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R2m = {(x1,y1, . . . ,xm,ym)}

carries a standard symplectic form

ω0 =
m

∑
i=1

dxi ∧dyi.

If U,V ⊂ R2m, call φ : U → V symplectic if φ ∗ω0 = ω0.

Let

B2m(r) =

{
m

∑
i=1

(x2
i +y2

i ) < r2

}
.
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Gromov’s non-squeezing theorem

Theorem (Gromov, 1985)

If there exists a symplectic embedding

φ : B2n(r) →֒ B2(R)×R2n−2,

then r ≤ R.

Here the codomain should be understood as {x2
1 +y2

1 < R2}; if

we used {x2
1 +x2

2 < R2} the theorem would be false: if ε > 0 the

symplectic map

(x1,y1,x2,y2, . . .) 7→ (εx1,ε−1y1,εx2,ε−1y2, . . .)

embeds B2n(1) into {x2
1 +x2

2 < ε2}.
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Generalizations

Theorem (Lalonde-McDuff, 1994)

If (M,ω) is any (2n−2)-dimensional symplectic manifold (i.e.,

ω ∈ Ω2(M) satisfies dω = 0 and ω∧(n−1) is a volume form), and if

there exists a symplectic embedding

φ : (B2n(r),ω0) →֒ (B2(R)×M,ω0 ⊕ω),

then r ≤ R.

I’ll sketch a new proof of this (at least when M is closed or

Stein), which in fact also proves:
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Theorem (U. 2008)

If (P2p,ωP) and (M2m,ωM) are symplectic manifolds with P closed

and M closed or Stein (e.g., M = R2m) and if there exists a

symplectic embedding

φ : (B2n−2p(r)×P,ω0 ⊕ωP) →֒ (B2n−2m(R)×M,ω0 ⊕ωM),

then r ≤ R.

This seems most interesting when the volume
∫

P ω∧p is very

small; contrastingly, it follows from old results of Gromov that

for any r,R > 0 there is ε > 0 such that B2n−2p(r)×B2p(ε)
symplectically embeds in B2n−2m(R)×M.
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Hamiltonian flows

If (M,ω) is a symplectic manifold and

H : R/Z×M → R

(t,m) 7→ Ht(m)

is smooth and compactly supported, define a time-dependent

vector field XHt
by

ω(XHt
, ·) = dHt.

One has LXHt
ω = 0, so where φ t

H ∈ Diff(M) is defined by φ0
H = I,

d
dtφ

t
H(m) = XHt

(φ t
H(m)), we have

(φ t
H)∗ω = ω .
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Hamc(M,ω)=
{

φ1
H|H ∈ C∞

c (R/Z×M,R)
}
≤ Symp(M,ω)≤Diff(M).

Define:

‖H‖ =
∫ 1

0
(maxHt −minHt)dt (H ∈ C∞

c (R/Z×M,R));

‖φ‖ = inf{‖H‖ : φ1
H = φ} (φ ∈ Hamc(M,ω));

d(φ ,ψ) = ‖φψ−1‖ (φ ,ψ ∈ Hamc(M,ω))

Theorem (Hofer, Lalonde-McDuff)

d is a bi-invariant metric on Hamc(M,ω); in particular if φ 6= I

then ‖φ‖ > 0.
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Displacement energy

Definition

If K ⊂ M is compact, set

e(K,M) = inf{‖φ‖ : φ(K)∩K = ∅}.

For general A ⊂ M set

e(A,M) = sup{e(K,M) : K ⊂ A, K compact}.
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It’s not hard to see that if φ : M → M is a symplectic

diffeomorphism with φ(A) ⊂ B, then e(A,M) ≤ e(B,M).
In light of this, since for any ε > 0 there is φ ∈ Symp(R2n,ω0)
such that

φ(B2n(r)) ⊂
(
[0,1]× [0,πr2 + ε]

)n
,

we have

e(B2n(r),R2n) ≤ πr2.

In fact:

Theorem (Hofer)

e(B2n(r),R2n) = πr2

We’ll re-obtain the harder inequality as a consequence of a

much more general “energy-capacity inequality.”
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Definition

Let us say that H ∈ C∞
c (M,R) is admissible if the Hamiltonian

vector field XH has no nonconstant periodic orbits of period at

most 1.

If A ⊂ M,

cHZ(A)= sup{maxH|H : M ։ [0,maxH], suppH ⊂ A, H is admissible} .

If A ⊂ M, B ⊂ N, and there is a codimension-zero symplectic

embedding φ : M →֒ N with φ(A) ⊂ B, then

cHZ(A) ≤ cHZ(B).
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Example

Let

A = B2n(r) ⊂ R2n = Cn = {~x + i~y}.

Where ρ = ∑n
j=1(x

2
j +y2

j ), consider H having the special form

H(~x + i~y) = f(ρ).

Then

XH(~v) = −2f ′(ρ)i~v;

hence the sphere {ρ = ρ0} is filled by periodic orbits of minimal

period π
|f ′(ρ0)| .

So given c > 0, we can construct an admissible such H with

maxH = c supported in B2n(r) iff c < πr2. This implies that

cHZ(B
2n(r)) ≥ πr2.
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The inequality

We’ve seen the elementary facts

e(B2n(r),R2n) ≤ πr2, cHZ(B
2n(r)) ≥ πr2.

Theorem (Hofer–Zehnder 1994 for M = R2n, U. 2008 for M

closed or Stein)

For any A ⊂ M we have

cHZ(A) ≤ e(A,M).

This implies most of the theorems we’ve discussed earlier. In

particular, if φ ∈ Hamc(M,ω) is unequal to the identity, then

there is a symplectomorphic copy B of a ball B2n(r) such that

φ(B)∩B = ∅; hence

‖φ‖ ≥ e(B,M) ≥ cHZ(B) ≥ πr2 > 0.
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For the generalized non-squeezing theorem (saying that if P,M
are closed then P×B2n−2p(r) symplectically embeds in

M×B2n−2m(R) only when r ≤ R), note that in general, for P

closed,

cHZ(P×A) ≥ cHZ(A),

and for any M, if B ⊂ N,

e(B,N) ≥ e(M×B,M×N).

So if the embedding exists,

πr2 ≤ cHZ(P×B2n−2p(r)) ≤ cHZ(M×B2n−2p(R))

≤ e(M×B2n−2m(R),M×R2n−2m) ≤ e(B2n−2m(R),R2n−2m)

= πR2.
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To a (nondegenerate) H : (R/Z)×M → R one associates a chain

complex

CF∗(H) =
⊕̂

p∈Crit(AH)
Z〈p〉

with differential counting formal negative gradient flowlines of

a certain function AH : L̃0M → R.

For distinct H,K, there is a chain homotopy equivalence

ΨHK : CF∗(H) → CF∗(K); the induced map on homology fits into

a commutative diagram of isomorphisms

H∗(M)⊗Λ
ΦH

xxqqqqqqqqqq ΦK

&&MMMMMMMMMM

HF∗(H)
ΨHK

// HF∗(K)

.
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ΨHK : CF∗(H) → CF∗(K); the induced map on homology fits into

a commutative diagram of isomorphisms

H∗(M)⊗Λ
ΦH

xxqqqqqqqqqq ΦK

&&MMMMMMMMMM

HF∗(H)
ΨHK

// HF∗(K)

.
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Although the isomorphism ΦH : H∗(M)⊗Λ → HF∗(H) shows

HF∗(H) is independent of H, one can obtain H-dependent

information from Floer homology by considering a natural

filtration on CF∗(H):
If a ∈ R, let

CFa
∗(H) =

⊕̂
p∈Crit(AH),AH(p)≤a

Z〈p〉

For c ∈ CF∗(H), set

ℓ(c) = inf{a|c ∈ CFa
∗(H)}.

The Oh-Schwarz spectral invariant of H (for the class

[M] ∈ H∗(M)⊗Λ) is

ρ(H) = inf{ℓ(c)|[c] = ΦH([M])}.
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Some properties of ρ:

|ρ(H)−ρ(K)| ≤ ‖H−K‖; hence ρ extends to a continuous

function ρ : C0((R/Z)×M) → R.

Where H̄(t,m) = −H(t,φ t
H(m)) generates the path (φ t

H)−1,

0 ≤ ρ(H)+ρ(H̄) ≤ ‖H‖.

Where H#K(t,m) = H(t,m)+K(t,(φ t
H)−1(m)) generates

φ t
H ◦φ t

K,

ρ(H#K) ≤ ρ(H)+ρ(K).

When H is nondegenerate, ρ(H) belongs to the

(measure-zero) set of critical values of AH.
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The proof that cHZ(A) ≤ e(A,M) depends on:

Proposition

If φ1
K(suppH)∩ suppH = ∅, then

ρ(H) ≤ ρ(K)+ρ(K̄)(≤ ‖K‖).

Proposition

If H : M → R is admissible (i.e. XH has no nonconstant periodic

orbits of period at most 1), then

ρ(−H) = maxH.

Thus if H is admissible and supported in A, and if K has the

property that φ1
K(A)∩A = ∅, then ‖K‖ ≥ maxH. That this holds

for all H and K is precisely the statement that cHZ(A) ≤ e(A,M).
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