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Let EZ—= M be a vector bundle over a closed manifold M,
with rank(E) = dimM, and 6 € I'(E) a section transverse to O
(e.g., E=T*M, 6 € Q}(M)).

Standard facts:

(i) If £: M — E is a sufficiently C'-small section, then 8 + £ has
exactly as many zeros as 6.
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(ii) If £: M — E is a sufficiently C°-small section, then 0 + € has
at least as many zeros as 6.
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6 € Q1(M) is 6 +df, where f is a C*+1-small function.



Zeros of 1-forms

When E = T*M, a standard choice of CX-small perturbation of
6 € Q1(M) is 6 +df, where f is a C**1-small function.

So the preceding shows that, if 8 € Q' (M) vanishes transversely,
(i) 6+ df has exactly as many zeros as 6 if f is C>-small; and
(i) 6 +df has at least as many zeros as 0 if f is C'-small.
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Stability Theorem (Cornea-Ranicki, U.)

If 8 € Q' (M) vanishes transversely and satisfies d8 = 0, there is
0 > 0 such that, whenever

osc(f) := maxf —minf < & and (6 +df) M Or«p,

one has

#(6+df)"1(0) > #671(0).
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Curiously, when 6 is closed, something stronger is true:

Stability Theorem (Cornea-Ranicki, U.)

If 8 € Q' (M) vanishes transversely and satisfies d8 = 0, there is
0 > 0 such that, whenever

osc(f) := maxf —minf < & and (6 +df) M Or«p,

one has

#(6+df)"1(0) > #671(0).

In fact, choosing a metric on M and letting V be the vector field
metrically dual to 6, one can take

5:mf{/e
y

y: R — M nonconstant, y = V(y)}




Zeros of 1-forms

6 does need to be closed for the theorem to hold; for instance
the non-closed form

ydx 4 (x* — 1)dy

can have its two zeros eliminated by adding d(2yx (y)) where x
is a cutoff function supported near zero
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The Novikov complex

The proof of the stability theorem uses the filtrations on the
Novikov complexes of 6 and 0 +df.



The Novikov complex

The proof of the stability theorem uses the filtrations on the
Novikov complexes of 6 and 0 +df.
Given a transversely vanishing closed 1-form 6, choose an
abelian cover
rom
ln
M

so that 778 = d.o7, and use a Riemannian metric on M pulled
back from a suitably generic one on M.
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Thus
Crit(«/) = (1°0) "1 (0) c M

consists of an orbit of " for every zero of 8 € Q'(M).
The Novikov chain complex is

ON. (/) = { S np
i=1

n; € Z,p; € Crit(), o (pi) \, —00} :



The Novikov complex

Thus
Crit(«/) = (1°0) "1 (0) c M

consists of an orbit of " for every zero of 8 € Q'(M).
The Novikov chain complex is

CN, (o) = { inipi n; € Z,p; € Crit(<), </ (p;) \, —oo}.

i=1

CN, (/) is a free module of rank #9~1(0) over the Novikov ring
Ar (g) (this is a completion of the group ring of I', depending on
the de Rham cohomology class [6]; if [6] = 0 we can choose

I = {0} and then Ar ;g = Z).
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One has »
CN.() = (Ar g ©

The goal is to show that #(8 4 df)~1(0) > #6-1(0); since
m (60 +4df) =d(« + Tf),
to achieve our goal it suffices to construct a monomorphism

CN, (/) — CN.(o + TT'f).



The Novikov complex

The boundary operator on CN,. (<) “counts negative gradient
flowlines of <7

Jp = zn(p7q)q
q

where

solutions y: R — M to y= —0.7(y)

signed count of isolated, finite-energy
n(p,q) =
with y(—c0) =p, y(») =q.



The Novikov complex

The boundary operator on CN,. (<) “counts negative gradient
flowlines of <7

Jp = zn(p7q)q
q

where

solutions y: R — M to y= —0.7(y)

signed count of isolated, finite-energy
n(p,q) =
with y(—c0) =p, y(») =q.

Note that, if n(p,q) # 0, then </ (p) — </ (q) > 6 > 0.



The Novikov complex

CN, (<) admits a R-valued filtration: take CN? (.7) < CN, (/)
equal to the set of all formal sums $ n;p; of critical points p; of
o/ having <7 (p;) <A.



The Novikov complex

CN, (<) admits a R-valued filtration: take CN? (.7) < CN, (/)
equal to the set of all formal sums $ n;p; of critical points p; of
</ having <7 (p;) < A. Note that

d: CN () — CN?* P (7).



The Novikov complex

CN, (<) admits a R-valued filtration: take CN? (.7) < CN, (/)
equal to the set of all formal sums $ n;p; of critical points p; of
</ having <7 (p;) < A. Note that

d: CN () — CN?* P (7).
The goal is to compare the sizes of the zero sets of 6 and 6 +df

for f C%-small; these are the ranks, respectively, of the
Ar jg-modules CN.(</) and CN,. (& + 1T'f).



The Novikov complex

CN, (<) admits a R-valued filtration: take CN? (.7) < CN, (/)
equal to the set of all formal sums $ n;p; of critical points p; of
</ having <7 (p;) < A. Note that

d: CN () — CN?* P (7).

The goal is to compare the sizes of the zero sets of 6 and 6 +df
for f C%-small; these are the ranks, respectively, of the

Ar jg-modules CN.(</) and CN,. (& + 1T'f).

These complexes are related by various maps, and the proof
involves analyzing the effects of these maps on the filtrations.
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One has:
@ A chain map

®*: CN,(o/) — CN. (o + 1Tf)

constructed by counting isolated solutions to

W(s) = —OMo/ (s, y(s)) &
o 0
where &/ (s,-) = of +1Tf zio

For suitably-chosen </ (s, -), one has

(o +T0F) (Y(0)) — / = $)))ds < maxf

for any solution y to (1), which translates to the statement
that @ restricts as a map

CN (o) — CNM™3f (o7 4 17°f).
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The Novikov complex

One has:
@ A chain map

®": CN, (/) — CN, (o + f)
which restricts as

CN (o) — CNM™3f (o7 4 17°f).

@ A similar map
®: CN (o +1f) = CN. ()
which restricts as
CN} (o + T'f) — CN} ™ (o7),

SO
®; o : ON? (o) — CNJ V) (7)



The Novikov complex

One has:
@ A chain map

®F: CN? () — CNM™3 (o7 + 11°f).
@ A similar map
O, CNM (o + Tf) — CN) ™ (a7),
SO
®odt: CN? (o) — CN} V) (7)
@ A map
K: CN.(«) — CN, 1 (),

constructed from a (path of (paths from & to «/)), which
restricts as

K: CN) (/) — CN} 150 (7

and obeys
P o —]=0JK+Kd.
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But recall that 9 strictly lowers the filtration by &, so if osc(f) < &
we have
O odr =]+A

where A strictly lowers the filtration.



The Novikov complex

But recall that 9 strictly lowers the filtration by &, so if osc(f) < &

we have
d. o Pt =I+A

where A strictly lowers the filtration.
But then S_,(—A)X is a well-defined inverse to I +A.
Thus ®*: CN, (&) — CN, (<7 + 1*f) has a left inverse, so

#(0 +df)1(0) = rankCN,. (<7 + 11°f) > rankCN, (/) = #871(0).



The Hamiltonian Floer complex

Now let (M, w) be a closed symplectic manifold (w € Q?(M)
nondegenerate, dw = 0). Write S! = R/Z.



The Hamiltonian Floer complex

Now let (M, w) be a closed symplectic manifold (w € Q?(M)
nondegenerate, dw = 0). Write S! = R/Z.

time-dependent “Hamiltonian vector

- sl — ~
Any smooth H: S* xM — R field” X : (X (t,-),-) = d(H(t,-))



The Hamiltonian Floer complex

Now let (M, w) be a closed symplectic manifold (w € Q?(M)
nondegenerate, dw = 0). Write S! = R/Z.

time-dependent “Hamiltonian vector
field” Xy : w(Xu(t,-), ) =d(H(t,"))
Hamiltonian flow {¢; }icr :

4 (@,(p)) = Xu(t, ¢ (p))-

Any smooth H: S x M — R ~»



The Hamiltonian Floer complex

Now let (M, w) be a closed symplectic manifold (w € Q?(M)
nondegenerate, dw = 0). Write S! = R/Z.

time-dependent “Hamiltonian vector
field” Xy : w(Xu(t,-), ) =d(H(t,"))
Hamiltonian flow {¢; }icr :

4 (@,(p)) = Xu(t, ¢ (p))-

Any smooth H: S x M — R ~»

On
%M = {contractible loops y: S' — M}

consider the 1-form
1

(8)y(&) = | ((4(0).£(0) ~ dH(E (1)) de.

J0



The Hamiltonian Floer complex

The zeros of 6y are precisely those contractible loops y of the
form y(t) = ¢, (p) where p € Fix(@}).



The Hamiltonian Floer complex

The zeros of 6y are precisely those contractible loops y of the
form y(t) = ¢, (p) where p € Fix(@}).

By is closed, and vanishes transversely if all fixed points of @}
are nondegenerate. Lifting to a suitable cover 1t: :2%]\//[ — M,
we have

1
776 = disy where ([y,u]) = — / wrw— /O H(e, y(t))de.

D



The Hamiltonian Floer complex

The zeros of By are precisely those contractible loops y of the
form y(t) = ¢, (p) where p € Fix(@}).
By is closed, and vanishes transversely if all fixed points of @}

are nondegenerate. Lifting to a suitable cover m: £oM — %M,
we have

776y — dahy where [y, u]) = —/

D

2u*oo— /OIH(t, y(t))dt.

Formally, the Floer chain complex of H is the Novikov chain
complex of this “action functional” on .£)M.



The Hamiltonian Floer complex

Theorem (Floer, Hofer-Salamon, Liu-Tian, Fukaya-Ono)

This construction can be carried out on any closed symplectic
manifold, producing a chain complex CF,(H) whose homology
HF,.(H) is, independently of H, canonically isomorphic to
H,(M,Q)®A.

Corollary (Variant of Arnol’d conjecture)

| A\

If all fixed points of H are nondegenerate then

H#Fix(gy) > > bi(M; Q).




The Hamiltonian Floer complex

While the just-stated results are about arbitrary
(nondegenerate) H, interesting information specific to H can be
obtained from the R-filtration on the chain complex:

CFi\ (H) = {izlai[yi,ui] A > JZ{H([Viaui]) \ —00

[V, ] € Crit( <) } |



The Hamiltonian Floer complex

While the just-stated results are about arbitrary
(nondegenerate) H, interesting information specific to H can be
obtained from the R-filtration on the chain complex:

e Vi, u;] € Crit(e)
CF(H) = {izlai[yi,ui] 2> MH([w,ui])H\ — o0 }

Analogy: In Heegaard Floer homology one constructs a chain
complex whose chain homotopy type depends only on the
manifold; the choice of a knot induces a filtration which carries
significant information about the knot.



The Hamiltonian Floer complex

The same argument as in case of a closed one-form on a
compact manifold shows that (where we set

1
|H]|| = / (maxH(t,p)—minH(t,p)) dt
0 pEM pPEM

forH: S! xM — R):

IfH: S x M — R is a nondegenerate Hamiltonian, there is & > 0
such that for any nondegenerate Hamiltonian K with
|H—K]| < &, we have

#Eix(@g) > #Fix(¢@).-

Again, this is somewhat surprising, since @; is only “C~!-close”

to @



Filtration-based invariants

Given H, the filtered chain isomorphism type of CF.(H) is
independent of the other auxiliary data involved in its
construction, and (for H suitably normalized) in fact depends only
on the homotopy class rel endpoints of the path {¢;}o<;<1 in the
group of Hamiltonian diffeomorphisms.
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Given H, the filtered chain isomorphism type of CF.(H) is
independent of the other auxiliary data involved in its
construction, and (for H suitably normalized) in fact depends only
on the homotopy class rel endpoints of the path {¢;}o<;<1 in the
group of Hamiltonian diffeomorphisms.

Hence invariants of the filtered chain isomorphism type of
CF.(H) are invariants of the representative of { ¢ }o<<1 in Ham.
Because the standard maps CF,(H) — CF,(K) restrict as

CF? (H) — CFM Kl (k) (where

|H|| = Jy (maxyepmH(t,p) —minyep H(t,p)) dt), such invariants
are often continuous with respect to the C° norm on the space of
Hamiltonians (and with respect to the “Hofer norm” on I/{?zr/n).
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Filtration-based invariants

One example of such an invariant is the Oh-Schwarz spectral
invariant: Recall there is a canonical isomorphism
HF.(H)=H.(M)®A. So for a € H,(M) ® \ we can put

p(H;a) = inf{filtration level of c|c € CF.(H) represents a}.

@ The above makes sense when @} is nondegenerate, but the
definition can be extended to arbitrary H by continuity.

@ p is very similar to the 7 invariant in knot Floer homology:.
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p has diverse applications (e.g., in Entov-Polterovich’s theory of
quasimorphisms on Ham); T'll focus here on its applications to
displacement energy.

For compact K C M, put

e(K,M) = inf{|[H] |} (K) NK = &},

Now

1
H|| = H(t,p) —minH(t,p) | dt
= | (maxti(e.) - mipti(ep) ) e

84K
whereas @} is constructed from dH, so
it’s a bit surprising that e(K,M) would
ever be finite but positive.
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Write po: S' x M — M for the projection.

Theorem (U., generalizing Frauenfelder-Ginzburg-Schlenk)

For any Hamiltonian G: S' x M — R we have

P(G; [M]) < e(p2(supp(G)),M).



Filtration-based invariants

Write po: S' x M — M for the projection.

Theorem (U., generalizing Frauenfelder-Ginzburg-Schlenk)

For any Hamiltonian G: S' x M — R we have
p(G;[M]) < e(p2(supp(G)),M).

Theorem (U., generalizing Oh)

| A\

If G is independent of the S! factor, and if all nonconstant
contractible periodic orbits of X have period > 1, then

p(G: [M]) = max(~G).
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Corollary

Where the Hofer-Zehnder capacity cyz(K) is defined as

G: M — R, supp(G) C K, all nonconstant }

SUp {maxG‘ periodic orbits of X have period > 1

one has
CHz(K) S e(K,M).
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examples with K equal to a closed ball.
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Corollary
Where the Hofer-Zehnder capacity cyz(K) is defined as

sup {maxG‘ G: M — R, supp(G) C K, all nonconstant } 7

periodic orbits of X have period > 1

one has
CHz(K) S e(K,M).

This inequality cyz < e is sharp, as can be seen by explicit
examples with K equal to a closed ball.

Gromov’s nonsqueezing theorem follows as a quick
consequence, as do some (new) generalizations, e.g., if ¥2"~2K is
closed and N2"~2 is closed or Stein then X x B?(r)
symplectically embeds in N x B2(R) only if r <R.
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Another filtration-based invariant: the boundary depth. Set

B(H) =inf{B > 0|(¥A > 0)(CF} (H) o (CF.(H)) < & (CF! P (m)) }

Non-obviously, B(H) is finite (U.); in fact one has (Oh)

B(H) < |[H]|.

As with the spectral invariant, the definition above assumes H
nondegenerate, but then extends continuously to degenerate H.

If H > 0 everywhere or H < 0 everywhere, then

B(H) < 2e(p2(supp(H)),M).
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An application of the boundary depth:

Theorem (U., generalizing Ginzburg, Kerman)

If N C M is a coisotropic submanifold ((TN)+» C TN) satisfying
certain intrinsic conditions®, then e(N,M) > 0.

%namely, N is stable (in the sense of Ginzburg) and (w, 7 (N)) is discrete.
Alternately, ([w], & (N)) is discrete and N admits a metric making its characteristic
foliation totally geodesic and having no contractible leafwise geodesics.
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If N C M is a coisotropic submanifold ((TN)+» C TN) satisfying
certain intrinsic conditions®, then e(N,M) > 0.

%namely, N is stable (in the sense of Ginzburg) and (w, 7 (N)) is discrete.
Alternately, ([w], & (N)) is discrete and N admits a metric making its characteristic
foliation totally geodesic and having no contractible leafwise geodesics.

Idea of proof: For U D N consider a Hamiltonian Hy supported
in U whose associated Xp,, generates a reparametrization of the
leafwise geodesic flow of N. If e(N,M) = 0, then the 3(Hy)
become arbitrarily small, and this forces the existence of a
geodesic that violates the assumptions on N.



Filtration-based invariants

An application of the boundary depth:

Theorem (U., generalizing Ginzburg, Kerman)

If N C M is a coisotropic submanifold ((TN)+» C TN) satisfying
certain intrinsic conditions®, then e(N,M) > 0.

%namely, N is stable (in the sense of Ginzburg) and (w, 7 (N)) is discrete.
Alternately, ([w], & (N)) is discrete and N admits a metric making its characteristic
foliation totally geodesic and having no contractible leafwise geodesics.

Idea of proof: For U D N consider a Hamiltonian Hy supported
in U whose associated Xp,, generates a reparametrization of the
leafwise geodesic flow of N. If e(N,M) = 0, then the 3(Hy)
become arbitrarily small, and this forces the existence of a
geodesic that violates the assumptions on N.

B can also be used to show that certain Hamiltonian
diffeomorphisms supported near subsets S that do have

e(S,M) = 0 necessarily have infinitely many nontrivial periodic
points.
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