZ}(K) \leq e(K,M).$

This inequality $c_{HZ} \leq e$ is sharp, as can be seen by explicit examples with K equal to a closed ball. Gromov's nonsqueezing theorem follows as a quick consequence, as do some (new) generalizations, e.g., if Σ^{2n-2k} is closed and N^{2n-2} is closed or Stein then $\Sigma \times B^{2k}(r)$ symplectically embeds in $N \times B^2(R)$ only if $r \leq R$.

Corollary

Where the Hofer–Zehnder capacity $c_{HZ}(K)$ is defined as

$$\sup \left\{ \max G \middle| \begin{array}{c} G \colon M \to \mathbb{R}, supp(G) \subset K, \ all \ nonconstant \\ periodic \ orbits \ of X_G \ have \ period > 1 \end{array} \right.$$

one has

$c_{HZ}(K) \leq e(K,M).$

This inequality $c_{HZ} \le e$ is sharp, as can be seen by explicit examples with *K* equal to a closed ball.

Gromov's nonsqueezing theorem follows as a quick consequence, as do some (new) generalizations, e.g., if Σ^{2n-2k} is closed and N^{2n-2} is closed or Stein then $\Sigma \times B^{2k}(r)$ symplectically embeds in $N \times B^2(R)$ only if $r \leq R$.

Corollary

Where the Hofer–Zehnder capacity $c_{HZ}(K)$ is defined as

$$\sup \left\{ \left. \max G \right| \begin{array}{c} G \colon M \to \mathbb{R}, supp(G) \subset K, \ all \ nonconstant \\ periodic \ orbits \ of X_G \ have \ period > 1 \end{array} \right.$$

one has

$$c_{HZ}(K) \leq e(K,M).$$

This inequality $c_{HZ} \leq e$ is sharp, as can be seen by explicit examples with K equal to a closed ball. Gromov's nonsqueezing theorem follows as a quick consequence, as do some (new) generalizations, e.g., if Σ^{2n-2k} is closed and N^{2n-2} is closed or Stein then $\Sigma \times B^{2k}(r)$ symplectically embeds in $N \times B^2(R)$ only if $r \leq R$.

Another filtration-based invariant: the **boundary depth**. Set

 $\beta(H) = \inf \left\{ \beta \ge 0 | (\forall \lambda > 0)(CF_*^{\lambda}(H) \cap \partial(CF_*(H)) \subset \partial \left(CF_*^{\lambda + \beta}(H) \right) \right\}$

Non-obviously, $\beta(H)$ is finite (U.); in fact one has (Oh)

 $\beta(H) \le ||H||.$

As with the spectral invariant, the definition above assumes H nondegenerate, but then extends continuously to degenerate H.

Theorem (U.)

If $H \ge 0$ *everywhere or* $H \le 0$ *everywhere, then*

 $\beta(H) \leq 2e(p_2(supp(H)), M).$

Another filtration-based invariant: the boundary depth. Set

 $\beta(H) = \inf \left\{ \beta \geq 0 | (\forall \lambda > 0)(CF_*^{\lambda}(H) \cap \partial(CF_*(H)) \subset \partial \left(CF_*^{\lambda + \beta}(H) \right) \right\}$

Non-obviously, $\beta(H)$ is finite (U.); in fact one has (Oh) $\beta(H) \le ||H||.$

As with the spectral invariant, the definition above assumes H nondegenerate, but then extends continuously to degenerate H.

Theorem (U.)

If $H \ge 0$ *everywhere or* $H \le 0$ *everywhere, then*

 $\beta(H) \leq 2e(p_2(supp(H)), M).$

Another filtration-based invariant: the **boundary depth**. Set

 $\beta(H) = \inf \left\{ \beta \ge 0 | (\forall \lambda > 0)(CF_*^{\lambda}(H) \cap \partial(CF_*(H)) \subset \partial \left(CF_*^{\lambda + \beta}(H) \right) \right\}$

Non-obviously, $\beta(H)$ is finite (U.); in fact one has (Oh)

 $\beta(H) \le \|H\|.$

As with the spectral invariant, the definition above assumes H nondegenerate, but then extends continuously to degenerate H.

Theorem (U.) If $H \ge 0$ everywhere or $H \le 0$ everywhere, then $eta(H) \le 2e(p_2(supp(H)), M).$ Another filtration-based invariant: the boundary depth. Set

 $\beta(H) = \inf \left\{ \beta \geq 0 | (\forall \lambda > 0)(CF_*^{\lambda}(H) \cap \partial(CF_*(H)) \subset \partial \left(CF_*^{\lambda + \beta}(H) \right) \right\}$

Non-obviously, $\beta(H)$ is finite (U.); in fact one has (Oh)

 $\beta(H) \le \|H\|.$

As with the spectral invariant, the definition above assumes H nondegenerate, but then extends continuously to degenerate H.

Theorem (U.)

If $H \ge 0$ everywhere or $H \le 0$ everywhere, then

 $\beta(H) \leq 2e(p_2(supp(H)), M).$

An application of the boundary depth:

Theorem (U., generalizing Ginzburg, Kerman)

If $N \subset M$ is a coisotropic submanifold $((TN)^{\perp_{\omega}} \subset TN)$ satisfying certain intrinsic conditions^{*a*}, then e(N,M) > 0.

^{*a*} namely, *N* is stable (in the sense of Ginzburg) and $\langle \omega, \pi_2(N) \rangle$ is discrete. Alternately, $\langle [\omega], \pi_2(N) \rangle$ is discrete and *N* admits a metric making its characteristic foliation totally geodesic and having no contractible leafwise geodesics.

Idea of proof: For $U \supset N$ consider a Hamiltonian H_U supported in U whose associated X_{H_U} generates a reparametrization of the leafwise geodesic flow of N. If e(N,M) = 0, then the $\beta(H_U)$ become arbitrarily small, and this forces the existence of a geodesic that violates the assumptions on N. β can also be used to show that certain Hamiltonian diffeomorphisms supported near subsets S that do have e(S,M) = 0 necessarily have infinitely many nontrivial periodic points.

An application of the boundary depth:

Theorem (U., generalizing Ginzburg, Kerman)

If $N \subset M$ is a coisotropic submanifold $((TN)^{\perp_{\omega}} \subset TN)$ satisfying certain intrinsic conditions^{*a*}, then e(N,M) > 0.

^{*a*} namely, *N* is stable (in the sense of Ginzburg) and $\langle \omega, \pi_2(N) \rangle$ is discrete. Alternately, $\langle [\omega], \pi_2(N) \rangle$ is discrete and *N* admits a metric making its characteristic foliation totally geodesic and having no contractible leafwise geodesics.

Idea of proof: For $U \supset N$ consider a Hamiltonian H_U supported in U whose associated X_{H_U} generates a reparametrization of the leafwise geodesic flow of N. If e(N,M) = 0, then the $\beta(H_U)$ become arbitrarily small, and this forces the existence of a geodesic that violates the assumptions on N.

 β can also be used to show that certain Hamiltonian diffeomorphisms supported near subsets *S* that *do* have e(S,M) = 0 necessarily have infinitely many nontrivial periodic points.

An application of the boundary depth:

Theorem (U., generalizing Ginzburg, Kerman)

If $N \subset M$ is a coisotropic submanifold $((TN)^{\perp_{\omega}} \subset TN)$ satisfying certain intrinsic conditions^{*a*}, then e(N,M) > 0.

^{*a*} namely, *N* is stable (in the sense of Ginzburg) and $\langle \omega, \pi_2(N) \rangle$ is discrete. Alternately, $\langle [\omega], \pi_2(N) \rangle$ is discrete and *N* admits a metric making its characteristic foliation totally geodesic and having no contractible leafwise geodesics.

Idea of proof: For $U \supset N$ consider a Hamiltonian H_U supported in U whose associated X_{H_U} generates a reparametrization of the leafwise geodesic flow of N. If e(N,M) = 0, then the $\beta(H_U)$ become arbitrarily small, and this forces the existence of a geodesic that violates the assumptions on N. β can also be used to show that certain Hamiltonian diffeomorphisms supported near subsets S that do have e(S,M) = 0 necessarily have infinitely many nontrivial periodic points.