
Hofer’s metric on Ham(M,ω) Hofer’s metric on Lagrangian submanifolds Boundary depth in Floer theory Morse functions on S1 Aperiodic

The diameters of Hofer’s metrics on

Hamiltonian diffeomorphisms and Lagrangian

submanifolds

Mike Usher

University of Georgia

GESTA

CIEM, Castro Urdiales

June 30, 2011



Hofer’s metric on Ham(M,ω) Hofer’s metric on Lagrangian submanifolds Boundary depth in Floer theory Morse functions on S1 Aperiodic

Outline

1 Hofer’s metric on Ham(M,ω)

2 Hofer’s metric on Lagrangian submanifolds

3 Boundary depth in Floer theory

4 Morse functions on S1

5 Aperiodic Hamiltonians



Hofer’s metric on Ham(M,ω) Hofer’s metric on Lagrangian submanifolds Boundary depth in Floer theory Morse functions on S1 Aperiodic

Let (M,ω) be a symplectic manifold.

A smooth function H : [0,1]×M → R (compactly supported in

int(M) if M is open) gives rise to a time-dependent Hamiltonian

vector field XH by requiring ω(·,XH) = dMH, and then to a

Hamiltonian flow {φ t
H}t∈[0,1].

Write

Ham(M,ω) = {φ ∈ Diff(M)|φ = φ1
H for some H}.

So Ham(M,ω) is an infinite-dimensional subgroup of the

symplectomorphism group of (M,ω).
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For H : [0,1]×M → R define

osc(H) =
∫ 1

0

(

max
M

H(t, ·)−min
M

H(t, ·)

)

dt.

Then if φ ∈ Ham(M,ω) let

‖φ‖ = inf
{

osc(H)|φ = φ1
H

}

and if ψ ,φ ∈ Ham(M,ω) let

d(φ ,ψ) = ‖ψ−1φ‖.
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Easy Theorem

d satisfies, for any α ,φ ,ψ ∈ Ham(M,ω):

d(φ ,ψ) = d(ψ ,φ)

d(α ,ψ) ≤ d(α ,φ)+d(φ ,ψ)

d(αφ ,αψ) = d(φα ,ψα) = d(φ ,ψ)

Hard Theorem (Hofer, Lalonde–McDuff)

On any (M,ω), we have

d(φ ,ψ) = 0 ⇔ φ = ψ .

Thus d defines a bi-invariant metric on Ham(M,ω).
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We still know relatively little about the global geometry of

Ham(M,ω).

For instance, given a path γ : [0,1] → Ham(M,ω), there is work

of Bialy–Polterovich, Lalonde–McDuff and others which can tell

when γ, or at least a short segment of γ, is length-minimizing

among nearby paths, but we do not have many tools to tell

whether γ is length-minimizing over all paths with given

endpoints.

Relatedly, the following question is still open (the answer is

expected to be no):

Question

Are there any (M,ω) such that the diameter of the Hofer metric is

finite?
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Nearly all of the closed (M,ω) for which Ham(M,ω) was known

to have infinite diameter are covered by a 2008 theorem of

McDuff1 (though many special cases were proven earlier, e.g. by

Lalonde–Mcduff, Schwarz, Entov–Polterovich...); roughly

speaking the theorem implies infinite diameter when (M,ω)
either:

has minimal Chern number large in comparison to dimM

(e.g., M = CPn)

has few nonvanishing genus-zero Gromov–Witten

invariants (e.g., symplectically aspherical or negatively

monotone manifolds, at least under a mild topological

hypothesis)

1in “Monodromy in Hamiltonian Floer theory”
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Roughly speaking, McDuff’s argument goes by combining:

A construction of Ostrover, valid on any closed (M,ω), of a

path {φt}t∈[0,∞) so that the lift {φ̃t} to the universal cover

has d̃(φ̃0, φ̃t) → ∞ with respect to the natural lifted metric;

A proof that, on the class of manifolds covered by her

theorem, certain functions on H̃am(M,ω) (“asymptotic

spectral invariants”) which give Ostrover’s lower bounds for

d̃(φ̃0, φ̃t) actually descend to functions on Ham(M,ω) and so

give lower bounds (tending to ∞) for d(φ0,φt).

The proof involves difficult calculations relating to the Seidel

representation of π1(Ham(M,ω)) on quantum homology.

McDuff shows that if one even just slightly weakens the

hypotheses then the asymptotic spectral invariants can fail to

descend, so the argument will not work.
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Here is a new criterion for infinite Hofer diameter:

Theorem (U.)

Suppose that a closed symplectic manifold (M,ω) admits a

nonconstant autonomous Hamiltonian H : M → R such that all

contractible periodic orbits of XH are constant. Then the diameter

of Ham(M,ω) is infinite. In fact, there is a homomorphism

Φ : R∞ → Ham(M,ω)

such that, for all v,w ∈ R∞,

‖v−w‖ℓ∞ ≤ d(Φ(v),Φ(w)) ≤ osc(v−w).

(To the second part compare a 2007 result of Py, which showed

that in the special case that M contains a π1-injective Lagrangian

submanifold which admits a metric of nonpositive curvature,

Ham(M,ω) contains quasi-isometrically embedded copies of RN

for all N.)
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There are plenty of examples of manifolds satisfying the

hypothesis, for instance:

Any positive genus surface Σ, as well as many examples

built out of Σ such as symplectic fiber bundles over Σ and

(at least for many Kähler forms constructed by Perutz)

symmetric products of Σ. In these cases the nontrivial orbits

of XH go around noncontractible loops.

(U. 2011) Many symplectic four-manifolds with b+ > 1 (e.g.

the K3 surface, elliptic surfaces E(n)p,q (n ≥ 2), Gompf’s

manifolds XG with π1 = G for any finitely-presented G....)

with irrational symplectic forms. In these cases the

nontrivial orbits go along irrational lines on 3-tori.

Products of any of the above with any other symplectic

manifold, and blowups of the above.
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Let (M,ω) be tame (i.e. it can be noncompact but with

reasonable behavior at infinity), and let L0 ⊂ M be a closed

Lagrangian submanifold.

Let

L (L0) = {φ(L0)|φ ∈ Ham(M,ω)}

be the orbit of L0 (as an unparametrized submanifold) under

Ham(M,ω).
Chekanov showed that if for L,L′ ∈ L (L0) we put

δ (L,L′) = inf{‖φ‖|φ ∈ Ham(M,ω), φ(L) = L′},

then δ is a metric on L (L0).
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There are not many results about the diameter of this metric.

For L0 equal to the zero section of the cotangent bundle work of

Oh and Milinković implies that the diameter is infinite.

Khanevsky proved infinite diameter for

L0 = S1 ×{0} ⊂ S1 × (−1,1), and noted that methods of

Lalonde–McDuff imply infinite diameter when L0 is a

noncontractible curve on a closed surface. Leclercq gave

another approach to infinite diameter for the meridian on the

torus, and his methods probably could be extended to linear

Lagrangian Tn ⊂ T2n and a few other cases.

Unlike the case of Ham(M,ω) one should not expect L (L0) to

always have infinite diameter—indeed it shouldn’t be too hard

to prove that the diameter is finite for L0 equal to a circle in R2.
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If (M,ω) is a closed symplectic manifold, let

(P,Ω) = (M×M,(−ω)×ω). Then where ∆M ⊂ P is the diagonal,

we have an embedding

Ham(M,ω) →֒ L (∆M)

φ 7→ Γφ = graph(φ).

Theorem (U.)

Let (M,ω), as in the previous theorem, be a closed symplectic

manifold admitting an autonomous Hamiltonian all of whose

contractible periodic orbits are constant. Then the same

homomorphism Φ : R∞ → Ham(M,ω) from earlier again obeys

‖v−w‖l∞ ≤ δ (ΓΦ(v),ΓΦ(w)) ≤ osc(v−w).

Contrast: Ostrover showed that his path {φt}t∈[0,∞) which goes

to ∞ in H̃am (and also in Ham for the manifolds in McDuff’s

theorem) have the property that δ (∆M,Γφt) is constant.
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Now where S1 = R/Z, let M0 = S1 ×R or S1 ×S1, and for

f : S1 → R let Lf = {(t, f ′(t))|t ∈ S1} (or its projection to S1 ×S1).

Given m ∈ Z+ let

C∞
m(S1,R) = {f ∈ C∞(S1,R)|(∀t)(f(t+1/m) = f(t))}.

Theorem

Let L ⊂ M be a Lagrangian submanifold of another symplectic

manifold such that the Floer homology HF(L,L) is well-defined and

nonzero. Thena in the space L (L0 ×L), for all f ,g ∈ C∞
m where

m ≥ 2 we have

δ (Lf ×L,Lg ×L) ≥ osc(f −g)−C

for some C ≥ 0, with C = 0 if HF(L,L) ∼= H∗(L).

aassuming a Künneth formula for Lagrangian Floer complexes, which is

well-known in the monotone case and is the subject of work in progress by

Amorim in much greater generality in the Fukaya–Oh–Ohta–Ono setup
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Theorem

Let L ⊂ M be a Lagrangian submanifold of another symplectic

manifold such that the Floer homology HF(L,L) is well-defined and

nonzero. Then in the space L (L0 ×L), for all f ,g ∈ C∞
m where

m ≥ 2 we have

δ (Lf ×L,Lg ×L) ≥ osc(f −g)−C

for some C ≥ 0, with C = 0 if HF(L,L) ∼= H∗(L).

So paths of form t 7→ Ltf ×L are globally length-minimizing for

all time if HF(L,L) ∼= H∗(L).
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Hamiltonian Floer theory results from formally doing Morse

theory on a cover of the loopspace L M of a symplectic manifold

(M,ω), for the action functional

AH([γ,v]) = −
∫

[0,1]×S1
v∗ω +

∫ 1

0
H(t,γ(t))dt.

Critical points are those [γ,v] where the loop γ : S1 → M is a

flowline of the Hamiltonian vector field, and so φ1
H(γ(0)) = γ(0).
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Lagrangian Floer theory for two Hamiltonian-isotopic

Lagrangians L and (φ1
H)−1(L) results from formally doing Morse

theory on a cover of the space P(L,L) of paths from L to itself,

for the action functional

AH([γ,v]) = −
∫

[0,1]2
v∗ω +

∫ 1

0
H(t,γ(t))dt.

Again, critical points are those [γ,v] where the path

γ : ([0,1],∂ [0,1]) → (M,L) is a flowline of the Hamiltonian

vector field, and so γ(0) ∈ L∩ (φ1
H)−1(L).

Below we will always assume that HF(L,L) is well-defined, and

that we have already fixed a specific relative spin structure and

bounding cochain, if necessary.
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Again, critical points are those [γ,v] where the path

γ : ([0,1],∂ [0,1]) → (M,L) is a flowline of the Hamiltonian

vector field, and so γ(0) ∈ L∩ (φ1
H)−1(L).

Below we will always assume that HF(L,L) is well-defined, and

that we have already fixed a specific relative spin structure and

bounding cochain, if necessary.
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In either case, one forms a Floer complex CF(H) which, as a

vector space, consists of certain formal linear combinations

∑
[γ,v]∈Crit(AH)

a[γ,v][γ,v]

and defines the boundary operator by counting appropriate

negative gradient flowlines of AH.

If c = ∑a[γ,v][γ,v] ∈ CF(H), define

ℓ(c) = max{AH([γ,v])|a[v,w] 6= 0}.

Because AH decreases along its gradient flowlines, for any λ ∈ R

the subgroups

CFλ (H) = {c ∈ CF(H)|ℓ(c) ≤ λ}

are preserved by the boundary operator—hence they provide a

R-valued filtration on CF(H).
While the homology of CF(H) is independent of H, the behavior

of this filtration depends on H in interesting ways.



Hofer’s metric on Ham(M,ω) Hofer’s metric on Lagrangian submanifolds Boundary depth in Floer theory Morse functions on S1 Aperiodic

In either case, one forms a Floer complex CF(H) which, as a

vector space, consists of certain formal linear combinations

∑
[γ,v]∈Crit(AH)

a[γ,v][γ,v]

and defines the boundary operator by counting appropriate

negative gradient flowlines of AH.

If c = ∑a[γ,v][γ,v] ∈ CF(H), define

ℓ(c) = max{AH([γ,v])|a[v,w] 6= 0}.

Because AH decreases along its gradient flowlines, for any λ ∈ R

the subgroups

CFλ (H) = {c ∈ CF(H)|ℓ(c) ≤ λ}

are preserved by the boundary operator—hence they provide a

R-valued filtration on CF(H).
While the homology of CF(H) is independent of H, the behavior

of this filtration depends on H in interesting ways.



Hofer’s metric on Ham(M,ω) Hofer’s metric on Lagrangian submanifolds Boundary depth in Floer theory Morse functions on S1 Aperiodic

In either case, one forms a Floer complex CF(H) which, as a

vector space, consists of certain formal linear combinations

∑
[γ,v]∈Crit(AH)

a[γ,v][γ,v]

and defines the boundary operator by counting appropriate

negative gradient flowlines of AH.

If c = ∑a[γ,v][γ,v] ∈ CF(H), define

ℓ(c) = max{AH([γ,v])|a[v,w] 6= 0}.

Because AH decreases along its gradient flowlines, for any λ ∈ R

the subgroups

CFλ (H) = {c ∈ CF(H)|ℓ(c) ≤ λ}

are preserved by the boundary operator—hence they provide a

R-valued filtration on CF(H).
While the homology of CF(H) is independent of H, the behavior

of this filtration depends on H in interesting ways.



Hofer’s metric on Ham(M,ω) Hofer’s metric on Lagrangian submanifolds Boundary depth in Floer theory Morse functions on S1 Aperiodic

In either case, one forms a Floer complex CF(H) which, as a

vector space, consists of certain formal linear combinations

∑
[γ,v]∈Crit(AH)

a[γ,v][γ,v]

and defines the boundary operator by counting appropriate

negative gradient flowlines of AH.

If c = ∑a[γ,v][γ,v] ∈ CF(H), define

ℓ(c) = max{AH([γ,v])|a[v,w] 6= 0}.

Because AH decreases along its gradient flowlines, for any λ ∈ R

the subgroups

CFλ (H) = {c ∈ CF(H)|ℓ(c) ≤ λ}

are preserved by the boundary operator—hence they provide a

R-valued filtration on CF(H).
While the homology of CF(H) is independent of H, the behavior

of this filtration depends on H in interesting ways.



Hofer’s metric on Ham(M,ω) Hofer’s metric on Lagrangian submanifolds Boundary depth in Floer theory Morse functions on S1 Aperiodic

The boundary depth of CF(H) is

β (CF(H))= inf
{

β ≥ 0
∣

∣

∣
(∀λ ∈ R)

(

CFλ (H)∩ (Im∂ ) ⊂ ∂ (CFλ+β (H))
)}

.

Said differently,

β (CF(H)) =

{

0 if ∂ = 0

sup06=x∈Im∂ inf{ℓ(y)− ℓ(x)|∂y = x} otherwise

Key Lemma

In the Hamiltonian case, β (CF(H)) depends only on the

time-one map φ = φ1
H, not on the specific Hamiltonian

function generating it.

In the Lagrangian case, β (CF(H)) depends only on the

unparametrized Lagrangian submanifold L′ = (φ1
H)−1(L), not

on the particular Hamiltonian whose flow maps L to L′.
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Key Lemma

In the Hamiltonian case, β (CF(H)) depends only on the

time-one map φ = φ1
H, not on the specific Hamiltonian

function generating it.

In the Lagrangian case, β (CF(H)) depends only on the

unparametrized Lagrangian submanifold L′ = (φ1
H)−1(L), not

on the particular Hamiltonian whose flow maps L to L′.

In both cases, the point is that changing the choice of H results

in a uniform shift of the filtrations of all of the elements of the

Floer complex; since the boundary depth measures the

difference between filtration levels it is unaffected.

For φ ∈ Ham(M,ω) write β (φ) for β (CF(H)) whenever φ = φ1
H,

and similarly for L′ ∈ L (L) write βL(L
′) for β (CF(H)) whenever

(φ1
H)−1(L) = L′
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Proposition

For φ ,ψ ∈ Ham(M,ω) we have |β (φ)−β (ψ)| ≤ d(φ ,ψ).

For L1,L2 ∈ L (L) we have |βL(L1)−βL(L2)| ≤ δ (L1,L2).

β (1M) = 0.

If HF(L,L) = H∗(L) then βL(L) = 0. Otherwise, βL(L) is, for

any J, equal to at least the minimal area of a J-holomorphic

sphere or disc with boundary on L.

In particular, in the Hamiltonian case or in the Lagrangian case

where HF(L,L) = H∗(L), we conclude that β (φ) ≤ ‖φ‖ and

βL(L
′) ≤ δ (L,L′) (and in any event βL(L

′)−βL(L) ≤ δ (L,L′)). Thus

we can use β (which is obtained from a specific Hamiltonian

function) as a lower bound for the Hofer distance. To prove

infinite diameter it suffices to find one sequence Hn so that

β (CF(Hn)) → ∞.
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Proposition

For φ ,ψ ∈ Ham(M,ω) we have |β (φ)−β (ψ)| ≤ d(φ ,ψ).

For L1,L2 ∈ L (L) we have |βL(L1)−βL(L2)| ≤ δ (L1,L2).

β (1M) = 0.

If HF(L,L) = H∗(L) then βL(L) = 0. Otherwise, βL(L) is, for

any J, at least equal to the minimal area of a J-holomorphic

sphere or disc with boundary on L.

Note that one can read off Chekanov’s theorem on displacement

energy of Lagrangian submanifolds (at least when HF(L,L) is

well-defined) from the last part, since if L∩L′ = ∅ then

βL(L
′) = 0. (If you unpack the proofs of the various lemmas,

though, you realize that this isn’t actually a new proof in view of

similar arguments by e.g. Cornea–Lalonde.)
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Other useful properties

If φ ∈ Ham(M,ω) then

β∆M
(Γφ ) = β (φ).

Suppose that HF(L1,L1) 6= 0. Then for K0 ∈ L (L0) and

K1 ∈ L (L1), assuming a Künneth formula we have

βL0×L1
(K0 ×K1) ≥ βL0

(K0).

For Lf = {(t, f ′(t))|t ∈ S1} ⊂ S1 ×R or S1 ×S1, we have

β (Lf ) ≥ βMorse(f),

where βMorse(f) is the boundary depth of the Morse complex of

f : S1 → R.
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The final two points on the last slide reduce the proof of infinite

diameter for L (S1 ×L) when HF(L,L) 6= 0 to a calculation of the

boundary depth for Morse functions on S1.

A Morse function on S1 has maxima p1, . . . ,pr, minima q1, . . . ,qr,

and the Morse boundary operator is given by

∂pi = qi −qi−1

(where subscripts are evaluated mod r, so ∂p1 = q1 −qr)
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1q
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∂pi = qi −qi−1

ker∂ = 〈∑pi〉

Im∂ = 〈∑niqi|∑ni = 0〉

β (f) = sup
06=x∈Im∂

inf{ℓ(y)− ℓ(x)|∂y = x}
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In this case x := q2 −q1 has primitives y0 = p2 and

y1 = −p1 −p3. So

inf{l(y)− l(x)|∂y = x} = f(p2)− f(q1)

(and taking the sup over x one finds that this is indeed the value

of β).
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Proposition

For any Morse function f : S1 → R, βMorse(f) is equal to

sup

{

min{f(w), f(y)}−max{f(x), f(z)}

∣

∣

∣

∣

w,x,y,z are in

cyclic order on S1

}
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Proposition
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min{f(w), f(y)}−max{f(x), f(z)}

∣

∣

∣

∣

w,x,y,z are in

cyclic order on S1

}

So βMorse(f) detects the presence of linked copies C0,C1 of S0 in

S1 such that f |C0
> f |C1

. There exists a higher-dimensional

generalization of this.

The theorem about the diameter of L (S1 ×L) quickly follows: if

f is periodic of period 1/m with m ≥ 2 then we can take w and y

equal to successive global maxima and x and z equal to

successive global minima to see that in this case

βMorse(f) = max f −min f .
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Let H : M → R be a nonconstant autonomous Hamiltonian so

that all contractible periodic orbits of XH are constant.

The boundary depth may do a very poor job of estimating ‖φ1
H‖,

but for suitably chosen f : R → R it does quite well with ‖φ1
f◦H‖.

WLOG assume that ImH contains [0,1] and that all points in

[0,1] are regular values.
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For f : R → R with compact support in ]0,1[, define

minmax f = inf{f(t)|t is a (maybe not strict) local maximum of f}.

(So minmax f ≤ 0.)

Theorem

For f and H as above,

β (φ1
f◦H) ≥ minmax f −min f .
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Theorem

For f and H as above,

β (φ1
f◦H) ≥ minmax f −min f .

The idea of the proof is that, if f(t0) = min f , the Floer complex

of a (well-chosen) C0-perturbation of f ◦H will coincide with its

Morse complex, which will in turn have a cycle representing the

fundamental class of H−1(t0) at filtration level approximately

min f .

This cycle must be a boundary because H−1(t0) bounds in M,

but it can’t be the boundary of anything with filtration level

smaller than approximately minmax f .

In particular it follows that if f ≤ 0 and f has no negative local

maxima then

‖φ1
f◦H‖ = β (φ1

f◦H) = osc(f).
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To get the quasi-isometrically embedded copy of R∞, associate

to (v1,v2, . . .) the Hamiltonian f~v ◦H where the graph of f~v looks

like:

v

v

v

v

1

2

3

4

. . .

(One also uses a duality theorem saying that β (φ) = β (φ−1).)
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