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ABSTRACT. We develop a family of deformations of the differential and of the pair-of-pants product
on the Hamiltonian Floer complex of a symplectic manifold (M ,ω) which upon passing to homology
yields ring isomorphisms with the big quantum homology of M . By studying the properties of the
resulting deformed version of the Oh–Schwarz spectral invariants, we obtain a Floer-theoretic inter-
pretation of a result of Lu which bounds the Hofer–Zehnder capacity of M when M has a nonzero
Gromov–Witten invariant with two point constraints, and we produce a new algebraic criterion for
(M ,ω) to admit a Calabi quasimorphism and a symplectic quasi-state. This latter criterion is found to
hold whenever M has generically semisimple quantum homology in the sense considered by Dubrovin
and Manin (this includes all compact toric M), and also whenever M is a point blowup of an arbitrary
closed symplectic manifold.

1. INTRODUCTION

The three-point genus zero Gromov–Witten invariants of a closed symplectic manifold (M ,ω)
can be organized in such a way as to give a product ∗0 on the homology H∗(M ;Λω) of M where
Λω is a certain Novikov ring. The resulting ring (H∗(M ,Λω),∗0), called the (undeformed) quantum
homology of (M ,ω), has become a fundamental tool of modern symplectic topology, in part due
to the existence of a ring isomorphism [PSS] from the quantum homology to Hamiltonian Floer
homology with its pair of pants product.

From the early days of physicists’ conception of quantum homology (see [Wi90, p. 323],[Wi91,
Section 3]) it was anticipated that ∗0 would be just one member of a whole family of quantum prod-
ucts ∗η, with the deformation parameter η varying in the homology of M ,1 each of which has its
structure constants given by an η-dependent formula involving counts of genus-zero pseudoholo-
morphic curves. As demonstrated in [KM], the composition law which was used in [RT] to prove
the existence and associativity of the small quantum product ∗0 also establishes the correspond-
ing facts for all of the ∗η; the family of rings {(H∗(M ;Λω),∗η)} (or some other structure carrying
equivalent information) is known in the literature as the big quantum homology of (M ,ω).

While much interesting work has been done relating to the rich algebraic and geometric structure
intrinsic to the big quantum homology (see for instance [Man]), the big quantum homology does
not seem to have had many external applications to problems in symplectic topology. In this paper
we provide some such applications. The applications have in common the following outline: one
shows that a symplectic manifold satisfies some desirable property if there is some η such that the
ring (H∗(M ,Λω),∗η) obeys a certain condition, and then argues that the condition is satisfied for
some η. Since the rings (H∗(M ,Λω),∗η) are typically not mutually isomorphic, the freedom to
vary η allows one to prove more results than would be available if one confined oneself to using
undeformed (η= 0) quantum homology.

Date: August 5, 2011.
1our convention will be that, if dim M = 2n, η is an element of ⊕n−1

i=0 H2i(M ;Λ0
ω) for a certain subring Λ0

ω < Λω
containing C (see Section 1.4(c) below).
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Our applications concern problems in Hamiltonian dynamics, and we bring big quantum ho-
mology to bear on these problems by connecting it to Hamiltonian Floer theory. In particular, we
prove:

Theorem 1.1. Let η ∈ ⊕n−1
i=0 H∗(M ;Λ0

ω). Then for generic Hamiltonians H : S1 × M → R we may
construct an R-filtered, η-deformed Hamiltonian Floer complex

�
C F(H) = ∪λ∈RC Fλ(H),∂ η,H

�

with the following properties:

(i) (∂ η,H)2 = 0, and where HF(H)η = H∗(C F(H),∂ η,H) is the resulting homology there is an
isomorphism ΦPSS

η,H : H∗(M ,Λω)→ HF(H)η.

(ii) For generic pairs (H, K), where H◊K : S1 × M → R denotes the concatenation of H and
K (Section 1.4(g)), there is a pair-of-pants product ∗F loer

η : C F(H) ⊗ C F(H) → C F(H◊K)
which is a chain map with respect to the differentials ∂ η,·, restricts for each λ,µ ∈ R to a map
C Fλ(H)⊗ C Fµ(H)→ C Fλ+µ(H◊K), and whose induced map on homology ∗F loer

η fits into a
commutative diagram

H∗(M ;Λω)⊗ H∗(M ;Λω)

∗η

��

ΦPSS
η,H⊗Φ

PSS
η,K

// HF(H)η ⊗ HF(K)η

∗F loer
η

��

H∗(M ;Λω)
ΦPSS
η,H◊K

// HF(H◊K)η

For proofs of the various statements in Theorem 1.1, see Corollary 3.7 and Propositions 3.11
and 3.12.

Theorem 1.1 allows one to define deformed versions ρ(a; H)η of the Oh-Schwarz spectral invari-
ants ([Sc00],[Oh06]) in a standard way: where a ∈ H∗(M ;Λω) and H is suitably nondegenerate
ρ(a; H)η is the infimal filtration level of a chain representing the homology class ΦPSS

η,H a. One
can show that these invariants satisfy a number of properties similar to familiar properties from
the undeformed case; see Proposition 3.13 for a list of several of these. Among these proper-
ties we mention in particular that ρ(a; ·)η extends by continuity to arbitrary continuous functions
H : S1 ×M → R, and that we have a triangle inequality

(1) ρ(a ∗η b; H◊K)η ≤ ρ(a; H)η +ρ(b; K)η.

The spectral invariants of most Hamiltonians are difficult to compute, so (1) is an important
tool in understanding them; since the sort of information conveyed by (1) changes whenever the
quantum multiplication ∗η changes, we can begin to see how it may be useful to study the spectral
invariants for all values of the deformation parameter η, rather than just those for η = 0 as has
been done in the past.

Let us now discuss our applications.

1.1. Hofer–Zehnder capacity. The π1-sensitive Hofer–Zehnder capacity of the closed symplectic
manifold (M ,ω) may be expressed as

c◦HZ(M ,ω) = sup

¨
max H −min H

����
H : M → R, all contractible periodic orbits of the

Hamiltonian vector field XH of period ≤ 1 are constant

«
.

While it often holds that c◦HZ(M ,ω) =∞, the case when c◦HZ(M ,ω)<∞ is of considerable interest,
for instance because it implies the Weinstein conjecture for contact (or indeed stable) hypersurfaces
of M . Using the deformed Hamiltonian Floer complexes, we give a new proof of the following
theorem of Lu (see also [HV],[LiuT00] for earlier related results).
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Theorem 1.2 ([Lu06, Corollary 1.19]). Suppose that (M ,ω) admits a nonzero Gromov–Witten in-
variant of the form

〈[pt], a0, [pt], a1, . . . , ak〉0,k+3,A,

where A∈ H2(M ;Z)/torsion and a0, . . . , ak are rational homology classes of even degree. Then

c◦HZ(M ,ω)≤ 〈[ω],A〉.

We prove this Theorem below as Corollary 4.3. Strictly speaking Lu’s result is (at least super-
ficially) a bit more general, for instance because it allows for descendant insertions and does not
require the ai to have even degree; however I am not aware of any examples of manifolds satisfy-
ing Lu’s hypotheses but not those of Theorem 1.2. As seen in [Lu06, Theorem 1.21], the estimate
provided by Theorem 1.2 is sharp for M equal to a product

∏k
i=1CPni with any split symplectic

form which is a multiple of the standard one on each factor.
Our proof of Theorem 1.2 brings it into the purview of Hamiltonian Floer theory. In fact, we

deduce Theorem 1.2 from part (ii) of the following Theorem 1.3 about the deformed spectral
invariants, which is new even in the undeformed case η = 0 (though an important special case
appears in [U10a]). As notation, if H : S1 ×M → R is a smooth function, H̄ : S1 ×M → R denotes
the time-reversed Hamiltonian H̄(t, m) = −H(t,φ t

H(m)), whose flow is inverse to that of H.

Theorem 1.3. Fix C > 0 and η ∈ ⊕n−1
i=0 H2i(M ;Λω) and suppose that one of the following two condi-

tions holds:

(i) There are a, b ∈ H∗(M ;Λω) \ {0} such that, for all autonomous H : M → R,

(ρ(a, H)η − ν[M](a)) + (ρ(b, H̄)η − ν[M](b))≤ C;

or
(ii) Where [pt] is the standard generator of H0(M ;C), for all H : M → R,

ρ([pt]; H)η +ρ([pt]; H̄)η ≥−C .

Then the π1-sensitive Hofer-Zehnder capacity of (M ,ω) obeys the bound

c◦HZ(M)≤ C .

Theorem 1.3 is proven below as Corollary 4.1; we refer there for the definition of the quantity
ν[M](a) ∈ R ∪ {−∞}, noting here only that ν[M](a) is finite if and only if a ∈ H∗(M ;Λω) has
a nontrivial component in H2n(M ;Λω). Thus whenever a, b ∈ H∗(M ;Λω) each have nontrivial
components in H2n(M ;Λω) and there holds a universal bound ρ(a; H)η+ρ(b; H̄)η ≤ C ′ we obtain
an explicit finite bound for the Hofer–Zehnder capacity of (M ,ω).

We obtain Theorem 1.2 from Theorem 1.3 by using the assumed nonzero Gromov–Witten in-
variant to find a value (indeed an open dense set of values) η ∈ ⊕n−1

i=0 H2i(M ;C) so that [pt] ∗η a0

has a nontrivial component in H2n(M ;Λω); the triangle inequality and a standard duality property
(Proposition 3.13(vii)) of the spectral invariants allow one to use this to obtain an estimate as in
(ii) of Theorem 1.3. Here it is essential to consider the deformed products ∗η and not just ∗0. This
point is obvious when the number k+ 3 of insertions in the assumed Gromov–Witten invariant is
larger than 3, since in that case the invariant is unseen by ∗0 whereas it does contribute to ∗η for
most values of η. In fact it is useful to allow η to vary even in the case that k + 3 = 3, since if
one considered only η = 0 the possibility would remain that the invariant would be cancelled by
invariants coming from other classes in H2(M ;Z), whereas one can show that there are always
some values of η for which such cancellation does not occur.
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1.2. Calabi quasimorphisms. Beginning with [EP03], work of Entov–Polterovich and others has

shown that, on some symplectic manifolds, the asymptotic spectral invariant φ̃H 7→ limk→∞
ρ(e;H◊k)0

k
(for H normalized and e a well-chosen idempotent with respect to the quantum multiplication ∗0)
defines (after multiplication by a constant) a so-called Calabi quasimorphism µe,0 on the universal

cover àHam(M ,ω) of the Hamiltonian diffeomorphism group.2 Thus µe,0 is a homogeneous quasi-
morphism (i.e. a map which fails to be a homomorphism by a uniformly bounded amount and is
a homomorphism when restricted to cyclic subgroups) which, on the subgroup given by the flows
generated by Hamiltonians supported in any given displaceable open subset, coincides with the
classical Calabi homomorphism of [Ban, Proposition II.4.1]. Moreover, in this case the formula
ζe,0(H) = limk→∞

ρ(e;kH)0
k

defines a function ζe,0 : C(M) → R satisfying the axioms of a symplec-
tic quasi-state, as defined in [EP06]. These constructions have had many interesting applications,
e.g., to the structure of àHam(M ,ω) and to rigidity properties of subsets of M ; see for instance
[EP03],[EPZ],[EP09].

For η ∈ ⊕n−1
i=0 H2i(M ;Λ0

ω) write QH(M ,ω)η for the commutative algebra (Hev(M ;Λω),∗η) given
by restricting η-deformed quantum multiplication to even-dimensional homology.

After establishing basic properties of the deformed spectral invariants as described in Proposition
3.13, we extend the arguments of [EP03],[EP06],[EP08],[U10b] to obtain the following theorem,
which summarizes results of Section 5:

Theorem 1.4. Let (M ,ω) be a closed symplectic manifold, η ∈ ⊕n−1
i=0 H2i(M ;Λ0

ω), and e ∈QH(M ,ω)η
with e ∗η e = e.

(i) Suppose that, for some C > 0 we have an estimate

(2) ρ(e; H)η +ρ(e; H̄)η ≤ C

for all H : S1 × M → R. Then the functions µe,η : àHam(M ,ω) → R and ζe,η : C(M) → R
given by

µe,η(φ̃H) = −vol(M)
ρ(e; H◊k)η

k
ζe,η(H) = lim

k→∞

ρ(e; kH)η
k

define respectively a Calabi quasimorphism and a symplectic quasi-state. The quasimorphism
µe,η obeys the stability property of [EPZ, (3)].

(ii) Suppose that we have a direct sum decomposition (of algebras)

QH(M ,ω)η = F ⊕ A

where F is a field. Then an estimate (2) holds with e equal to the identity in the field summand
F.

Note the similarity of the criteria denoted (i) in, respectively, Theorems 1.3 and 1.4. In particular,
if e ∈ QH(M ,ω)η is an idempotent which contains a nontrivial component in H2n(M ;Λω), we find
that an estimate ρ(e; H)η +ρ(e; H̄)η ≤ C simultaneously gives rise to two deep and quite distinct
conclusions about Hamiltonian dynamics on (M ,ω): a bound on the π1-sensitive Hofer–Zehnder
capacity on the one hand, and the existence of a Calabi quasimorphism and a symplectic quasi-state
on the other. In light of Theorem 1.4(ii), if QH(M ,ω)η is semisimple (i.e. decomposes as a finite
direct sum of fields), then at least one of the multiplicative identities in the field summands will
satisfy these conditions, since the sum of these multiplicative identities is [M].

2In this paper we only discuss Calabi quasimorphisms on àHam(M ,ω); we do not address the interesting question of
whether these can be arranged to descend to Ham(M ,ω). Thus in what follows a “Calabi quasimorphism on M” should be
understood as being defined on àHam(M ,ω).
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Of course, Theorem 1.4(ii) begs the question of under what circumstances a decomposition
QH(M ,ω)η = F ⊕ A with F a field exists. In the later sections of the paper we make a detailed
study of this matter. To any deformation class (M ,C ) of symplectic manifolds we introduce a
“universal quantum coefficient ring” RM and an RM -algebra ARM

and define (see Definition 6.5
and the end of Section 7.2) what it means for (M ,C ) to have “generically field-split big quantum
homology” in terms of the properties of this algebra ARM

. Since it is also of interest to know when
QH(M ,ω)η satisfies the stronger condition of being semisimple (for instance results of [EP09]
show that semisimplicity leads to stronger rigidity results in some contexts than does the property
of having a field direct summand), we also define a notion of (M ,C ) having “generically semisimple
big quantum homology.” Using methods from scheme theory, we show:

Theorem 1.5. If (M ,ω) is a closed symplectic manifold with ω belonging to the deformation class C ,
the following are equivalent:

(i) (M ,C ) has generically field-split (resp. generically semisimple) big quantum homology.
(ii) There is η ∈ ⊕n−1

i=0 H2i(M ;Λ0
ω) such that the deformed quantum homology QH(M ,ω)η splits

as a direct sum F ⊕ A where F is a field (resp. splits as a finite direct sum of fields).
(iii) There is an open dense set U ⊂ ⊕n−1

i=0 H2i(M ;C) such that QH(M ,ω)η splits as a direct sum
F ⊕ A where F is a field (resp. splits as a finite direct sum of fields) whenever η ∈ U .

See Theorem 7.8 for a slightly more specific version of this theorem and its proof.
To illustrate that the equivalent conditions in Theorem 1.5 are far from vacuous, we mention:

Theorem 1.6. (i) The deformation class of any closed symplectic toric manifold has generically
semisimple big quantum homology.

(ii) The deformation class of the blowup at a point of any closed symplectic manifold has generi-
cally field-split big (and also small) quantum homology.

Consequently, any closed symplectic toric manifold, and any blowup of any closed symplectic mani-
fold at a point, admits a Calabi quasimorphism and a symplectic quasi-state.

Proof. As noted in Section 7.3.4, part (i) follows directly from a theorem of [Ir] and Theorem 7.15.
Part (ii) is proven as Theorem 7.16. �

Part (ii) of Theorem 1.6 generalizes a result of McDuff (which appears in [EP08]) which pro-
duces a Calabi quasimorphism on the blowup of any non-uniruled symplectic manifold. Meanwhile
(i) generalizes results that have been proven for a variety of toric Fano manifolds; in particular
in [OT] and [FOOO10] it is shown that if M is toric and Fano then QH(M ,ω)0 is semisimple for
generic choices of the toric symplectic form ω. However Theorem 1.6 does not require any Fano
condition, and also does not require the symplectic form to be chosen generically.

Let us emphasize some aspects of Theorem 1.5. First of all, note that it shows that, as soon we
can obtain a single η giving rise to a Calabi quasimorphism µe,η via Theorems 1.5 and 1.4, there
are in fact uncountably many such η. It is natural to ask whether these quasimorphisms are the
same. We do not prove any results in this direction here, but note that recent work of Fukaya–
Oh–Ohta–Ono [FOOO11, Theorem 1.10] shows that, in certain toric cases, an uncountable subset
of these quasimorphisms can be seen to be linearly independent by means of their interactions
with Lagrangian Floer theory. Meanwhile it is also possible for the Calabi quasimorphisms µe,η to
change as one varies the idempotent e: examples of such behavior (with η = 0) have been found
for certain symplectic forms on CP2#CP2 in [OT, Corollary F] and on S2 × S2 in [ElP].

We also point out that our criterion for the existence of a Calabi quasimorphism on àHam(M ,ω)
depends only on the deformation class of ω. If we had confined ourselves to the case η = 0 we
could not have expected to obtain a deformation-invariant criterion, since the algebraic structure
of QH(M ,ω)0 can be surprisingly sensitive to deformations of ω. For example, in [OT, Section
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5] Ostrover–Tyomkin produce a toric Fano 4-fold M such that QH(M ,ω)0 fails to be semisimple
when ω is the monotone toric symplectic form but is semisimple for generic toric symplectic forms
ω. Calculations in [BaM, Proposition 3.5.5] suggest that a similar phenomenon occurs for the
manifold obtained by blowing up CP2 at 5 or more points. However, by changing the question
from, “Is QH(M ,ω)0 semisimple (or field-split)?” to “Does there exist η such that QH(M ,ω)η is
semisimple (or field-split)?” we evade such issues.

Algebraic geometers have been studying a notion of generically semisimple big quantum ho-
mology for some time (see, e.g., [Dub], [Man], [Bay]), and we show in Section 7.3.3 that our
notion is equivalent to theirs.3 This effectively answers a question raised in [EP08, Remark 3.2]
as to whether semisimplicity in the sense studied there (which in our language amounts to the
semisimplicity of QH(M ,ω)0) can be deduced from generic semisimplicity in the algebraic geom-
etry sense. As stated, the answer is evidently negative, since the Ostrover-Tyomkin example has
generically semisimple quantum homology but fails to have QH(M ,ω)0 semisimple. On the other
hand, from the standpoint of applications this paper shows that generic semisimplicity suffices for
the constructions for which Entov and Polterovich employed the semisimplicity of QH(M ,ω)0.

1.3. Summary of the paper, with additional remarks about the deformed Hamiltonian Floer

complexes. In Section 2, we briefly review the definition of the deformed quantum rings (H∗(M ,ω),∗η).
Section 3 develops deformed Hamiltonian Floer theory. Thus to a suitably nondegenerate Hamil-

tonian H and a deformation parameter η ∈ ⊕n−1
i=0 H2i(M ;Λ0

ω) we associate an R-filtered Floer com-
plex (C F(H),∂ η,H). We also define continuation maps (C F(H−),∂

η,H−)→ (C F(H+),∂
η,H+); PSS-

type maps [PSS] ΦPSS
η,H : C M( f ;Λω)→ C F(H) and Ψη,H : C F(H)→ C M( f ;Λω) where C M( f ;Λω)

is the Morse complex; and a pair of pants product ∗F loer
η : C F(H)⊗ C F(K)→ C F(H◊K). The de-

formations are especially easy to describe when η ∈ H2n−2(M ;Λ0
ω). For example, whereas matrix

elements for the ordinary Floer differential ∂ 0,H count certain cylinders u: R× S1→ M with ratio-
nal weights ε(u), for η ∈ H2n−2(M ;Λ0

ω) we choose a closed 2-form θ Poincaré dual to η and form
the deformed differential ∂ η,H by instead counting these cylinders with weight ε(u)exp(

∫
R×S1 u∗θ ).

Similar modifications are made to obtain deformed versions of the standard continuation and PSS
maps and the pair of pants product. The various standard identities involving these maps (for ex-
ample the facts that (∂ η,H)2 = 0 and that the other maps are chain maps with respect to ∂ η,H) then
follow from the standard arguments together with Stokes’ theorem and the fact that the chosen 2-
form θ is closed. This approach to “twisting” the Hamiltonian Floer complex, though quite simple
and useful (it alone would suffice for our applications in many though not all cases—in particular
it is enough to yield Calabi quasimorphisms on all point blowups and on all toric Fano manifolds),
does not seem to have been used on closed symplectic manifolds before. However, in the context of
the symplectic cohomology of Liouville domains the approach has been used by Ritter [Ri], and it is
also similar to the use of "B-fields" in Lagrangian Floer theory (see [Fu], [Cho]). Note that in these
other contexts (and also in a similarly deformed version of Morse homology, where one integrates
closed one-forms over gradient flowlines) the resulting homology does depend on the deformation
parameter η, whereas in our case it does not, perhaps surprisingly at first glance. This indepen-
dence can be explained by the facts that, first, the η-deformed homology will be independent of the
Hamiltonian H by a standard continuation argument, and second, for a small, time-independent
H, all of the gradient flow cylinders can be arranged to degenerate to lines, over which the 2-form

3As alluded to in Section 7.3.3, different authors use different coeffecient rings in the algebraic geometry literature when
discussing quantum homology, and in some cases it is assumed that certain power series defining the structure constants
converge; however in any event our results show that the resulting notions of generically semisimple big quantum homology
are equivalent on their common domains of definition, a fact which seems to be familiar to algebraic geometers.
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θ integrates trivially, so that θ does not affect the differential. On the other hand θ does affect the
pair-of-pants product, which unavoidably involves genuinely 2-dimensional objects.

For more general η ∈ ⊕n−1
i=0 H2i(M ;Λ0

ω), the differential and the other maps on C F(H) are further
deformed by the imposition of incidence conditions corresponding to the higher-codimension com-
ponents of η. Some subtleties arise here because the fact that the moduli spaces have codimension-
one boundary leads one to need to use the same chains for the incidence conditions at each marked
point (rather than just homologous ones as in Gromov–Witten theory) in order for the maps to sat-
isfy the appropriate identities, which in turn causes potential transversality problems as the marked
points approach each other. However such issues are readily handled by using the same machinery
(the fiber product construction for Kuranishi structures) that is used in [FOOO09] to deal with
similar (and indeed in some cases more difficult) matters in the construction of Lagrangian Floer
theory with bulk deformations. Our use of these sorts of deformations in Hamiltonian Floer the-
ory appears to be new, though Fukaya–Oh–Ohta–Ono arrived at this technique independently, see
[FOOO11]. For the benefit of readers who lack fluency in [FOOO09], we also provide a construc-
tion of the deformed Floer complexes in the semipositive case which does not rely on Kuranishi
structures; due to the aforementioned transversality problems for the relevant fiber products this
does require some work, most of which is consigned to Appendix A. However, it is still our opinion
that the approach based on [FOOO09] is the most appropriate framework for these sorts of con-
structions. The reader should see [FOOO11] for a more thorough development of this approach,
including a relation to Lagrangian Floer theory.

In any event, after constructing these maps, we find that the η-deformed Hamiltonian Floer
theory behaves in much the same way as the undeformed version, except that its multiplicative
structure on homology is isomorphic via the appropriate PSS maps to the η-deformed quantum
ring structure. In particular we can construct spectral invariants in the usual way and prove that
they satisfy standard properties as laid out in Section 3.4.

Section 4 contains the applications discussed above which obtain Hofer–Zehnder capacity esti-
mates by means of the behavior of the deformed spectral invariants. We use arguments depending
on the construction of S1-equivariant Kuranishi structures on moduli spaces associated to the Floer
differentials and the PSS maps (similarly to what is done in [FO], [LiuT98] to prove the Arnold
conjecture, see also the proof of [Oh05, Theorem IV] for a case closely related to ours); the poly-
fold theory of [HWZ] should eventually provide a preferable framework for such arguments. With
current technology, as we explain in Remark 3.16, the use of S1-equivariant Kuranishi structures
can be avoided only under a rather strong assumption on the first Chern class of the manifold. The
results of Section 4 are not used elsewhere in the paper.

Section 5 establishes Theorem 1.4, thus reducing the existence of a Calabi quasimorphism
on àHam(M ,ω) to the statement that, for some η ∈ ⊕n−1

i=0 H2i(M ;Λ0
ω), the commutative algebra

QH(M ,ω)η satisfies an algebraic condition.
The last two sections of the body of the paper are much more algebraic, oriented toward the

goal of finding equivalent conditions to that identified in Section 5. Section 6 is pure commutative
algebra, devoted mainly to a theorem about sets of equivalent conditions under which the spectral
cover map Spec A → Spec R associated to a finite R-algebra A either has an unramified point in
its domain or else has a point in its range over which all points in the fiber are unramified. The
final Section 7 connects this to the problem at hand, reformulating big quantum homology as an
algebra ARM

over a ring RM (as alluded to earlier, RM and ARM
are, unlike QH(M ,ω)η, symplectic

deformation invariants). For a deformation parameter η, the η-deformed quantum homology is
then recovered as the tensor product ARM

⊗RM
Λω associated to an appropriate homomorphism

φη : RM → Λω. The sets of equivalent conditions identified in Section 6 are seen to in turn be
equivalent in this context to the existence of an η such that QH(M ,ω)η, respectively, has a field
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direct summand or is semisimple. The nice behavior of our algebraic conditions under base change
(Proposition 6.6) enables us to move between coefficient systems with ease, leading to results such
as Theorem 1.5. Throughout Section 7 we discuss both big and small quantum homology;4 while
this in principle does not lead to greater generality since if our algebraic conditions hold for small
quantum homology then they also hold for big quantum homology, the small quantum homology
is easier to compute since it only involves 3-point Gromov–Witten invariants, and so our conditions
can be easier to check for small quantum homology. At the end of Section 7 we verify that one-point
blowups always have generically field-split small (and hence also big) quantum homology, drawing
on results of [Ga],[Hu],[Bay] about the Gromov–Witten invariants of blowups.

Finally, in Appendix A, we outline the proof of the result from Section 3.2.2 which under-
lies our construction in the semipositive case of the deformed Floer complexes for classes η ∈
⊕n−1

i=0 H2i(M ;Λ0
ω) which are not of codimension two. This is included only to provide a more self-

contained treatment for readers who prefer to avoid relying on the more sophisticated constructions
from [FOOO09].
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1.4. Some conventions. There are multitudes of different conventions in the literature used for
signs, coefficient rings, and so forth for the various characters in our story; for this reason it seems
prudent to collect some of our conventions in one place for the reader’s convenience (though the
reader will generally be reminded of these as they become relevant).

(a) (M ,ω) always denotes a closed symplectic manifold, and S1 = R/Z.
(b) A “Hamiltonian” is a smooth function H : S1 ×M → R. The Hamiltonian vector field of H

is the time dependent vector field XH = XH(t, ·) defined by ιXH (t,·) = −d(H(t, ·)). (N.B.:
The negative sign is contrary to my usage in previous papers.)

(c) The Novikov ring associated to ω is the generalized formal power series ring

Λω =




∑

g∈Γω

ag T g

����� ag ∈ C, (∀C > 0)(#{g|ag 6= 0, g < C}<∞)



 ,

where

Γω = Im(〈ω, ·〉: π2(M)→ R).

Thus Λω is “completed upward.” The subring Λ0
ω is defined by




∑

g∈Γω

ag T g ∈ Λω

����� ag 6= 0⇒ g ≥ 0



 .

4In our language, the small quantum homology corresponds to the deformations obtained by allowing η to only vary in
H2n−2(M ;Λ0

ω); this differs from some references which have small quantum homology correspond just to η = 0.
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(d) The Floer complex of a (suitably nondegenerate) Hamiltonian H has underlying module

C F(H) =





∑

[γ,v]∈P̃(H)

a[γ,v][γ, v]

������
(∀C < 0)(#{[γ, v]|a[γ,v] 6= 0,AH([γ, v]) > C}<∞)



 .

Thus C F(H) is, unlike Λω, “completed downward.”
(e) Algebraic structures such as C F(H) and the quantum rings (H∗(M ,Λω),∗η) will be graded

by Z/2Z, not Z. Correspondingly, there is no “degree-shifting element” such as that de-
noted q in [EP08].

(f) Any ring whose name begins with the initials QH (such as QH(M ,ω)η) corresponds only
to the even-degree part of the quantum homology (and thus is commutative and, in light of
(e) above, is ungraded). When we wish to include both even and odd degree elements we
will directly refer to H∗(M ,Λω).

(g) Hamiltonians H, K : S1 ×M → R are composed via the “concatenation” operation

H◊K(t, m) =

�
χ ′(t)H(χ(t), m) 0≤ t ≤ 1/2
χ ′(t − 1/2)K(χ(t), m) 1/2≤ t ≤ 1

for a suitable smooth monotone surjection χ : [0,1/2]→ [0,1]. In particular the time-one
maps are related by

φ1
H◊K = φ

1
K ◦φ

1
H .

(h) A fixed parameter η will determine a certain natural number m and cycles c1, . . . , cm such
that ci has dimension 2d(i), as explained in Section 3. The letter I will typically refer to
an element (i1, . . . , ik) of {1, . . . , m}k for some k ∈ N. For a previously-chosen set collection
of elements zi ∈ Λ

0
ω (1≤ i ≤ m) we will write

zI = zi1 · · · zik .

Also,

δ(I) =
k∑

j=1

(2n− 2− 2d(i j))

(This latter number is interpreted as the codimension associated to a certain set of inci-
dence conditions associated to I .)

2. QUANTUM HOMOLOGY I

To fix notation, we now review the definition of the deformed quantum ring structures ∗η on a
closed 2n-dimensional symplectic manifold (M ,ω). These structures will be viewed from a different
perspective in Section 7.

Where

Γω = {〈[ω],A〉|A∈ Im(π2(M)→ H2(M ;Z))} ≤ R,

the Novikov ring associated to (M ,ω) is

Λω =

(
∞∑

i=1

ai T
gi

����� ai ∈ C, gi ∈ Γω, (∀C > 0)
�
#
�
{i|ai 6= 0, gi < C}

�
<∞

�
)

where T is a formal variable. It is not difficult to check that Λω is a field (see for instance [HS,
Theorem 4.1]).
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The Novikov ring has a distinguished subring Λ0
ω ≤ Λω, defined by

Λ0
ω =

(∑

i

ai T
gi ∈ Λω

����� (∀i)(gi ≥ 0)

)
.

An easy exercise shows that there is a well-defined map

exp: Λ0
ω→ Λ

0
ω

defined by the usual Taylor series

exp(a) =
∞∑

k=0

ak

k!

and satisfying the identity
exp(a+ b) = exp a exp b

(on the other hand, for a more general element a ∈ Λω, the formal sum
∑

ak

k!
typically does not

give a well-defined element of Λω).
For each η ∈ ⊕n−1

i=0 H2i(M ;Λ0
ω), we will now define an η-deformed quantum multiplication ∗η,

which makes H∗(M ,Λω) into a Λω-algebra. Our reason for only considering even-dimensional
classes η is that it will allow us to obtain an algebra which is commutative by restricting ∗η to the
even-dimensional part of H∗(M ,Λω). Additionally, orientation-related issues would make it difficult
to obtain results such as Corollary 3.7 below if we did not require η to be even-dimensional.

Given a class A∈ H2(M ;Z) and classes a1, . . . , ak ∈ H∗(M ;Λ0
ω) with k ≥ 3, let

〈a1, . . . , ak〉0,k,A

denote the Gromov–Witten invariant [RT],[FO],[LiT],[Ru] enumerating (in the appropriate vir-
tual sense) genus zero J -holomorphic curves u: S2 → M representing A with k freely-varying
marked points z1, . . . , zk such that u(zi) ∈ Ni , where J is a generic almost complex structure com-
patible with ω and the Ni are generic cycles representing the ai . (Recall that this invariant is
multilinear in the ai , so may be expressed in terms of invariants in which each inserted homology
class is homogeneous.) Let {c1, . . . , cr} be a homogeneous basis for H∗(M ;Q), with Poincaré dual
basis {c1, . . . , c r} (i.e. ci ∩ c j = δ

j
i where ∩ is the Poincaré interection pairing). The operation

∗η : H∗(M ;Λω)⊗H∗(M ;Λω)→ H∗(M ;Λω) is then obtained by extending linearly from the formula

(3) x ∗η y =
∑

A∈H2(M ;Z)

∞∑

k=0

1

k!

r∑

j=1

〈x , y, c j ,η, . . . ,η︸ ︷︷ ︸
k

〉0,k+3,AT 〈[ω],A〉c j .

The reader may verify the fact that the above formula does indeed give a well-defined element of
H∗(M ;Λω); in any event this follows from what is done later in Section 7. As seen in [KM, Section
4], the fact that ∗η is associative follows from properties of Gromov–Witten invariants (in particular
the composition law) that are proven in [RT] and elsewhere.

If we write η= ηD+η
′ where ηD ∈ H2n−2(M ;Λ0

ω) and η′ ∈ ⊕n−2
i=0 H2i(M ;Λ0

ω), the divisor axiom5

for Gromov–Witten invariants shows that

x ∗η y =
∑

A∈H2(M ;Z)

∞∑

k=0

1

k!

r∑

i=1

〈x , y, c j ,η
′, . . . ,η′︸ ︷︷ ︸

k

〉0,k+3,A exp(ηD ∩ A)T 〈[ω],A〉c j;

5Recall that the divisor axiom [MS, Proposition 7.5.6] asserts that if ck+1 ∈ H2n−2(M ;Q) then one has the relation

〈c1, . . . , ck , ck+1〉0,k+1,A = (ck+1 ∩ A)〈c1, . . . , ck〉0,k,A.
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in particular if η ∈ H2n−2(M ;Λ0
ω) we simply have

x ∗η y =
∑

A∈H2(M ;Z)

r∑

j=1

〈x , y, c j〉0,3,A exp(η∩ A)T 〈[ω],A〉c j .

3. HAMILTONIAN FLOER THEORY AND ITS DEFORMATIONS

Let us fix our notations and conventions for Hamiltonian Floer theory. Let H : S1 × M → R be
a smooth function (here and below the circle S1 will be identified with R/Z). Our convention will
be that the (time-dependent) Hamiltonian vector field XH associated to H is given by

ιXH (t,·)ω =−d(H(t·)).

This is consistent with the convention generally used in the papers of Entov-Polterovich, but oppo-
site to that used by Oh and by the present author in earlier papers; various signs appearing below
will accordingly differ from those in corresponding results from those papers.

The Hamiltonian isotopy generated by the vector field XH will be denoted {φ t
H}t∈R (with φ0

H

equal to the identity). The path {φ t
H}0≤t≤1 determines an element in àHam(M ,ω), denoted φ̃H .

Let L0M be the space of contractible loops in M , and

àL0M =
{(γ, v)|γ ∈ L0M , v : D2→ M , v|∂ D2 = γ}

(γ, v) ∼ (γ′, v′) iff γ= γ′ and
∫

D2 v∗ω =
∫

D2 v′∗ω
.

(In this paper the Hamiltonian Floer complex will be treated as just Z2-graded; since we do not
impose a Z-grading, we will not incorporate the first Chern class of M into the definition of àL0M
as is often done).

Define

P(H) = {γ ∈ L0M |γ̇(t) = XH(t,γ(t))}

and

P̃(H) = {[γ, v] ∈àL0M |γ ∈ P(H)}.

Thus P̃(H) is the set of critical points of the action functional

AH([γ, v]) = −

∫

D2

v∗ω+

∫ 1

0

H(t,γ(t))d t.

Assume that H is nondegenerate in the usual sense that, for each p ∈ F ix(φ1
H), the linearization

dpφ
1
H : Tp M → Tp M does not have 1 as an eigenvalue. We then have a map

µ: P̃(H)→ {±1}

defined by

µ([γ, v]) = si gn det(Id − dpφ
1
H).

As an abelian group, the Floer complex of H is then defined by

C F(H) =





∑

[γ,v]∈P̃(H)

a[γ,v][γ, v]

������
a[γ,v] ∈ C, (∀C ∈ R)(#{[γ, v]|a[γ,v] 6= 0,AH([γ, v]) > C}<∞)



 .

We thus have

C F(H) = C Fev(H)⊕ C Fodd(H)
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where

C Fev(H) =





∑

[γ,v]∈P̃(H)

a[γ,v][γ, v] ∈ C F(H)

������
a[γ,v] 6= 0⇒ µ([γ, v]) = +1





and

C Fodd(H) =





∑

[γ,v]∈P̃(H)

a[γ,v][γ, v] ∈ C F(H)

������
a[γ,v] 6= 0⇒ µ([γ, v]) =−1



 .

For any g ∈ Γω choose an arbitrary Ag ∈ π2(M) such that 〈[ω],Ag〉 = g. Then C F(H) has the
structure of a Λω module, via the action

�∑
ai T

gi

�
·
�∑

b[γ,v][γ, v]
�
=
∑

ai b[γ,v][γ, v#Ag].

Note that Λω and C F(H) are completed in the “opposite directions”; this is an artifact of the
negative sign in the formula forAH .

3.1. Homotopy classes of cylinders. For two nondegenerate Hamiltonians H± : S1 × M → R
and γ−,γ+ ∈ P(H±) define π2(γ

−,γ+) to be the set of path components of the space of C0 maps
u: [−∞,∞]× S1→ M obeying u({±∞}× S1) = γ±.

Let u: R× S1 → M be a C1 map such that (where s is the R-variable on R× S1) u(s, ·) → γ±

uniformly; ∂ u
∂ s
(s, ·)→ 0 in L2; and ∂ u

∂ t
(s, ·)→ XH± in L2 as s → ±∞. Then u extends continuously

to a map u: [−∞,∞]× S1 → M with u({±∞} × S1) = γ±, so that u represents some class C ∈
π2(γ

−,γ+).
Write

Ω2
cl(M ;Λ0

ω) =

(
∞∑

i=1

θi T
gi

�����θi ∈ Ω
2(M ;C), dθi = 0, 0≤ gi ր∞, gi ∈ Γω

)
.

It is a straightforward consequence of Stokes’ theorem that, if θ ∈ Ω2(M ;C) is any closed com-
plexified 2-form on M , the quantity

∫
R×S1 u∗θ (which is easily seen to be finite by our asymptotic

assumptions) depends only on the homotopy class C and not on the representative u. Accordingly,
for C ∈ π2(γ

−,γ+) and for θ ∈ Ω2(M ;C) with dθ = 0 we denote
∫

C

θ :=

∫

R×S1

u∗θ

where u is any representative of C as described above. Consequently, for any θ ∈ Ω2
cl(M ,Λ0

ω) and
any γ± ∈ P(H), C ∈ π2(γ

−,γ+), we have a well-defined value
∫

C

θ =

∞∑

i=1

�∫

C

θi

�
T gi ∈ Λ0

ω.

Given three periodic orbits γ0,γ1,γ2 we have a “concatenation” map

π2(γ0,γ1)×π2(γ1,γ2)→ π2(γ0,γ2)

(C−, C+) 7→ C−#C+

where C−#C+ is the equivalence class of a map w : [−∞,−∞]× S1 → M defined (for the sake of
definiteness) as follows. Let u, v : [−∞,∞]× S1→ M be arbitrary representatives of, respectively,
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C− and C+, and define w : [−∞,∞]× S1→ M by

w(s, t) =

�
u(− log(−s), t) s ≤ 0
v(log(s), t) s ≥ 0

(here we’ve extended the natural logarithm to a continuous map log: [0,∞] → [−∞,∞]; the
definition is consistent at s = 0 since by assumption u(∞, ·) = v(−∞, ·) = γ1).

Evidently, if θ ∈ Ω2(M ;Λ0
ω), C− ∈ π2(γ0,γ1), C+ ∈ π2(γ1,γ2), then

(4)

∫

C−#C+

θ =

∫

C−

θ +

∫

C+

θ .

Another important map on π2(γ
−,γ+) is the Maslov map

µ̄: π2(γ
−,γ+)→ Z.

To define it, let C ∈ π2(γ
−,γ+) and let u: [−∞,∞]× S1 be an arbitrary representative of C . Since

γ− is by assumption contractible, choose any disc v : D2 → M with v|∂ D2 = γ−. Glue the negative
end of u to the boundary of v along γ− to form a new disc u#v : D2→ M , now with u#v|∂ D2 = γ+.
Now define

µ̄(C) = µC Z(γ
+, v#u)−µC Z(γ

−, v).

Here the Conley–Zehnder index µC Z is defined as usual (see [Sal, Section 2]): for γ ∈ P(H)
and v : D2 → M with v|∂ D2 = γ, symplectically trivialize v∗T M over D2, and let µC Z(γ, v) be the
Conley–Zehnder index (in the sense of [RS, Remark 5.4]) of the path of symplectic matrices which
represent the linearizations dpφ

t
H in terms of this trivialization. The quantity µ̄(C) is easily seen to

be independent of the various choices involved and to obey

µ̄(C−#C+) = µ̄(C−) + µ̄(C+) (C− ∈ π2(γ0,γ1), C+ ∈ π2(γ1,γ2)).

3.2. Differentials. An S1-family J = {Jt}t∈S1 of ω-compatible almost complex structures on M
induces an S1-family of metrics and hence an L2 metric on àL0M in a standard way. The negative
gradient flow equation for the action functional AH with respect to this metric asks for a map
u: R× S1→ M obeying

(5) ∂̄J ,Hu :=
∂ u

∂ s
+ J(t,u(s, t))

�
∂ u

∂ t
− XH(t,u(s, t))

�
= 0.

For a fixed γ−,γ+ ∈ P(H) and C ∈ π2(γ
−,γ+) write6

M̃ (γ−,γ+, C) =



u: R× S1→ M

�������

∂̄J ,Hu= 0,
∫
R×S1

��� ∂ u
∂ s

���
2
<∞,

u(s, ·)→ γ± as s→±∞,
[u] = C ∈ π2(γ

−,γ+)



 .

Where R acts by s-translation, let

M (γ−,γ+, C) = M̃ (γ−,γ+, C)/R.

This latter space has a standard Gromov compactification CM (γ−,γ+, C) (by broken trajectories
and sphere bubbles), and in [FO, Theorem 19.14] this compactification CM (γ−,γ+, C) is endowed
with an oriented Kuranishi structure with corners, of dimension µ̄(C)− 1; moreover as C varies
the various Kuranishi structures are compatible with gluing maps in an appropriate sense made
precise in [FO, Addendum 19.16] (see also [LiuT98, Section 4] for an alternative construction).
In particular, if µ̄(C) = 1 the zero set of a generic multisection sC associated to this Kuranishi

6to avoid clutter we are omitting J and H from the notation for M̃ (γ−,γ+, C); we hope this will not cause confusion
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structure consists of finitely many points each with a corresponding rational multiplicity, and the
sum of these rational mutliplicities gives a value which we denote

|s−1
C (0)|.

(See [FOOO09, Appendix A] for a general introduction to Kuranishi structures. Very briefly,
a Kuranishi structure on a compact space Z identifies a neighborhood Up of each p ∈ Z with
a quotient by a finite group Γp of the zero locus of some Γp-equivariant smooth map sp : Vp →
Ep where the smooth manifold with corners Vp and the finite-dimensional vector space Ep both
carry Γp-actions. The multisection sC amounts to the data of suitably compatible multi-valued
perturbations s′pi

of spi
for certain specially-chosen pi (as in [FOOO09, Lemma A1.11]) such that

the Upi
cover Z , with each s′pi

transverse to zero (so that s′pi
vanishes at just finitely many points

when the virtual dimension is zero). [FOOO09, Definition A1.27] then prescribes multiplicities at
each point in the vanishing locus, and what we denote by |s−1

C (0)| is the sum of these multiplicities.)
Readers who do not like Kuranishi structures but are willing to restrict themselves to the case

where (M ,ω) is strongly semipositive (i.e., for any A∈ π2(M)with 2−n≤ 〈c1(T M),A〉 < 0 we have∫
A
ω ≤ 0) can instead follow the constructions of [HS]. Provided that the pair (J , H) belongs to a

suitable residual set the spaceM (γ−,γ+, C) will be a an oriented manifold of dimension µ̄(C)−1,
consisting in the case that µ̄(C) = 1 of finitely many points; what we denote by |s−1

C (0)| should
then be interpreted as the signed number of points in M (γ−,γ+, C). (The section sC can in this
context be regarded as the restriction of the operator ∂̄J ,H to the space of cylinders representing
C ∈ π2(γ

−,γ+).)
The standard Floer differential is the operator ∂0 : C F(H) → C F(H) obtained by extending

linearly from the formula

∂0[γ
−, v−] =

∑

γ+∈P(H)

∑

C∈π2(γ
−,γ+),

µ̄(C)=1

|s−1
C (0)|[γ

+, v−#C].

(Here and below the notation [γ+, v−#C] is to be interpreted in the obvious way using concate-
nation; of course since the equivalence relation defining elements [γ, v] of P̃(H) is much weaker
than homotopy the assignment C 7→ [γ+, v−#C] will be many-to-one.)

3.2.1. Small deformations. We consider additionally a whole family of Floer differentials, ∂θ , where
θ takes values in the set Ω2

cl(M ;Λ0
ω) of closed Novikov-ring valued 2-forms. For θ =

∑
i θi T

gi ∈

Ω2
cl(M ,Λ0

ω) and any γ± ∈ P(H), C ∈ π2(γ
−,γ+), we have a well-defined value

∫

C

θ =

∞∑

i=1

�∫

C

θi

�
T gi ∈ Λ0

ω.

For any such θ , we then set

∂θ [γ
−, v−] =

∑

γ+∈P(H)

∑

C∈π2(γ
−,γ+),

µ̄(C)=1

|s−1
C (0)|exp

�∫

C

θ

�
[γ+, v−#C].

Said differently, for each cylinder u counted by the Floer boundary operator, if u is ordinarily
(with respect to the standard boundary operator ∂0) counted with weight ε(u), we instead count u
with weight ε(u)exp

∫
R×S1 u∗θ ∈ Λ0

ω.

Proposition 3.1. If θ ∈ Ω2
cl(M ,Λ0

ω), then ∂ 2
θ = 0.
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Proof. This follows from the standard argument (together with Stokes’ theorem as manifested in
the formula (4)). Indeed, for [γ−, v−] ∈ P̃(H), ∂ 2

θ [γ
−, v−] is a formal sum of generators [γ+, v+]

where γ+ ∈ P(H) and µC Z(γ
+, v+)−µC Z(γ

−, v−) = 2. The coefficient on [γ+, v+] is equal to

∑

C∈π2(γ
−,γ+),∫

C
ω=
∫

D2 v+∗ω−
∫

D2 v−∗ω

∑

γ∈P(H)

∑

C−∈π2(γ
−,γ),

C+∈π2(γ,γ+),
C−#C+=C ,
µ̄(C±)=1

|s−1
C−
(0)||s−1

C+
(0)|exp

 ∫

C−

θ

!
exp

 ∫

C+

θ

!
,

which in turn is, by (4), equal to

(6)
∑

C∈π2(γ
−,γ+),∫

C
ω=
∫

D2 v+∗ω−
∫

D2 v−∗ω

exp

�∫

C

θ

� ∑

γ∈P(H)

∑

C−∈π2(γ
−,γ),

C+∈π2(γ,γ+),
C−#C+=C ,
µ̄(C±)=1

|s−1
C−
(0)||s−1

C+
(0)|.

But as in [FO, Lemma 20.2], for each C ∈ π2(γ
−,γ+) appearing in the sum, the multisection sC

associated to the 1-dimensional oriented Kuranishi structure on CM (γ−,γ+, C) has

∂ s
−1
C (0) =

⋃

γ,C−,C+:
C−#C+=C

s
−1
C−
(0)× s

−1
C+
(0).

So since the sum of the multiplicities of the points of ∂ s
−1
C (0) is zero it follows that the sum in (6)

is zero.
(In the semipositive case where one does not use Kuranishi structures the same argument works,

as in [HS, Theorem 5.1]: for C ∈ π2(γ
−,γ+) the spaceM (γ−,γ+, C) has a compactification which

is an oriented manifold with boundary equal to
⋃

γ,C−,C+:
C−#C+=C

M (γ−,γ, C−)×M (γ,γ+, C+),

which again causes the sum in (6) to be zero.) �

All of the boundary operators ∂θ as θ varies are different; however one can show7 that if
θ ,θ ′ are cohomologous then the complexes built from ∂θ ,∂θ ′ are isomorphic in the category of
R-filtered chain complexes. Thus we have introduced a way of deforming the standard Floer
complex (C F(H),∂0) by a class in H2(M ;Λ0

ω), or equivalently (by Poincaré duality) by a class
in H2n−2(M ;Λ0

ω). In what follows the boundary operator denoted ∂θ above will instead be called
∂ PD[θ],H . Presently, these deformed boundary operators will be generalized to the case where
PD[θ] is replaced by a more general even-dimensional homology class.

3.2.2. Big deformations. This generalization entails counting Floer trajectories which obey certain
incidence conditions, but requires more subtle technical arguments than one might initially imag-
ine. Conceptually, the relevant technical hurdles form a proper subset of the technical hurdles
overcome in the construction of A∞-algebras associated to appropriate Lagrangian submanifolds in
[FOOO09], so we could just appeal to that work. In the interests of not limiting the audience of
this part of the paper to those with a working knowledge of [FOOO09], though, we provide a more
self-contained description which in the case where (M ,ω) is strongly semipositive does not make
any use of Kuranishi structures. If (M ,ω) is not strongly semipositive then one of course will need

7using arguments similar to those in the proof of [U09, Lemma 3.8]—we omit the proof since we will not need to use
the statement
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Kuranishi structures or something similar to deal with multiple covers of spheres of negative Chern
number, but at least in principle one could use constructions just at the level of [FO] rather than
[FOOO09].

Let us first give an indication of the basic strategy, with some explanations of where the novel
technical issues arise. Suppose for simplicity that we wish to deform the boundary operator by a
class η= f∗[N] where f : N → M is a smooth map of a closed, 2d-dimensional manifold N , where
2d ≤ 2n− 4. The plan is to construct

∂ η,H =

∞∑

k=0

1

k!
∂ η,H,k,

where, as a first (inaccurate) approximation, each ∂ η,k counts (modulo reparametrization) solu-
tions u to (5) having k freely-varying marked points z1, . . . , zk with incidence conditions u(zi) ∈
f (N): in fiber product notation, we wish to count elements of the spaces

(7)
�
(M̃ (γ−,γ+; C)× (R× S1)k)(ev1,...,evk)

×( f ,..., f ) N k
�
/R

where evi denotes evaluation at the ith marked point: evi(u, z1, . . . , zk) = u(zi). The astute reader
will already have noticed a transversality problem in (7) occurring when k ≥ 2 and when two of
the marked points zi collide. One way of dealing with such transversality problems is to use the
fiber product construction for Kuranishi structures, as described in [FOOO09, Section A1.2], but
we will also describe a more direct approach.

Note that in Gromov–Witten theory, one can avoid these sorts of transversality problems by,
instead of requiring that u(zi) ∈ f (N) for all i, requiring that u(zi) ∈ fi(N) where the various
fi(N) are in general position with respect to each other. However in the Floer-theoretic context this
strategy will not work, essentially because Floer theory involves moduli spaces have that boundary
of codimension 1 rather than 2, so that varying the constraint cycle N in a one-parameter family
will typically cause the operations to change. If we apply the typical gluing argument to a chain
of two Floer trajectories each obeying one incidence constraint on the cycle N , then we are led
to considering Floer trajectories with two incidence conditions both on N , which is not equivalent
to considering Floer trajectories with incidence conditions on different cycles homologous to N .
This suggests that, in order to ensure that ∂ η,H ◦ ∂ η,H = 0, the operator ∂ η,H,2 should enumerate
elements of a space such as the k = 2 version of (7); however, as noted earlier, this space suffers
from transversality problems.

Thus, in defining the operators ∂ η,H,k, there are two competing issues to address: on the one
hand we wish the ∂ η,H,k to be suitably compatible with the gluing arguments that are typically used
to show that Floer differentials have square zero, while on the other hand we need to maintain
transversality as marked points approach each other. While the preceding two paragraphs suggest
that these goals are in tension, it is reasonable to expect that the problem can be solved: the former
issue relates to behavior when marked points are far away from each other, while the latter relates
to behavior when marked points are near to each other, so one can hope to resolve both issues
simultaneously. We now set about fulfilling this hope.

For any positive integer k, we have an evaluation map

evk : C0(R× S1, M)× (R× S1)k→ M k

which figures in (7). Our basic strategy is to (simultaneously for all k) modify these maps evk to
maps ẽvk with respect to which the fiber products as in (7) can be made transverse, while preserving
the appropriate compatibility under gluing of cylinders. We construct ẽvk along the following lines.
For a smooth positive function β : R → (0,∞) with β(s) → 0 as s → ±∞, for 1 ≤ i ≤ k define
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τβ ,i : (R× S1)k→ R by

(8) τβ ,i((s1, t1), . . . , (sk, tk)) =

i−1∑

j=1

β(si − s j).

Then where {ψτV }τ∈R denotes the flow of a suitable vector field V , we will set, for a map u: R×
S1→ M and an element ~z = (z1, . . . , zk) = ((s1, t1), . . . , (sk, tk)) ∈ (R× S1)k,

(9) ẽvk (u,~z) =
�

u(z1),ψ
τβ ,2(~z)
V (u(z2)), . . . ,ψ

τβ ,k(~z)
V (u(zk))

�
.

Thus the evaluation map at the ith marked point is modified by flowing along the vector field V by
an amount dependent on the locations of all previous marked points relative to the ith one. (Since
τβ ,1(~z) = 0 we have omitted it from the notation above.)

Remark 3.2. Here is an intuitive description of why this approach can be expected to address the
issues described above. Consider first the issue mentioned earlier of non-transversality as marked
points approach each other. Notice that the definition (8) of the functions τβ ,i ensures that, if
~z ∈ (R× S1)k has zi1 = zi2 where i1 < i2, then τβ ,i2(~z) > τβ ,i1(~z). Thus whereas the original fiber
product (7) would have had an excess-dimensional stratum in which the (equal) marked points z1

and z2 are both mapped to the same point on f (N), by replacing evk with ẽvk we force z1 and z2

to be connected to different points on f (N) by prescribed-length flowlines of the vector field V as
z1 and z2 approach each other (at least as long as they are not mapped to zeros of V , as we will
arrange), and this will (for generic choices of the auxiliary data) prevent the diagonals in (R×S1)k

from contributing problematic additional strata.
At the same time, these perturbations of the evaluation maps are compatible with the gluing

maps that arise in the standard proofs that the Floer differential has square zero. This is essentially
because of the fact that β(s) → 0 as s → ±∞, so that distinct marked points on the domain do
not influence each other in the limit as the distance between them approaches infinity. Somewhat
more precisely, a typical end of one of these moduli spaces involves a sequence of Floer trajectories
u(n) : R× S1 → M splitting into two trajectories u± : R× S1 → M , with the marked points z(n)1 =

(s(n)1 , t(n)1 ), . . . , z(n)k = (s(n)k , t(n)k ) distributing themselves among the two components; write i−1 < . . .<
i−l− for the indices in {1, . . . , k} of the marked points which limit to points on the domain of u−, and

i+1 < . . .< i+l+ for those indices corresponding to marked points which limit to points on the domain

of u+. Thus for some T (n)+ , T (n)− ∈ R with T (n)+ − T (n)− →∞ there will be

zi−1
, . . . , zi−l−

, zi+1
, . . . , zi+l+

∈ R× S1

such that, where for T ∈ R σT : R × S1 → R × S1 denotes the map (s, t) 7→ (s + T, t), we have
u(n) ◦σT n

±
→ u± uniformly on compact subsets, and σ−1

T (n)±
(z(n)

i±j
)→ zi±j

.

Note in particular that s(n)
i j
+ − s(n)

il
− → ∞ as n → ∞ for each j, l. Consequently, in view of the

definition (8), we will have for each j = 1, . . . , l±,

τβ , j(zi±1
, . . . , zi±l±

) = lim
n→∞

τβ ,i±j
(z(n)1 , . . . , z(n)k ).

Again, this statement can roughly be interpreted as meaning that our perturbations to the incidence
conditions behave compatibly under gluing of broken trajectories, as is required for the usual state-
ment that one-dimensional spaces of unparametrized Floer trajectories have boundaries given by
unions of products of zero-dimensional spaces of trajectories and that therefore the boundary op-
erator squares to zero.
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We now begin to make these statements more precise. By [Th, Théorème II.29], we may fix
once and for all a basis for ⊕n−2

j=0 H2 j(M ;Q), say with m elements, each member of which may be
represented by an embedding fi : Ni → M where Ni is a closed smooth oriented manifold, say of
dimension 2d(i) (1 ≤ i ≤ m). We should emphasize that we consider the fi to be chosen at the
very outset of the construction (before, for instance, we have chosen a Hamiltonian or an almost
complex structure), and we will not really make a full investigation of the extent to which our
constructions are independent of fi up to appropriate isomorphism. At least at the level of the
homology ring, our main results do imply such independence; however we do not address (and
do not need to address) whether a different choice of the fi would give rise to different deformed
spectral invariants.8

Definition 3.3. A Hamiltonian H : S1 ×M → R is strongly nondegenerate if, for each p ∈ F ix(φ1
H),

• the linearization dpφ
1
H : Tp M → Tp M does not have 1 as an eigenvalue, and

• the orbit {φ t
H(p)|t ∈ [0,1]} is disjoint from each submanifold fi(Ni).

A standard argument shows that the space of strongly nondegenerate H is residual in the C l -
topology for any 2≤ l ≤∞.

Let J l denote the space of S1-families of ω-compatible almost complex structures of class C l .
Let g : M → R be a Morse function g all of whose critical points are disjoint from the various fi(Ni).
For a positive integer l let V l denote the space of C l gradient-like vector fields V for g—in other
words, those V for which there are coordinate charts near each critical point of g in terms of which
V vanishes linearly, while d g(V ) < 0 on the complement of the critical points of g. Thus if V ∈ V l

then V has no nontrivial periodic orbits, and zero locus of V is precisely the set C ri t(g) of critical
points of g, which in particular is disjoint from each fi(Ni). For V ∈ V l let {ψτV }τ∈R denote the flow
generated by V .

Meanwhile fix a strongly nondegenerate Hamiltonian H0, and letH l denote a small ball around
H0 in the space of C l+1 Hamiltonians H : S1 ×M → R which coincide to order two with H0 at the
1-periodic orbits of XH0

. Finally choose a Banach space (B̃ ,‖·‖) of functions R→ R which is dense
in L2 and all of whose elements belong to C∞(R;R) (for definiteness let us follow [Fl, Section 5]
and use for B̃ the completion of C∞0 (R;R) with respect to a norm of the form

∑∞
k=0 εk‖ · ‖Ck

for
sufficiently rapidly decreasing εk, with ε0 = 1) and letB denote the space of functions of the form
β(s) = e−s2

(1+ f (s)) for f ∈ B̃ with ‖ f ‖ < 1. Thus B has an obvious identification with an open
set in a Banach space and so is a Banach manifold; moreover all of its elements are smooth, positive
functions β : R→ (0,2) which decay in Gaussian fashion at ±∞.

The data of V ∈ V l and β ∈ B give rise to functions τβ ,i : (R × S1)k → R and ẽvk : C0(R ×

S1)k × (R× S1)k→ M k as in (8) and (9) above.
Write A l = J l ×H l ×J l ×B , equipped with the topology coming from the C l topology on

the first three factors and the topology mentioned in the previous paragraph on the last factor, and
let A = ∩∞l=2A

l , with the topology coming from the C∞-topology on the first three factors. Thus
eachA l is a Banach manifold andA is a Frechet manifold.

Given a = (J , H, V,β) ∈ A l ; γ−,γ+ ∈ P(H); C ∈ π2(γ
−,γ+); and I = (i1, . . . , ik) ∈ {1, . . . , m}k

(where k ∈ Z≥0), let

M̃ a(γ−,γ+, C; NI ) =



(u,~z, n1, . . . , nk) ∈ M̃ (γ

−,γ+, C)× (R× S1)k ×
k∏

j=1

Ni j

����
ẽvk(u, z1, . . . , zk) =

( fi1(n1), . . . , fik(nk))



 .

8In the version of this construction that appears in [FOOO11], a result stating that the deformed spectral invariants
depend only on the homology class η appears as Theorem 7.7(2).
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Again, the map ẽvk is determined by β and V via (9).
Note that since the functions τβ ,i : (R× S1)k→ R of (8) obey

τβ ,i(σT (z1), . . . ,σT (zk)) = τβ ,i(z1, . . . , zk),

the spaces M̃ a(γ−,γ+, C; NI ) admit R-actions induced by translation of the domain. These R-
actions are free except in the degenerate case where γ− = γ+, k = 0, and C ∈ π2(γ

−,γ−) is the
trivial homotopy class. Let

M a(γ−,γ+, C; NI ) = M̃
a(γ−,γ+, C; NI )/R.

Recalling that the dimension of the manifold Ni is 2d(i) where d(i)≤ n−2, for I = (i1, . . . , ik) ∈
{1, . . . , m}k let

δ(I) =
k∑

j=1

(2n− 2− 2d(i j)).

We have:

Proposition 3.4. Assume that (M ,ω) is strongly semipositive. Then there is a residual subsetA reg ⊂
A such that for each a= (J , H, V,β) ∈A reg the following holds:

(i) Each moduli space M̃ a(γ−,γ+, C; NI ) is a union of a smooth oriented manifold of dimension
µ̄(C)− δ(I) together with spaces which are contained in smooth manifolds of dimension at
most µ̄(C)−δ(I)− 2.

(ii) When µ̄(C)− δ(I) = 1, the quotientM a(γ−,γ+, C; NI ) consists of finitely many points; we
denote the oriented number of these points by |s−1

C ,I (0)|.
(iii) When µ̄(C) − δ(I) = 2, the quotient M a(γ−,γ+, C; NI ) has a compactification which is a

smooth oriented 1-manifold with oriented boundary ∂M a(γ−,γ+, C; NI ) given by

(10)
∐

γ,C−,C+:
C−#C+=C


 ∐

S⊂{1,...,k}

M a(γ−,γ, C−; NJ−(I ,S))×M
a(γ,γ+, C+; NJ+(I ,S))


 .

Here for I = (i1, . . . , ik) ∈ {1, . . . , m}k and S ⊂ {1, . . . , k} (say with #S = l) we denote by
J−(I ,S) the element of {1, . . . , m}l consisting of the entries im with m ∈ S (taken in order) and
by J+(I ,S) the element of {1, . . . , m}k−l consisting of the entries im with m ∈ {1, . . . , k} \ S.

The proof of Proposition 3.4 is outlined in Appendix A; the basic scheme of the proof is fairly
standard but there are some tricky details to address regarding various strata in the compactifica-
tions of the moduli spaces. To connect (iii) above to Remark 3.2, the set S corresponds to what
would be denoted there by {i−1 , . . . , i−l−}; thus S corresponds to the set of marked points which fall
onto the first component of a broken trajectory, while {1, . . . , k} \ S corresponds to those which fall
onto the last component.

To generalize to the non-semipositive case (in which one has problems arising from the bub-
bling of multiply-covered spheres of negative Chern number), one can put Kuranishi structures with
boundary and corners on the Gromov-Floer compactifications of the moduli spacesM a(γ−,γ+, C; NI )

using the techniques of [FO]. Alternately, and we would say somewhat more naturally (though it
requires more machinery), one can use the constructions of Kuranishi structures on (unperturbed)
fiber products from [FOOO09]. Choose any strongly nondegenerate Hamiltonian H and an S1-
family J of ω-compatible almost complex structures. For γ−,γ+ ∈ P(H) and C ∈ π2(γ

−,γ+),
denote

M̃k(γ
−,γ+, C) = M̃ (γ−,γ+, C)× (R× S1)k.
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Where again R acts on each factor by translation of the first variable, we have a quotient

Mk(γ
−,γ+, C) = M̃k(γ

−,γ+, C)/R

whose compactification CMk(γ
−,γ+, C), carries an oriented Kuranishi structure with corners (this

can be shown by adapting the construction of [FOOO09, Section 7.1] from the Lagrangian to the
Hamiltonian context). Moreover, we have evaluation maps ev1, . . . , evk : CMk(γ

−,γ+, C)→ M (evi

is given by evaluating at the ith marked point; in other words, for [u, z1, . . . , zk] in the dense subset
Mk(γ

−,γ+, C) we have evi([u, z1, . . . , zk]) = u(zi)) which are weakly submersive (see [FOOO09,
Definition A1.13] for the definition), in view of which, for any I = (i1, . . . , ik), there is (as explained
in [FOOO09, Section A1.2]) an oriented Kuranishi structure with corners on the fiber product

M (γ−,γ+, C; NI ) := CMk(γ
−,γ+, C)(ev1,...,evk)

×( fi1
,..., fik

) (Ni1 × · · · × Nik).

Where I = (i1, . . . , ik), this Kuranishi structure has dimension

dimM (γ−,γ+, C; Ni1 , . . . , Nik) = µ̄(C)− 1−δ(I),

and just as in Proposition 3.4(iv) the codimension-one stratum of its boundary consists of the
interior of

(11)
∐

γ,C−,C+:
C−#C+=C


 ∐

S⊂{1,...,k}

M (γ−,γ, C−; NJ−(I ,S))×M (γ,γ+, C+; NJ+(I ,S))


 ,

where the notation J±(I ,S) has the same meaning as in (10).
In the case that µ̄(C) = 1 + δ(I), let sC ,I denote the multisection associated to the Kuranishi

structure onM (γ−,γ+, C; NI ), and let |s−1
C ,I (0)| denote the sum of the rational multiplicities of the

points of the (zero-dimensional) vanishing locus of sC ,I .
With this preparation regarding the relevant moduli spaces, we can now explain how to deform

the standard Floer differential by a general homology class of even codimension. Recall that at
the outset of the construction we have specified smooth embeddings fi : Ni → M (i = 1, . . . , m)
of smooth 2d(i)-dimensional manifolds Ni such that the classes ci = fi∗[Ni] represent a basis for
⊕n−2

i=0 H2i(M ;Q). For any η ∈ ⊕n−1
i=0 H2i(M ;Λ0

ω), let θ ∈ Ω2
cl(M ;Λ0

ω) be Poincaré dual to the degree-
(2n− 2) component of η, and write the lower-dimensional part of η as

η− PD[θ] =
m∑

i=1

zici ∈ ⊕
n−2
i=0 H2i(M ;Λ0

ω)

(so zi ∈ Λ
0
ω). For any I = (i1, . . . , ik) ∈ {1, . . . , m}k, let

zI = zi1 · · · zim .

Either choose (J , H, V,β) ∈ A reg as in Proposition 3.4, or choose a strongly nondegenerate
Hamiltonian H and an S1-family of almost complex structures J for input into the Kuranishi struc-
ture construction described after Proposition 3.4; in either case this gives rise to curve counts
|s−1

C ,I(0)|. Given two elements [γ−, v−], [γ+, v+] ∈ P̃(H), consider the expression

(12) 〈∂ η,H[γ−, v−], [γ+, v+]〉=
∞∑

k=0




∑

C∈π2(γ
−,γ+):

[γ+,v+]=[γ+,v−#C]

∑

I∈{1,...,m}k:
µ̄(C)=δ(I)+1

1

k!
|s−1

C ,I (0)|exp

�∫

C

θ

�
zI


 .

Proposition 3.5. Only finitely many nonzero terms appear in the sum defining (12). Consequently
we may define an endomorphism

∂ η,H : C F(H)→ C F(H)
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by extending Λω-linearly from

∂ η,H[γ−, v−] =
∑

[γ+,v+]∈P̃(H)

〈∂ η,H[γ−, v−], [γ+, v+]〉[γ+, v+].

Proof. The condition that [γ+, v+] = [γ+, v−#C] is equivalent to the statement that
∫

C
ω =

∫
D2 v+∗ω−∫

D2 v−∗ω. A standard computation shows that any element ofM (γ−,γ+, C) has energy precisely

equal to AH([γ
−, v−])−AH([γ

+, v+]) =
∫

C
ω+

∫ 1

0
(H(t,γ−(t))− H(t,γ+(t)))d t. Gromov-Floer

compactness then implies that there are just finitely many homotopy classes C ∈ π2(γ
−,γ+) with∫

C
ω =

∫
D2 v+∗ω−

∫
D2 v−∗ω which haveM (γ−,γ+, C) 6= ∅. Thus there are only finitely many C

which contribute nonzero terms in (12).
Let µ0 be the maximal value of µ̄(C) over these finitely many C . For any k and I ⊂ {1, . . . , m}k

contributing to (12) we have δ(I)≤ µ0−1. But we also have δ(I)≥ 2k since each d(i j)≤ n−2, so
all nonzero terms appearing in (12) have k ≤ 1

2
(µ0−1). Since the union of the sets {1, . . . , m}k for

these values of k is finite, this shows that there are only finitely many possible choices of I which
can contribute a nonzero term to (12). This completes the proof that the right hand side of (12) is
a finite sum.

It quickly follows that ∂ η,H[γ−, v−] is a well-defined element of C F(H); the relevant finiteness
condition is satisfied by the standard Gromov-Floer compactness argument, owing to the fact that
an element of M (γ−,γ+, C) has energy AH([γ

−, v−]) −AH([γ
+, v+]). It is easy to see that we

have ∂ η,H(T g[γ−, v−]) = T g∂ η,H[γ−, v−] for any g ∈ Γω, from which it follows that ∂ η,H may be
extended to a Λω-linear operator on C F(H). �

Proposition 3.6. Given γ−,γ+ ∈ P(H), C ∈ π2(γ
−,γ+), and k ∈ N, we have

(13)
k∑

k−=0

∑

γ∈P(H)

∑

C−∈π2(γ
−,γ),

C+∈π2(γ,γ+),
C−#C+=C

∑

J−∈{1,...,m}k− ,
J+∈{1,...,m}k−k− ,
µ̄(C±)=δ(J±)+1

zJ−zJ+

k−!(k− k−)!
|s−1

C−,J−
(0)||s−1

C+,J+
(0)|= 0.

Proof. Since the number of subsets of cardinality k− in {1, . . . , k} is k!
k−!(k−k−)!

, the sum is equivalent
to

1

k!

∑

γ,C−,C+

∑

J−,J+,S

zJ−zJ+ |s
−1
C−,J−
(0)||s−1

C+,J+
(0)|

where γ, C−, C+ satisfy the same constraints as in (13), and where J−, J+ are required to be tuples
of elements of {1, . . . , m} of combined length k and S is a subset of {1, . . . , k} of cardinality equal
to the length of the tuple J−.

Now the assignment (I ,S) 7→ (J−(I ,S), J+(I ,S),S) (notation as in (10)) is a bijection from the
set

{(I ,S)|I ⊂ {1, . . . , m}k,S ⊂ {1, . . . , k}}

to the set of data (J−, J+,S) as in the inner sum above, and if we have J±(I
′,S′) = J±(I ,S) then

zI = zJ+(I ,S)zJ−(I ,S) = zI ′ .

So the sum reduces to
1

k!

∑

I∈{1,...,m}k

zI

∑

S⊂{1,...,k}

∑

γ,C−,C+

|s−1
C−,J−(I ,S)

(0)||s−1
C+,J+(I ,S)

(0)|.

But by (10) the inner two sums, for any given I , enumerate with multiplicity the points on the
boundary of s

−1
C ,I(0), and so for each I the coefficient on zI is equal to zero. �
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Corollary 3.7. For any θ ∈ Ω2
cl(M ;Λ0

ω) and any c =
∑

zici as above we have

(∂ η,H)2 = 0.

Proof. Denote the left hand side of (13) by rk(γ−,γ+, C). It is straightforward to see that, in the
sum defining (∂ η,H)2[γ−, v−], the coefficient on [γ+, v+] is

∞∑

k=0

1

k!

∑

C∈π2(γ
−,γ+),∫

C
ω=
∫

D2 v+∗ω−
∫

D2 v∗−ω

exp

�∫

C

θ

�
rk(γ−,γ+, C).

So the corollary follows directly from the fact that, by Proposition 3.6, each rk(γ
−,γ+, C) = 0. �

3.3. Other maps on the Floer complexes. For η, H as in the previous section (together with
appropriate auxiliary data which are suppressed from the notation), the data

cη,H = (P̃(H)→ P(H),AH ,ω,∂ η,H)

comprise the structure of a “filtered Floer–Novikov complex” in the sense of [U08],[U10b], with
Floer chain complex equal to C F(H) and boundary operator ∂ η,H (since we only consider a Z2-
grading, the grading and degree in the definition in [U10b] can just be set equal to zero). Following
those references, for any c =

∑
c[γ,v][γ, v] ∈ C F(H) we set

(14) ℓ(c) =max{AH([γ, v])|c[γ,v] 6= 0}.

Also, for λ ∈ R, let
C Fλ(H) = {c ∈ C F(H)|ℓ(c)≤ λ}.

In the standard case η = 0, there are a variety of maps that can be defined on the Floer complexes
which formally count solutions to appropriate modifications of the Floer equation (5). These maps
have straightforward analogues when the deformation parameter η is nontrivial; loosely speaking,
the maps simply need to be modified in the same way that the standard differential is modified.
Our discussion will use the framework of Kuranishi structures on fiber products of [FOOO09].
In the strongly semipositive case one can instead use the approach described in Section 3.2.2 to
achieve transversality for the relevant fiber products in a more direct way; we omit the details of
this, as the arguments are essentially identical to those in Section 3.2.2. At least after restricting
to appropriate residual subsets of spaces of auxiliary data, this approach would give rise in the
strongly semipositive case to “Kuranishi-structure-free” proofs of all of the results in the rest of
Section 3 except for Theorem 3.15 (regarding Theorem 3.15, which is used only for the results of
Section 4 and not for the other main results of the paper, see Remark 3.16).

3.3.1. Continuation maps. For example, given η, let H−, H+ : S1 ×M → R be two strongly nonde-
generate Hamiltonians, let H̃ : R× S1 × M → R be a smooth function such that H̃|{s}×S1×M = H−
for s < −1 and H̃|{s}×S1×M = H+ for s > 1, and also (for reasons that will become apparent later)
choose an additional smooth function K : R× S1 ×M → R having support in [−1,1]× S1 ×R.

Where {J(s, t)}(s,t)∈R×S1 is a family of ω-compatible almost complex structures with ∂ J
∂ s
= 0

for |s| large, for C ∈ π2(γ
−,γ+) let N (γ−,γ+, C , H̃, K) denote the space of finite energy solutions

u: R× S1→ M which represent C and obey

(15)
�
∂ u

∂ s
− XK(s, t,u(s, t))

�
+ J(s, t,u(s, t))

�
∂ u

∂ t
− X H̃(s, t,u(s, t))

�
= 0

As in [FO, Section 20],[FOOO09, Chapter 7], the compactification CN (γ−,γ+, C , H̃, K) admits
a Kuranishi structure with corners, as does the compactification CNk(γ

−,γ+, C , H̃, K) of the space
Nk(γ

−,γ+, C , H̃, K) =N (γ−,γ+, C , H̃, K)× (R× S1)k, and the evaluation maps
ev1, . . . , evk : CNk(γ

−,γ+, C , H̃, K) → M are weakly submersive. Recalling the maps fi : Ni → M
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that were fixed above Definition 3.3, it follows that for any I = (i1, . . . , ik) ∈ {1, . . . , m}k the fiber
product

Nk(γ
−,γ+, C , H̃, K; NI ) = CNk(γ

−,γ+, C , H̃, K)(ev1,...,evk)
×( fi1

,..., fik
) (Ni1 × · · · × Nik)

has a Kuranishi structure with corners, with dimension µ̄(C)−δ(I). Letting sH̃,K ,C ,I be the associated
multisection, define

Φη,H̃,K : C F(H−)→ C F(H+)

by extending Λω-linearly from

(16) Φη,H̃,K[γ
−, v−] =

∑

γ+∈P(H+)

∑

C∈π2(γ−,γ+)

∞∑

k=0

1

k!

∑

I∈{1,...,m}k ,
µ̄(C)=δ(I)

|s−1
H̃,K ,C ,I

(0)|exp

�∫

C

θ

�
zI[γ

+, v−#C].

Some words are in order regarding why the formal sum right hand side of (16) validly de-
fines an element of C F(H). Remark first of all that a direct computation shows that, where

E(u) =
∫
R×S1

��� ∂ u
∂ s
− XK(s, t,u(s, t))

���
2

Js,t

dsd t and {H̃, K} = ω(X H̃ , XK), any solution u to (15) with

[γ+, v−#u] = [γ+, v+] obeys

AH−([γ
−, v−])−AH+([γ

+, v+])

= E(u)−

∫

R×S1

�
∂ H̃

∂ s
(s, t,u(s, t))−

∂ K

∂ t
(s, t,u(s, t))− {H̃, K}(s, t,u(s, t))

�
dsd t.(17)

Write

C+(H̃, K) =

∫ ∞

−∞

∫ 1

0

max
{(s,t)}×M

�
∂ H̃

∂ s
(s, t, ·)−

∂ K

∂ t
(s, t, ·)− {H̃, K}(s, t, ·)

�
dsd t

(note that the integrand is supported in [−1,1]× S1 by the construction of H̃ and K). Then (17)
shows that, given [γ−, v−], [γ+, v+], any cylinder u solving (15) with u(s, ·) → γ± as s → ±∞
and [γ+, v−#u] = [γ+, v+] obeys E(u) ≤ AH−([γ

−, v−]) −AH+([γ
+, v+]) + C+(H̃, K). Gromov-

Floer compactness consequently shows that there can be just finitely many homotopy classes C ∈
π2(γ

−,γ+) which contribute to the coefficient of [γ+, v+] in the formula (16) for Φη,H̃,K[γ
−, v−].

So, as was the case with the boundary operator, the fact that δ(I) ≥ 2k shows that, since the
only pairs (C , I) appearing in (16) have µ̄(C) = δ(I), the coefficient on any given [γ+, v+] in the
expression for Φη,H̃,K[γ

−, v−] is a sum over just finitely many C , k, I and so is a well-defined element
of Λ0

ω. Moreover, for any given m ∈ R and [γ−, v−] ∈ P̃(H), any cylinder u which contributes to
a nonzero coefficient in Φη,H̃,K[γ

−, v−] on some [γ+, v+] with AH+([γ
+, v+]) ≥ m necessarily has

E(u)≤ C+(H̃, K)+AH−([γ
−, v−])−m. Consequently Gromov-Floer compactness implies that there

can be just finitely many [γ+, v+] with AH+([γ
+, v+]) ≥ m which appear with nonzero coefficient

in Φη,H̃,K[γ
−, v−]. This establishes the Novikov finiteness condition for the right hand side of (15),

and so justifies the definition of the Λω-linear map Φη,H̃,K : C F(H−)→ C F(H+).
Moreover, the map Φη,H̃,K is a chain map (with respect to the differentials ∂ η,H±); this follows

from a consideration of the boundaries of one-dimensional moduli spaces Nk(γ
−,γ+, C , H̃, K; NI )

in much the same way as in the proof that (∂ η,H)2 = 0.
Observe also that, since we always have E(u) ≥ 0, the estimate (17) shows that, for all c ∈

C F(H−),

(18) ℓ(Φη,H̃,K c)≤ ℓ(c) + C+(H̃, K);

thus, on the filtered subcomplexes C Fλ(H−) of C F(H−), Φη,H̃,K restricts as a map

Φη,H̃,K : C Fλ(H−)→ C Fλ+C+(H̃,K)(H+).
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A noteworthy special case is that in which the two Hamiltonians H± are normalized (i.e.
∫

M
H±(t, ·)ω

n =

0 for all t) and induce paths {φ t
H±
}t∈[0,1] in Ham(M ,ω) which are homotopic rel endpoints. In this

case, as is done in [U09, p. 20], we may choose H̃ : R× S1 × M → R so that the {φ t
H̃(s,·)
} (−1 ≤

s ≤ 1) realize a homotopy from {φ t
H−
} to {φ t

H+
} with each H̃(s, ·) normalized. If we then define

K(s, t, ·): M → R to be the unique mean zero function so that d
ds
(φ t

H̃(s,·)
(p)) = XK(s,t,·)(φ

t
H̃(s,·)
(p))

for all p, it will hold that

∂ H̃

∂ s
(s, t, ·)−

∂ K

∂ t
(s, t, ·)− {H̃, K}(s, t, ·) = 0

(this is a well-known consequence of [Ban, Proposition I.1.1] and the normalization condition on
H and K).

So in this special case we have C+(H̃, K) = 0, and so Φη,H̃,K : C Fλ(H−) → C Fλ(H+). We can
equally well construct a similar map in the opposite direction, and then an exact reproduction of
the proof of [U09, Lemma 3.8] shows the following:

Proposition 3.8. Given a closed symplectic manifold (M ,ω) and η ∈ ⊕n−1
i=0 H2i(M ;Λ0

ω), let φ̃ ∈
àHam(M ,ω) be represented by strongly nondegenerate, normalized Hamiltonians H± : S1 × M → R.
Then for a suitable choice of H̃, K, the chain map

Φη,H̃,K : (C F(H−),∂
η,H−)→ (C F(H+),∂

η,H+)

is an isomorphism of chain complexes which, for each λ ∈ R, restricts as an isomorphism

C Fλ(H−)
∼

// C Fλ(H+).

3.3.2. PSS isomorphisms. The Piunikhin-Salamon-Schwarz isomorphism [PSS] from Morse homol-
ogy to Floer homology can likewise be adapted to the deformed complexes (C F(H),∂ η,H). Given
η ∈ ⊕n−1

i=0 H2i(M ;Λ0
ω), choose a suitably generic pair consisting of a Morse function f : M → R and

a Riemannian metric g on M (with the stable and unstable manifolds of f transverse both to each
other and to the maps fi : Ni → M). The data ( f , g) determine a Morse complex C M( f ;Λω) =∑

p∈C ri t( f )Λω〈p〉, with differential ∂ f counting negative gradient flowlines in the standard way.
If H is a strongly nondegenerate Hamiltonian, the usual PSS map ΦPSS

0,H : C M( f ;Λω)→ C F(H)
enumerates “spiked planes” comprising a half-infinite negative gradient flowline ζ : (−∞, 0]→ M
for f and a finite-energy map v : C→ M obeying, with respect to the standard polar coordinates
r,θ on C,

(19) r
∂ v

∂ r
+ J(reiθ , v(reiθ ))

�
∂ v

∂ θ
−
β(r)

2π
XH(θ/2π, v(reiθ ))

�
= 0

with ζ(0) = v(0) where β : [0,∞) → [0,1] is a smooth monotone function with β(r) = 0 for
r < 1/2 and β(r) = 1 for r > 1. A straightforward modification of this map along the lines of the
construction of ∂ η,H produces a deformed PSS map ΦPSS

η,H : C M( f ;Λω)→ C F(H), as follows.

Given γ ∈ P(H), write π2(γ) for the set of relative homotopy classes of discs u: D2 → M with
v|∂ D2 = γ. If C ∈ π2(γ), write µ̄(C) = µC Z(γ,u) where u is any disc representing C . A finite-
energy map v : C→ M which obeys (19) and has v(reiθ )→ γ(θ/2π) as r →∞ determines a class
[v] ∈ π2(γ) (by rescaling the radial coordinate to [0,1) and compactifying). For C ∈ π2(γ), let

M PSS
k (γ, C) = {(v,~z) ∈ Map(C, M)×Ck|v satisfies (19), [v] = C}

and write its standard compactification as CM PSS
k (γ, C), with evaluation maps evi (1 ≤ i ≤ k) at

the ith marked point. Thus an element of CM PSS
k (γ, C) amounts to the data of a tree consisting

of a solution of (19) and some number (possibly zero) of pseudoholomorphic spheres and Floer
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trajectories, with total homotopy class C , together with k marked points distributed among the
domains of the various components.

Define e0 : M PSS
k (γ, C)→ M by e0(v,~z) = v(0) (and also use the notation e0 for the extension to

the compactification CM PSS
k (γ, C)), and, for p ∈ C ri t( f ), let jp : W u(p)→ M denote the inclusion

of the unstable manifold of p. The appropriate spaces of spiked planes can then be written as

M PSS
k (γ, C; p, NI ) = CM PSS

k (γ, C)(e0,ev1,...,evk)
×( jp , fi1

,..., fik
) (W

u(p)× Ni1 × · · · × Nik).

This fiber product has a Kuranishi structure of dimension µ̄(C)+ ind f (p)− n−δ(I) where ind f (p)
denotes the Morse index of the critical point p. Where sC ,p,I is the corresponding multisection, the
PSS map ΦPSS

η,H : C M( f ;Λω)→ C F(H) is defined by extending Λω-linearly from

ΦPSS
η,H p =

∞∑

k=0

1

k!

∑

γ∈P(H),
C∈π2(γ)

∑

I∈{1,...,m}k ,
µ̄(C)+ind f (p)=n+δ(I)

|s−1
C ,p,I(0)|exp

�∫

C

θ

�
zI[γ, C],

where of course
∫

C
θ denotes the integral of the closed Λ0

ω-valued 2-form θ over any disc with
boundary γ representing the homotopy class C . The fact that the right hand side of the above
formula validly defines an element of C F(H) follows by an argument very similar to that used
earlier to establish the corresponding fact for the continuation map Φη,H̃,K .

In the other direction, one obtains a similar map ΨPSS
η,H : C F(H) → C M( f ;Λω) which formally

enumerates configurations consisting of a finite-energy solution v : (C ∪ {∞}) \ {0} → M of the
equation

(20) r
∂ v

∂ r
+ J(reiθ , v(reiθ ))

�
∂ v

∂ θ
−
β(r−1)

2π
XH(θ/2π, v(reiθ ))

�
= 0

and a negative gradient flowline ζ : [0,∞)→ M for f , with ζ(0) = v(∞), v(reiθ )→ γ(θ/2π) as
r → 0 for some γ ∈ P(H), and such that v obeys appropriate incidence conditions. Where, for
p ∈ C ri t( f ), γ ∈ P(H), I ⊂ {1, . . . , m}k, and C ∈ π2(γ), we let s̄C ,p,I be the multisection associated
to the Kuranishi structure on the space of such configurations asymptotic to γ, such that the map
v̄(reiθ ) = v(r−1eiθ ) represents C ∈ π2(γ), and obeying the incidence conditions corresponding to
I , the map ΨPSS

η,H : C F(H)→ C M( f ;Λω) takes the form

ΨPSS
η,H ([γ,u]) =

∑

p∈C ri t( f )

∞∑

k=0

1

k!

∑

C ,p,I :
−µ̄(C)−ind f (p)=−n+δ(I)

|s̄−1
C ,p,I(0)|exp

�
−

∫

C

θ

�
zI T

∫
D2 u∗ω−

∫
C
ωp.

(Note that, if v is a solution as above contributing to the term corresponding to C ∈ π2(γ), then∫
D2 u∗ω −

∫
C
ω is the integral of ω over a sphere obtained by gluing the capping disc u to the

solution v along γ, so that this quantity does belong to Γω).
The following summarizes some properties of the PSS maps:

Proposition 3.9. For suitable choices of auxiliary data involved in the construction of the deformed
PSS maps, the following properties hold:

(i) The maps ΦPSS
η,H : (C M( f ;Λω),∂ f )→ (C F(H),∂ η,H) andΨPSS

η,H : (C F(H),∂ η,H)→ (C M( f ;Λω),∂ f )

are chain maps, which respect the Z2-gradings of the respective complexes.
(ii) If H−, H+ are two strongly nondegenerate Hamiltonians and if H̃, K are data as in Section

3.3.1, resulting in a continuation map Φη,H̃,K : (C F(H−),∂
η,H−) → (C F(H+),∂

η,H+), the
maps

ΦPSS
η,H+

and Φη,H̃,K ◦Φ
PSS
η,H−

: (C M( f ;Λω),∂ f )→ (C F(H+),∂
η,H+)
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are chain homotopic.
(iii) The compositionsΨPSS

η,H ◦Φ
PSS
η,H : (C M( f ;Λω),∂ f )→ (C M( f ;Λω),∂ f ) and ΦPSS

η,H ◦Ψ
PSS
η,H : (C F(H),∂ η,H)→

(C F(H),∂ η,H) are each chain homotopic to the identity.
(iv) For x =

∑∞
i=1 x i pi T

gi ∈ C M( f ;Λω) (where pi ∈ C ri t( f ), x i ∈ C, gi ∈ Γω) write

ν(x) =max{−gi |x i 6= 0}.

Then

ℓ(ΦPSS
η,H x)≤ ν(x) +

∫ 1

0

max
M

H(t, ·)d t

where ℓ is defined in (14).
(v) For c ∈ C F(H),

ℓ(c)≥ ν(ΨPSS
η,H c) +

∫ 1

0

min
M

H(t, ·)d t.

Proof. Properties (i) and (ii) follow from standard gluing and cobordism arguments as in [PSS]
and [Lu04]; the only new feature is the presence of incidence conditions, which are handled in the
same way as in the proof that (∂ η,H)2 = 0. (The grading property is a straightforward consequence
of the definitions (in particular see the second displayed equation of [RS, Remark 5.4]), taking into
account that δ(I) is always even.)

Consider the composition ΨPSS
η,H ◦ Φ

PSS
η,H . A gluing argument as in [PSS],[Lu04, Proposition 4.6]

shows that this composition is equal to a map φH̄ : C M( f ;Λω)→ C M( f ;Λω) given by

(21) φH̄ p =
∑

q∈C ri t( f )

∞∑

k=0

1

k!

∑

A∈π2(M)

∑

I∈{1,...,m}k ,
2〈c1(M),A〉+ind f (p)−ind f (q)=δ(I)

n(H̄; p,q,A, I)zI exp

�∫

C

θ

�
T
∫

C
ωq.

Here the rational number n(H̄; p,q,A, I) formally enumerates triples (ζ−,u,ζ+) where

• ζ− : (−∞, 0]→ M , ζ+ : [0,∞)→ M are negative gradient flowlines of f with ζ−(τ)→ p
as τ→−∞ and ζ+(τ)→ q as τ→∞;
• u: C ∪ {∞} → M is a solution to ∂̄J ,H̄u = 0 which represents A in π2(M) and satisfies

incidence conditions corresponding to I , for a suitable Hamiltonian perturbation H̄ which
vanishes near 0 and∞; and
• u(0) = ζ−(0) and u(∞) = ζ+(0).

Meanwhile, a standard cobordism argument shows that the chain homotopy class of the map φH̄

is independent of the Hamiltonian perturbation H̄. Moreover, a cobordism argument also shows
that the chain homotopy class of φH̄ is unchanged if we replace the cycles fi : Ni → M used for the
incidence conditions I = {i1, . . . , ik} with an arbitrary family of choices

{(αI
1, . . . ,αI

k)|I ∈ {1, . . . , m}k, k ≥ 0}

so that for each I , j the cycle αI
j represents the same homology class ci j

as does fi j
.

In particular, we can choose H̄ = 0, in which case the spherical component u of the triple
(ζ−,u,ζ+) is required to be J -holomorphic. There is then an S1-action on the relevant moduli
spaces (induced by rotating the sphere) and as in [Lu04, Proposition 4.7], [FO, p. 1036] the fact
that this action is locally free on all of the spaces except those corresponding to a topologically
trivial u implies that only the class A = 0 ∈ π2(M) contributes nontrivially to φ0, and the only
contributions come from constant maps u: S2→ M to points x of the intersections W u(p)∩W s(q)
(which have dimension ind f (p) − ind f (q)). Moreover, the point x must meet the cycles αI

1,αI
k;

if these latter are mutually transverse to each other and to the W u(p),W s(q) (as we may and do
choose them to be) this imposes a condition of codimension

∑k
j=1(2n−2d(i j)) = δ(I)+2k. So since
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the only terms in (21) corresponding to A= 0 have ind f (p)− ind f (q) = δ(I) the only contributions
to φ0 (for these choices of the αI

j) have k = 0, and so just as in [PSS],[Lu04, Proposition 4.7] we
find that the map φ0 is the identity.

The proof that ΦPSS
η,H ◦Ψ

PSS
η,H : (C F(H),∂ η,H)→ (C F(H),∂ η,H) is chain homotopic to the identity

is just the same as that outlined in [PSS], [Lu04] (note that to complete this outline one needs to
incorporate the gluing analysis of [OZ]): using the appropriate gluing and cobordism arguments
one finds that ΦPSS

η,H ◦Ψ
PSS
η,H is chain homotopic to the map that in the notation of Section 3.3.1 would

be denoted Φη,H̃,0, with H̃(s, t, m) = H(t, m). But this latter map is the identity as in [FO, (20.7)],
since with the exception of the “trivial cylinders” u(s, t) = γ(t) all of the cylinders which might
contribute to it are members of orbits of free R-actions and so do not arise in zero-dimensional
moduli spaces. This completes the proof of part (iii).

As for (iv), note that in order for [γ, v] to appear with nonzero coefficient in ΦPSS
η,H p there must

exist a solution u: C → M to (19) asymptotic to γ having
∫
C

u∗ω =
∫

D2 v∗ω. In this case a
computation gives

AH([γ, v]) =−

∫

C

u∗ω+

∫ 1

0

H(t,γ(t))d t

=−E(u) +

∫ 1

0

∫ ∞

0

β ′(r)H(t,u(re2πi t))drd t

≤

∫ 1

0

max
M

H(t, ·)d t,

where we’ve used the facts that
∫∞

0
β ′(r)dr = 1 and that the energy E(u) =

∫
C

��� ∂ u
∂ r

���
2

rdrdθ is

nonnegative. Bearing in mind that the expression exp(
∫

C
θ )zI belongs to Λ0

ω, so that its action on
C F(H) does not increase the value of ℓ, this implies that, for any p ∈ C ri t( f ), we have

ℓ(ΦPSS
η,H p)≤

∫ 1

0

max
M

H(t, ·)d t,

and then (iv) follows from obvious properties of the function ℓ.
The proof of (v) is similar: For a term T g p to appear in ΨPSS

η,H [γ,u] there must be a solution
v : (C∪ {∞}) \ {0} → M of (20), asymptotic to γ as |z| → 0, and having

∫

(C∪{∞})\{0}

v∗ω= −

∫

D2

u∗ω+ g

For such a solution we find
∫

(C∪{∞})\{0}

v∗ω = E(v)−

∫ 1

0

H(t,γ(t))d t −

∫ 1

0

∫ ∞

0

d

dr

�
β(r−1)

�
H(t, v(re2πi t))drd t

≥−

∫ 1

0

H(t,γ(t))d t +

∫ 1

0

min
M

H(t, ·)d t.

Hence we obtain

g ≥

∫

D2

u∗ω−

∫ 1

0

H(t,γ(t))d t +

∫ 1

0

min
M

H(t, ·)d t = −AH([γ,u]) +

∫ 1

0

min
M

H(t, ·)d t,
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and then from the definitions of Ψη,H ,ℓ,ν we see that

ν(Ψη,H c)≤ ℓ(c)−

∫ 1

0

min
M

H(t, ·)d t

for any c ∈ C F(H).
�

3.3.3. Pair of Pants products. We now discuss the deformed versions of the pair of pants product on
Floer homology. We continue to regard as fixed the class η ∈ ⊕n−1

i=0 H2i(M ;Λ0
ω) and the representing

chains fi : Ni → M and 2-form θ ∈ Ω2
cl(M ;Λ0

ω).
In general, if H : S1×M → R is any Hamiltonian and if χ : [0,1]→ [0,1] is a smooth monotone

function with χ(0) = 0, χ(1) = 1, and χ ′(0) = χ ′(1), define

Hχ(t, m) = χ ′(t)H(χ(t), m).

Note that contractible 1-periodic orbits of XHχ are just reparametrizations of contractible 1-periodic
orbits of XH , in view of which Hχ is strongly nondegenerate if and only if H is. Since H and
Hχ represent the same element of àHam(M ,ω), if H (hence also Hχ) is normalized and strongly
nondegenerate then the η-deformed Floer complexes of H and Hχ are isomorphic as R-filtered
chain complexes by Proposition 3.8.

Fix a smooth monotone function ζ : [0,1/2] → [0,1] such that ζ(0) = 0, ζ(1/2) = 1, and ζ′

vanishes to infinite order at both t = 0 and t = 1/2. Given smooth functions H, K : S1 × M → R,
define H◊K : S1 ×M → R by

H◊K(t, m) =

�
ζ′(t)H(ζ(t), m) 0≤ t ≤ 1/2
ζ′(t − 1/2)K(ζ(t − 1/2), m) 1/2≤ t ≤ 1

.

The choice of ζ ensures that H◊K is well-defined and smooth; also, if H and K are normalized then
so is H◊K .

Be given two Hamiltonians H, K : S1 ×M → R. For some small ε > 0, we assume that H(t, ·) =
K(t, ·) = 0 for |t| ≤ ε; this can be achieved by replacing H, K with Hχ , Kχ as defined above for
some χ : [0,1] → [0,1] as above whose derivative vanishes identically on [0,ε] ∪ [1− ε, 1]. We
assume that H, K , and H◊K are each strongly nondegenerate; a standard argument shows that this
conditions holds for generic pairs (H, K). We now explain the definition of the pair of pants product

∗F loer
η : C F(H)⊗ C F(K)→ C F(H◊K),

carefully arranging the details so that the product will behave well with respect to the filtrations
on the complexes. The construction of course closely resembles that in [Sc00, Section 4.1], but
we phrase it a bit differently, working always in terms of an explicit smooth trivialization of the
relevant bundles in order to facilitate the introduction of incidence conditions.

Let Σ denote the thrice-punctured sphere, and let Σ0 ⊂ Σ be the compact submanifold with
boundary obtained by deleting from Σ small punctured-disc neighborhoods of the punctures.

As in Figure 1, express Σ0 as a union of disjoint annuli A0,A1
∼= [0,1]× S1 and a square B ∼=

[0,1]×[0,1]. For i = 0,1 let t i be the angular (S1 = R/Z) coordinates on the annuli A0,A1; values
of the t i at certain points are indicated in the figure. Consider the manifold Σ0×M with projection
p2 : Σ0 ×M → M , equipped with the symplectic form ω0 defined by

ω0|A0×M = p∗2ω− d(H(t0, ·)d t0)

ω0|A1×M = p∗2ω− d(K(t1, ·)d t1)

ω0|B×M = p∗2ω.
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A0
A1

B0 0

0
ε 1-ε

ε1-ε

C
0

1

2

C

C

FIGURE 1. The surface Σ0, decomposed into annuli A0,A1 and a square B. The
thrice-punctured sphere Σ is obtained by adding cylindrical ends (−∞, 0] ×
C0, (−∞, 0]× C1, [0,∞)× C2.

Because of our assumption that H(t, ·) = K(t, ·) = 0 for |t| ≤ ε, the above definitions of ω0 are
consistent on the overlaps (Ai ∩ B)×M .

For any parametrization of the third boundary component C2 of Σ0 by a coordinate t2 ∈ R/Z
with orientation and basepoint t2 = 0 as in the figure, the restriction ω0|C2×M will take the form

ω0|C2×M = p∗2ω+ β(t2)∧ d t2

where β : R/Z → Ω1(M). By considering the horizontal distribution (T M)⊥ω0 , one finds that we
will have β(t2) = −d((H◊K)χ̃(t, ·)) for some reparametrizing function χ̃ : [0,1]→ [0,1]; indeed,
we may and do choose the parametrization of C2 so that χ̃ is the identity and so

ω0|C2×M =ω− d((H◊K)(t2, m)d t2).

Accordingly, where we view the thrice-punctured sphere Σ as obtained from Σ0 by attaching cylin-
drical ends Ĉi = (−∞, 0]×Ci (i = 0,1, where Ci = {0}×S1 ⊂ Ai) and Ĉ2 = [0,∞)×C2 to the three
boundary components C0, C1, C2 of Σ0 we may define a closed 2-form ω̂ ∈ Ω2(Σ×M) by

ω̂|Σ0×M =ω0

ω̂|Ĉ0
= p∗2ω− d(H(t, ·)d t)

ω̂|Ĉ1
= p∗2ω− d(K(t, ·)d t)

ω̂|Ĉ2
= p∗2ω− d((H◊K)(t, ·)d t)

Let H ⊂ T (Σ× M) be the ω̂-orthogonal complement of the vertical bundle T M ⊂ T (Σ× M).
Thus we have a splitting T (Σ×M) =H ⊕ T M ; given v ∈ T (Σ×M) write vvt for the component
of v in the T M summand. Notice that it is a direct consequence of the construction of ω̂ that

(22) If vvt = 0 then ιvω̂= 0

Let j : TΣ→ TΣ be the standard complex structure and choose a smooth family {Jz}z∈Σ of ω-
compatible almost complex structures on M , such that for z = (si , t i) on the ends Ĉi

∼= (−∞, 0]×S1

or [0,∞)×S1 we have J(si ,t i)
= J i

t i
for some one-periodic families J i

t (i = 0,1,2). Given u: Σ→ M ,
define U : Σ→ Σ×M by U(z) = (z,u(z)), and define the energy E(u) as the integral of the 2-form
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eu on Σ whose value eu(z) ∈ ∧
2T ∗z Σ at z ∈ Σ is given by choosing a basis {e1, e2} for TzΣ with

e2 = je1, letting e1, e2 ∈ T ∗z Σ be the dual basis, and putting

eu(z) =
1

2

�
ω((U∗e1)

vt , J(U∗e1)
vt) +ω((U∗e2)

vt , J(U∗e2)
vt)
�

e1 ∧ e2.

Where again U(z) = (z,u(z)) for u: Σ→ M , if we have, for each z ∈ Σ, v ∈ TzΣ,

(23) J(U∗v)
vt = (U∗ jv)

vt ,

then (using (22)) if e1, e2 ∈ TzΣ with e2 = je1, we have

(U∗ω̂)z = ω̂(U∗e1, U∗e2)e
1 ∧ e2 = ω̂((U∗e1)

vt , (U∗e2)
vt)e1 ∧ e2 = eu(z),

and hence

(24)

∫

Σ

U∗ω̂= E(u)≥ 0 if E(u)<∞ and (23) holds.

Now for a suitable zeroth order term Y , the equation (23) can be rewritten directly as an equa-
tion for a map u: Σ→ M of the form

du+ Jz(u) ◦ du ◦ j + Y (z,u) = 0.

Along the cylindrical ends Ĉi , one finds more specifically that (23) is equivalent to a standard Floer
equation:

∂ u

∂ s
+ J0

t (u(s, t))

�
∂ u

∂ t
− XH(t,u(s, t))

�
= 0 on Ĉ0

∂ u

∂ s
+ J1

t (u(s, t))

�
∂ u

∂ t
− XK(t,u(s, t))

�
= 0 on Ĉ1

∂ u

∂ s
+ J2

t (u(s, t))

�
∂ u

∂ t
− XH◊K(t,u(s, t))

�
= 0 on Ĉ2.

In particular, a finite-energy solution u to (23) will necessarily be asymptotic to some γ0 ∈ P(H)
as s → −∞ in Ĉ0; to some γ1 ∈ P(K) as s → −∞ in Ĉ1; and to some γ2 ∈ P(H◊K) as s → +∞
in Ĉ2. Given such γ0,γ1,γ2, let π2(γ0,γ1;γ2) denote the set of relative homotopy classes of maps
u: Σ→ M with these asymptotics. If for i = 0,1 we choose discs vi : D2→ M with vi |∂ D2 = γi , for
any P ∈ π2(γ0,γ1;γ2) we obtain a relative homotopy class of discs v0#P#v1 bounding γ2 by gluing
in the obvious way.

Lemma 3.10. If u: Σ→ M represents P ∈ π2(γ0,γ1;γ2) then where U(z) = (z,u(z)) we have∫

Σ

U∗ω̂=AH([γ0, v0]) +AK([γ1, v1])−AH◊K([γ2, v0#P#v1]).

Proof. Cap off the cylindrical ends Ĉi of Σ by discs Di (identified with {z ∈ C ∪ {∞}||z| ≤ 1} for
i = 0,1 and with {z ∈ C∪{∞}||z| ≥ 1} for i = 2) to form a copy of S2. Extend the form ω̂ on Σ×M
to a form ω̃ on S2 ×M by, where (r, 2πt) are polar coordinates and β : [0,1]→ [0,1] is a smooth
monotone function equal to 0 for s < 1/3 and to s > 2/3, putting ω̃|D0×M =ω− d(β(r2)H(t, ·)d t),
ω̃|D1×M =ω− d(β(r2)K(t, ·)d t), and ω̃|D2×M =ω− d(β(r−2)H◊K(t, ·)d t).

Now for p ∈ M the map fp : S2→ S2 ×M defined by fp(z) = (z, p) is easily seen to have
∫

S2

f ∗p ω̃=

∫ 1

0

H(t, p)d t +

∫ 1

0

K(t, p)d t −

∫ 1

0

(H◊K)(t, p)d t = 0.

Let v2 : D2 → M be any map such that, where I : D2 → D2 is the orientation-reversing diffeomor-
phism re2πi t 7→ r−1e2πi t , the composition v2 ◦ I : D2 → M represents the relative homotopy class



DEFORMED HAMILTONIAN FLOER THEORY 31

v0#P#v1 in π2(γ2). The map Ũ : S2 → S2 × M obtained by combining the map U on Σ with the
maps Vi : z 7→ (z, vi(z)) on Di for i = 0,1,2 has its projection to M homotopic to 0, so

∫

S2

Ũ∗ω̃ =

∫

S2

f ∗p ω̃ = 0.

But ∫

S2

Ũ∗ω̃ =

∫

Σ

U∗ω̂+

∫

D0

V ∗0 (ω− d(β(r2)H(t, ·)d t)) +

∫

D1

V ∗1 (ω− d(β(r2)K(t, ·)d t))

+

∫

D2

V ∗2 (ω− d(β(r−2)H◊K(t, ·)d t))

=

∫

Σ

U∗ω̂−AH([γ0, v0])−AK([γ1, v1]) +AH◊K([γ2, v0#P#v1]),

as follows from an application of Stokes’ theorem. �

Given P ∈ π2(γ0,γ1;γ2), choose an arbitrary representative u of P and arbitrary capping discs
v0, v1 : D2→ M for γ0,γ1 and set

µ̄(P) = µC Z(γ2, v0#u#v1)−µC Z(γ0, v0)−µC Z(γ1, v1)− n.

(This is easily seen to be independent of the choices of v0, v1). By [Sc95, Theorem 3.3.11], at any
finite energy solution u of (23) which represents the class P ∈ π2(γ0,γ1;γ2), the linearization of
(23) is Fredholm of index µ̄(P). Thus in the usual way one obtains a Kuranishi structure with
corners of dimension µ̄(P) + 2k on the compactified moduli space CMk(γ0,γ1,γ2, P) of such solu-
tions with k marked points, and, for I = (i1, . . . , ik) a Kuranishi structure with corners of dimension
µ̄(P)−δ(I) on the fiber product

M (γ0,γ1,γ2, P; NI ) = CMk(γ0,γ1,γ2, P)(ev1,...,evk)
×( fi1

,..., fik
) (Ni1 × · · · × Nik).

Then where the associated multisections are denoted sP,I , the pair of pants product

∗F loer
η : C F(H)⊗ C F(K)→ C F(H◊K)

is defined by extending linearly from

[γ0, v0] ∗
F loer
η [γ1, v1] =

∞∑

k=0

1

k!

∑

γ2∈P(H◊K),
P∈π2(γ0,γ1;γ2)

∑

I∈{1,...,m}k ,µ̄(P)=δ(I)

|s−1
P,I (0)|exp

�∫

P

θ

�
zI[γ2, v0#P#v1].

We have:

Proposition 3.11. (i) ∗F loer
η is a chain map (with respect to the differential ∂ η,H⊗1+(−1)|·|1⊗

∂ η,K on the domain and ∂ η,H◊K on the range).
(ii) For λ,µ ∈ R, ∗F loer

η restricts as a map

∗F loer
η : C Fλ(H)⊗ C Fµ(K)→ C Fλ+µ(H◊K).

Proof. The first item follows by a standard gluing argument as in [Sc95], combined with the same
analysis of incidence conditions as in the proof that (∂ η,H)2 = 0. The second item follows from
(24) and Lemma 3.10: indeed, M (γ0,γ1,γ2, P; NI ) is empty unless there is a representative of P
which obeys (23), in which case (24) and Lemma 3.10 show that

AH◊K([γ2, v0#P#v1])≤AH([γ0, v0]) +AH([γ1, v1]).

The conclusion then follows directly from the definitions of ∗η and of the filtration. �
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Now consider, for generic Morse functions f , g,h, the composition

C M( f ;Λω)⊗ C M(g;Λω)
ΦPSS
η,H⊗Φ

PSS
η,K

// C F(H)⊗ C F(K)
∗F loer
η

sshh
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

C F(H◊K)
ΨPSS
η,H◊K

// C M(h;Λω)

A gluing argument shows that this map ∗Morse
η = ΨPSS

η,H◊K ◦ ∗
F loer
η ◦ (ΦPSS

η,H ⊗ Φ
PSS
η,K ) is obtained by

extending linearly from (for p ∈ C ri t( f ),q ∈ C ri t(g))

p ∗Morse
η q =

∞∑

k=0

1

k!

∑

A∈π2(M),
r∈C ri t(h)

∑

I∈{1,...,m}k ,
2c1(A)+ind f (p)+indg (q)−indh(r)=2n+δ(I)

nL(p,q; r,A, I)exp

�∫

A

θ

�
zI T

∫
A
ωr.

Here nL(p,q; r,A, I) enumerates solutions u: S2→ M to an equation ∂̄J ,Lu= 0 for a suitable Hamil-
tonian perturbation L, which represent the class A ∈ π2(M); pass through the unstable manifolds
W u(p; f ),W u(q; g) and the stable manifold W s(r; h); and additionally satisfy incidence conditions
corresponding to I = (i1, . . . , ik).

Now, a cobordism argument shows that the chain homotopy class of such a map is independent
of the Hamiltonian perturbation L, so the map on homology is unaffected if we replace L in the
above description by 0. The homologies of the Morse complexes C M(·;Λω) are of course canoni-
cally isomorphic to H∗(M ;Λω), and so arguing as in [PSS, Section 5] we find that, on homology,
the map ∗Morse

η induces the map H∗(M ;Λω)⊗H∗(M ;Λω)→ H∗(M ;Λω) given by, where {c j}
b
j=1 is a

basis for H∗(M ;Λω) with dual basis {c j},

a⊗ b 7→
∑

k=0

1

k!

b∑

j=1

∑

A∈π2(M)

∑

I∈{1,...,m}k

〈a, b, c j , zi1 ci1 , . . . , zik cik〉0,k+3,A exp

�∫

C

θ

�
T
∫

A
ωc j

=
∑

k=0

1

k!

b∑

j=1

∑

A∈π2(M)

〈a, b, c j ,η, . . . ,η〉0,k+3,AT
∫

A
ωc j ,

recalling that by definition η = PD[θ] +
∑m

i=1 zici . But the last formula above is precisely that for
the η-deformed quantum product ∗η on H∗(M ;Λω). This proves9:

Proposition 3.12. Where HF(H)η denotes the homology of the complex (C F(H),∂ η,H), the map
ΦPSS
η,H : H∗(M ;Λω) → HF(H)η on homology induced by ΦPSS

η,H : C M( f ;Λω) → C F(H) is an isomor-

phism of Λω-modules. Furthermore, where ∗F loer
η is induced on homology by ∗F loer

η , we have a commu-
tative diagram

H∗(M ;Λω)⊗ H∗(M ;Λω)

∗η

��

ΦPSS
η,H⊗Φ

PSS
η,K

// HF(H)η ⊗ HF(K)η

∗F loer
η

��

H∗(M ;Λω)
ΦPSS
η,H◊K

// HF(H◊K)η

(Of course, the first sentence already follows from Proposition 3.9(iii), and shows that, module-
theoretically but not ring-theoretically, HF(H)η is independent of both H and η.)

9To be precise we are implicitly using here the fact that the map H∗(M ;Λω)→ HF(H) induced on homology by the PSS
chain map is independent of the Morse function used; this can be established by a standard continuation-type argument
that is left to the reader.
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3.4. Spectral invariants. Given η ∈ ⊕n−1
i=0 H2i(M ;Λ0

ω) and a strongly nondegenerate Hamiltonian
H : S1×M → R, we have the chain complex (C F(H),∂ η,H) and a PSS isomorphism ΦPSS

η,H : H∗(M ;Λω)→

HF(H)η to the homology HF(H)η of (C F(H),∂ η,H). Accordingly, for such data H,η, and for any
class a ∈ H∗(M ;Λω) \ {0}, we may define the η-deformed spectral invariant:

ρ(a; H)η = inf{ℓ(c)|c ∈ C F(H), [c] = ΦPSS
η,H a ∈ HF(H)η}.

The finiteness of ρ(a; H)η follows from Proposition 3.13 (iii) below (or, on more general grounds,
one could appeal to [U08, Theorem 1.3]).

Let us also introduce some notation pertaining to H∗(M ;Λω). First a general element a ∈
H∗(M ;Λω) can be written as a =

∑
g∈Γω

ag T g where each ag ∈ H∗(M ;C), and we put

ν(a) =max{−g|ag 6= 0}

(just as was done at the chain level in Proposition 3.9 (iv)). Also, for a =
∑

g∈Γω
ag T g , b =∑

g∈Γω
bg T g , put

Π(a, b) =
∑

g∈Γω

ag ∩ b−g

where ∩ denotes the Poincaré intersection pairing. It follows from standard properties of Gromov–
Witten invariants that

Π(a ∗η b, [M]) = Π(a, b),

independently of η.
Recall also the definition of the Hofer norm on the space of continuous functions H : S1×M → R:

‖H‖=

∫ 1

0

(max H(t, ·)−min H(t, ·)) d t.

Proposition 3.13. The spectral invariants ρ(·; ·)η have the following properties, for any a, b ∈
H∗(M ;Λω) \ {0}:

(i) If r : S1→ R is a smooth function then

ρ(a; H + r)η = ρ(a; H)η +

∫ 1

0

r(t)d t,

where (H + r)(t, m) = H(t, m) + r(t).
(ii) If H and K are both strongly nondegenerate, then

ρ(a; H)η −ρ(a; K)η ≤

∫ 1

0

max
M
(H − K)(t, ·)d t.

Consequently if H and K are both normalized then

|ρ(a; H)η −ρ(a; K)η| ≤ ‖H − K‖,

and so the function ρ(a; ·)η extends by continuity (with respect to ‖·‖) to the set of continuous
H : S1 × M → R such that each H(t, ·) has mean zero for all t, and then to all continuous
H : S1 ×M → R by (i) above.

(iii) ν(a) +
∫ 1

0
min H(t, ·)d t ≤ ρ(a; H)η ≤ ν(a) +

∫ 1

0
max H(t, ·)d t for all H ∈ C(S1 ×M ,R).

(iv) If H is strongly nondegenerate, there is c ∈ C F(H) such that ρ(a; H)η = ℓ(c).

(v) If H and K both represent the same element in àHam(M ,ω) and are both normalized, then

ρ(a; H)η = ρ(a; K)η.
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(vi) For any H, K ∈ C(S1 ×M ,R),

ρ(a ∗η b; H◊K)η ≤ ρ(a; H)η +ρ(b; K)η.

(vii) Where H̄(t, m) =−H(t,φ t
H(m)) (so that φ t

H̄
= (φ t

H)
−1), we have

ρ(a; H̄) =− inf{ρ(x; H)|Π(x , a) 6= 0}.

(viii) If φ ∈ S ymp(M ,ω) is any symplectomorphism then ρ(φ∗a; H ◦φ−1)φ∗η = ρ(a; H)η.

Proof. Since, in light of the results proven so far, most of these properties follow by straightfor-
wardly adapting arguments that are well-known in the η = 0 case (see, e.g., [Oh06]), we just
briefly indicate the ingredients of the proofs.

(i) is an immediate consequence of the definitions, since replacing H by H + r does not affect

the Floer differential or the PSS map, and affects the function ℓ by addition of
∫ 1

0
r(t)d t. The first

sentence of (ii) follows from Proposition 3.9(ii) combined with the estimate (18) applied to the
continuation map ΦH̃,0,η with H̃(s, t, m) = β(s)K(t, m) + (1− β(s))H(t, m) where β : R → [0,1]
is smooth and monotone with β(s) = 0 for s < −1 and β(s) = 1 for s > 1. The second sentence
of (ii) follows from the first by interchanging the roles of H and K and then using the fact that a
mean-zero function cannot have a positive global minimum.

(iii) follows directly from Proposition 3.9 (iv) and (v), together with an approximation argument
via (ii) in case H is not strongly nondegenerate (the first inequality also uses that ΨPSS

η,H ◦Φ
PSS
η,H is the

identity).
(iv) is a special case of the main result of [U08].
As for (v), by continuity we may reduce to the case that H and K are both strongly nondegener-

ate. But in that case the statement follows directly from Proposition 3.8 together with the naturality
statement Proposition 3.9(ii).

In (vi), by continuity we may assume that H, K , and H◊K are all strongly nondegenerate (since
generic pairs (H, K) have this property). Moreover by (v) we can reduce to the case that H(t, ·) =
K(t, ·) = 0 for |t| < ε where ε > 0. But in that case the result follows from Propositions 3.11 and
3.12.

Now consider (vii). The pairing Π: H∗(M ;Λω)⊗H∗(M ;Λω)→ C is, for a suitably generic Morse
function f , induced on homology by the pairing

ΠMorse : C M(− f ;Λω)⊗ C M( f ;Λω)→ C


∑

g∈Γω,
p∈C ri t( f )

ag,pT g p


⊗




∑

g∈Γω,
q∈C ri t( f )

bg,qT gq


 7→

∑

g∈Γω,
p∈C ri t( f )

a−g,p bg,p.

(Of course we use here the fact that C ri t( f ) = C ri t(− f ).)
Meanwhile, since elements of P̃(H̄) are precisely obtained from elements of P̃(H) by orientation

reversal, and since formal negative gradient flowlines of AH̄ are equivalent to formal negative
gradient flowlines ofAH with both s and t coordinates reversed10 the Floer complex (C F(H̄),∂ η,H̄)

is the opposite complex to the Floer complex (C F(H),∂ η,H) in the sense defined in [U10b]. For
[γ, v] ∈ P(H) write [γ̄, v̄] ∈ P̃(H̄) for the generator obtained by reversing the orientations of both
γ and v. Then, as in [U10b, Section 1.4], we have a pairing

ΠF loer : C F(H̄)⊗ C F(H)→ C

10hence the integrals of 2-forms are the same, not opposite to each other, over the corresponding flowlines
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defined by

ΠF loer




∑

[γ,v]∈P̃(H)

a[γ̄,v̄][γ̄, v̄],
∑

[δ,w]∈P̃(H)

b[δ,w][δ, w]


 =

∑

[γ,v]∈P̃(H)

a[γ̄,v̄]b[γ,v].

Now the spiked planes counted by the map Φη,H̄ : C M(− f ;Λω) → C F(H̄) are equivalent to
those counted by the map Ψη,H : C F(H̄) → C M( f ;Λω), in view of which one obtains the adjoint
relation

ΠMorse(d,Ψη,H c) = ΠF loer(Φη,H̄ d, c) (c ∈ C F(H), d ∈ C M(− f ;Λω)).

Consequently, where ΠF loer : HF(H̄)η⊗HF(H)η→ C is the pairing on homology induced by ΠF loer ,
we find, for x , a ∈ H∗(M ;Λω),

Π(x , a) = Π(x ,Ψη,H(Φη,H a)) = ΠF loer(Φη,H̄ x ,Φη,H a).

Consequently (vii) follows from the definition of ρ and [U10b, Corollary 1.3].
Finally, (viii) is a consequence of standard naturality properties of the construction of ρ. �

For φ̃ ∈àHam(M ,ω), a ∈ H∗(M ;Λω) \ {0}, η ∈ ⊕
n−1
i=0 H2i(M ;Λ0

ω), define

c(a; φ̃)η = ρ(a; H)η where H : S1 ×M → R is normalized and φ̃ = φ̃H .

(By Propositition 3.13 (v) the right hand side is independent of the choice of H with φ̃H = φ̃.)

Proposition 3.14. Suppose that H : S1 × M → R is a Hamiltonian with support contained in a set
of form S1 × S where S ⊂ M is a displaceable compact subset (i.e., there is K : S1 × M → R with
φ1

K(S)∩ S =∅). Suppose also that a ∈ H∗(M ;Λω) obeys a ∗η a = a. Then

lim
k→∞

c(a; φ̃k
H)η

k
=
−
∫ 1

0

∫
M

H(t, ·)ωn

∫
M
ωn

.

Proof. Given Proposition 3.13, the proof is essentially identical to that of [EP03, Proposition 3.3].
Namely, if K is as in the statement and is strongly nondegenerate (as we can arrange, since the
condition φ1

K(S) ∩ S = ∅ is an open one on K) one finds using Proposition 3.13 (ii),(iv) that
ρ(a; (sH◊k)◊K)η is independent of s, and hence that (by Proposition 3.13 (i))

c(a; φ̃K ◦ φ̃
k
H)η = c(a; φ̃K)η − k

∫ 1

0

∫
M

H(t, ·)ωn

∫
M
ωn

.

Since the triangle inequality Proposition 3.13(vi) shows

|c(a; φ̃K ◦ φ̃
k
H)η − c(a; φ̃k

H)η| ≤ c(a; φ̃K)η + c(a; φ̃−1
K )η,

the result follows. �

Typically, the spectral invariants ρ(a; H)η are difficult to compute. However, we will now dis-
cuss an important exception. Let H : M → R be a smooth function (which we view as a time-
independent Hamiltonian). Following the terminology in [U10a, Definition 4.3], we will call H
slow if all contractible periodic orbits of the Hamiltonian vector field XH having period at most 1
are constant, and flat if, at all critical points p ∈ C ri t(H), every periodic orbit of period at most 1
of the linearized flow (φ t

H)∗ : Tp M → Tp M is constant.
Also, given a class a ∈ H∗(M ;Λω), write

a =


∑

g∈Γω

ag T g


 [M] + a′
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where a′ ∈ ⊕2n−1
i=0 Hi(M ;Λω), and set

ν[M](a) =max{−g|ag 6= 0}

(said differently, ν[M](a) = ν(a− a′)).
The following generalizes [Oh05, Theorem IV] and [U10a, Proposition 4.1], which apply when

η = 0 and a = [M]. The result plays an important role in the results of the following Section 4,
though it is not used for the other main theorems of this paper.

Theorem 3.15. Let H : M → R be a slow autonomous Hamiltonian, and a ∈ H∗(M ;Λω) \ {0}. Then

ρ(a; H)η ≥max H + ν[M](a).

In particular,
if ν[M](a) = ν(a), then ρ(a; H)η =max H + ν(a).

Proof. The second sentence follows from the first together with Proposition 3.13(iii).
By [U10a, Theorem 4.5], our slow autonomous Hamiltonian H may be arbitrarily well-approximated

in C0 norm by an autonomous Hamiltonian which is slow, flat, and Morse; a further arbitrarily
small perturbation yields an autonomous Hamiltonian which is additionally strongly nondegener-
ate (which, given the “slow” property, just means that its critical points miss the images of the fixed
maps fi : Ni → M). So by the continuity statement Proposition 3.13(ii), it suffices to prove the
theorem under the assumption that H is slow, flat, Morse, and strongly nondegenerate.

Since H is slow, P(H) consists of the critical points of H, and for q ∈ P(H) = C ri t(H) the set
π2(q) of relative homotopy classes of discs with boundary mapping to q can be identified with
π2(M). Since H is flat, for A ∈ π2(M) the corresponding element Aq ∈ π2(q) has µ̄(Aq) = n −
indH(q) + 2c1(A).

Choose a Morse function f : M → R having a unique local (and global) maximum at a point p0

such that H(p0) =max H, and consider the PSS map

ΦPSS
η,H : C M( f ;Λω)→ C F(H),

constructed using a family of almost complex structures {J(reiθ )}reiθ∈C which is independent of the
angular coordinate θ . This map is given by, for p ∈ C ri t( f ),

(25) ΦPSS
η,H p =

∞∑

k=0

1

k!

∑

q∈C ri t(H),A∈π2(M)

∑

I∈{1,...,m}k ,
ind f (p)−indH (q)+2c1(A)=δ(I)

|s−1
A,p,I(0)|exp

�∫

C

θ

�
zI[p,A]

Recall here that sA,p,I is the multisection associated to the Kuranishi structure on the fiber product

M PSS
k (q,A; p, NI ) = CM PSS

k (q,A)(e0,ev1,...,evk)
×( jp , f1,..., fk)

(W u(p)× Ni1 × · · · × Nik)

where CM PSS
k (q,A) is the compactification of the space of perturbed-holomorphic planes with k

marked points representing A and asymptotic to q; thus a general element of CM PSS
k (q,A) has one

plane component and possibly a variety of other components, each of which is either a cylindrical
solution to the Floer equation for H or is a J(r)-holomorphic sphere for some r.

NowM PSS
k (q,A; p, NI ) has an S1-action given by angular rotation of each of the plane and cylin-

der components of the domain. Just as in [FO, Mainlemma 22.4], the fixed locus of this action
is isolated; away from the fixed locus the action is locally free, and so one can construct a Kuran-
ishi structure of dimension −1 on the quotient of the complement of the fixed locus and lift it to
M PSS

k (q,A; p, NI ) in order to deduce that, for suitable choices of the multisection sA,p,I , the quan-
tity |s−1

A,p,I(0)| receives contributions only from the fixed locus of the S1 action onM PSS
k (q,A; p, NI )

(i.e. the locus for which all planar or cylindrical components are independent of the angular co-
ordinate). An object in this fixed locus is equivalent to the data of: a solution x : [0,∞) → M of
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r x ′(r) = −β(r)∇H(x(r)) such that x(0) ∈ W u(p; f ) (corresponding to the C-component); some
number of negative gradient flowlines of H (corresponding to the cylindrical components); and
some number of spherical bubbles; all subject to appropriate incidence conditions. Now a dimen-
sion count11 shows that, after perturbing by a generic multisection, all of the spherical components
will be constant (which forces A= 0 since the non-spherical components are S1-independent), that
we must have k = 0 (so I = ∅; the point is that now that the spiked planes map to 1-dimensional
objects in M they will not satisfy nontrivial incidence conditions) and that there will be no cylin-
drical components.

Consequently (25) simplifies to

ΦPSS,ηp =
∑

q:ind f (p)−indH (q)=0

m(p,q)[q, 0],

where the number m(p,q) enumerates pairs consisting of: a negative gradient flowline y : (−∞, 0]→
M for f with y(t)→ p as t → −∞; and a solution x : [0,∞) → M to r x ′(r) = −β(r)∇H(x(r))
with x(r)→ q as r →∞ and x(0) = y(0).

Now if p = p0 (the common global maximum of f and H) the only such pair (y, x) has both
y and x equal to the constant map to p0, and as in [Oh05, p. 14] we obtain m(p0, p0) = 1. On
the other hand if p 6= p0, since the only solution x : [0,∞) → M with x(r) → p0 as r → ∞ is
the constant map to p0, if m(p, p0) 6= 0 we would require a negative gradient flowline y for f
asymptotic at −∞ to p with y(0) = p0, which is impossible since p0 is a maximum for f . Thus

m(p, p0) =

�
1 p = p0

0 p 6= p0

We now prove the theorem. If ν[M](a) = −∞ the statement is vacuous, so assume ν[M](a) ∈ R.
Since p0 is the unique local (and global) maximum of f , the class a is represented by an element
of the form

T−ν[M](a)λ0p0 +
∑

p∈C ri t( f ),p 6=p0

µp p,

where λ0 =
∑

g∈Γω
ag T g ∈ Λ0

ω has a0 6= 0, and where µp ∈ Λω. Consequently, ΦPSS
η,H a ∈ HF(H)η is

represented by an element of the form

c = T−ν[M](a)λ0[p0, 0] +
�

terms involving q ∈ P(H)
with q 6= p0

�
.

Evidently we have ℓ(c)≥ ν[M](a) + H(p0).
Now any representative of ΦPSS

η,H a will take the form c + ∂ η,H d for some d ∈ C F(H). Just as
in the proof of [Oh05, Theorem 5.1] (and similarly to the situation with the PSS map above), for
a suitable choice of multisection the differential ∂ η,H will only receive contributions from Floer
cylinders which are independent of the S1-variable, i.e. from negative gradient flowlines of H.
But (other than a constant flowline, which has the wrong index) there are no negative gradient
flowlines for H asymptotic at +∞ to the maximum p0, and so the coefficient on p0 in ∂ η,H d is zero.
Consequently the coefficient on [p0, 0] in c + ∂ η,H d is, independently of d, equal to T−ν[M](a)λ0,
and so we have, for all d,

ℓ(c + ∂ η,H d)≥ ν[M](a) + H(p0).

This immediately implies the theorem. �

11This count uses the fact that the appropriate expected dimension is ind f (p)− indH (q)+2c1(A)−δ(I), which depends
on the fact that H is flat; if H were not flat then some of the conclusions that we are drawing here would be false.
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Remark 3.16. Removing the dependence on Kuranishi structures in Theorem 3.15 is a somewhat
more delicate matter than for the other results in this paper. The proof of Theorem 3.15 relies on
an argument that, if the Hamiltonian and almost complex structure are taken independent of time,
moduli spaces of spiked discs underlying the PSS maps admit an action of S1, and that therefore
only spiked discs which are fixed by this S1 action will appear in zero-dimensional moduli spaces
if these spaces are cut out transversely. If one does not want to use Kuranishi structures to achieve
this transversality, then one can adapt [FHS, Theorem 7.4] to argue that time-independent H and
J can be chosen so that the spaces are cut out transversely except at multiply-covered spiked discs.
However, this only helps if the expected dimensions of a spaces of multiply-covered spiked discs
never exceed of a space of simple spiked discs in the same homology class. One can check that
this can be arranged provided that the minimal Chern number of (M ,ω) is at least n. Thus under
this latter topological condition (which of course is stronger than strong semipositivity) one can
dispense with Kuranishi structures in the proof of Theorem 3.15 using the techniques from Section
3.2.2; however in greater generality Kuranishi structures (or something similar) do seem to be
needed.

4. CAPACITY ESTIMATES

Recall that the π1-sensitive Hofer–Zehnder capacity of the symplectic manifold (M ,ω) is, by
definition,

c◦HZ(M ,ω) = sup{max H −min H|H : M → R is a slow Hamiltonian.}

We begin with the following easy consequence of Theorem 3.15.

Corollary 4.1. Fix C > 0 and η ∈ ⊕n−1
i=0 H2i(M ;Λ0

ω) and suppose that one of the following two
conditions holds:

(i) There are a, b ∈ H∗(M ;Λω) \ {0} such that, for all autonomous H : M → R,

(ρ(a, H)η − ν[M](a)) + (ρ(b, H̄)η − ν[M](b))≤ C;

or
(ii) Where [pt] is the standard generator of H0(M ;C), for all H : M → R,

ρ([pt]; H)η +ρ([pt]; H̄)η ≥−C .

Then the π1-sensitive Hofer-Zehnder capacity of (M ,ω) obeys the bound

c◦HZ(M)≤ C .

Proof. We need to show that, under either of the given conditions, for any slow autonomous Hamil-
tonian H : M → R we have max H−min H ≤ C . Of course for an autonomous Hamiltonian one has
H̄ =−H, so this is equivalent to showing that max H +max H̄ ≤ C .

The sufficiency of (i) is then clear from Theorem 3.15, since if H is slow we have

max H +max H̄ ≤ (ρ(a; H)η − ν[M](a)) + (ρ(b; H̄)η − ν[M](b))≤ C

by assumption.
Now instead assume (ii). Let H : M → R be slow, and choose any ε > 0. By Proposition 3.13(vii)

we have
−C ≤− inf{ρ(a; H̄)η|Π(a, [pt]) 6= 0} − inf{ρ(b; H)η|Π(b, [pt]) 6= 0},

so there are a, b with Π(a, [pt]) 6= 0, Π(b, [pt]) 6= 0, and ρ(a; H̄) + ρ(b; H) ≤ C + ε. But from
the definition of the pairing Π one sees easily that in order for Π(a, [pt]) 6= 0 one must have
ν[M](a)≥ 0. This fact (for both a and b) together with Theorem 3.15 gives

max H +max H̄ ≤ C + ε,
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completing the proof since ε was arbitrary.
�

Lemma 4.2. Suppose that (M ,ω) admits a nonzero Gromov–Witten invariant of the form

〈[pt], a0, [pt], a1, . . . , ak〉0,k+3,A,

where A∈ H2(M ;Z)/torsion and a0, . . . , ak are rational homology classes of even degree. Then for an
open dense set of possible choices of the deformation parameter η ∈ ⊕n−1

i=0 H2i(M ;C) we have

ν[M]([pt] ∗η a0)≥ −〈[ω],A〉.

Proof. Since [pt] ∩ [pt] = 0, the class A appearing in the Gromov–Witten invariant cannot be
zero, in view of which none of the classes a0, . . . , ak can be a multiple of the fundamental class.
Moreover using the divisor axiom we can reduce to the case that a1, . . . , ak ∈ ⊕

n−2
i=0 H2i(M ;Q).

Choose a homogeneous basis ∆1, . . . ,∆N for ⊕n−1
i=0 H2i(M ;Z)/torsion, with ∆1, . . . ,∆s (for some

s < N) a basis for H2n−2(M ;Z)/torsion. Using the multilinearity and symmetry properties of the
Gromov–Witten invariants we can assume that our nonzero Gromov–Witten invariant takes the
form

0 6= 〈[pt], a0, [pt],∆s+1, . . . ,∆s+1︸ ︷︷ ︸
αs+1

, . . . ,∆N , . . . ,∆N︸ ︷︷ ︸
αN

〉0,
∑
α j+3,A

for some α= (αs+1, . . . ,αN ) ∈ N
N−s.

For ~y = (y1, . . . , ys) ∈ C
s and ~z = (zs+1, . . . , zN ) ∈ C

N−s, write

η(~y ,~z) =
s∑

i=1

yi∆i +

N∑

i=s+1

zi∆i .

Consider the class [pt]∗η(~y ,~z) a0 ∈ H∗(M ;Λω) as a function of (~y ,~z). On expanding out the formula
for [pt] ∗η(~y ,~z) a0 and using the symmetry properties of the Gromov–Witten invariants, one finds
that the coefficient on the fundamental class [M] is an expression of the shape∑

g∈Γω

∑

β=(βs+1,...,βN )∈N
N−s

fg,β (~y)z
βs+1

s+1 · · · z
βN
N T g

for a certain function fg,β (~y) of ~y which is identically zero for all but finitely many β12; for the
particular values g = 〈[ω],A〉 and β = α we have 

N∏

i=s+1

(αi!)

!
f〈[ω],A〉,α(~y) =

∑

B∈H2(M ;Z)/tors,
〈[ω],B〉=〈[ω],A〉

〈[pt], a0, [pt],∆s+1, . . . ,∆s+1︸ ︷︷ ︸
αs+1

, . . . ,∆N , . . . ,∆N︸ ︷︷ ︸
αN

〉0,
∑
α j+3,B

 
s∏

k=1

(e yk)∆k∩B

!

where ∩ denotes the Poincaré intersection pairing. Now since {∆k}1≤k≤s forms a basis for H2n−2(M ;Z)/torsion,
the map B 7→ (∆1∩B, . . . ,∆s∩B) is injective. Thus our assumed nonzero Gromov–Witten invariant
implies that the coefficient on

∏s
k=1(e

yk)∆k∩A in the above sum is nonzero.
This proves that the coefficient on T 〈[ω],A〉[M] in the expansion of [pt] ∗η(~y,~z) a0 is a polynomial

in e yi , zi having a nonzero coefficient multiplying 
s∏

k=1

(e yk)∆k∩A

!
N∏

k=s+1

zαi

i .

12This finiteness statement follows from the dimension axiom for Gromov–Witten invariants; see the proof of Proposition
7.3 for the argument
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In particular, since this polynomial is not the zero polynomial, there is an open dense set of choices
of (~y,~z) at which the coefficient on T 〈[ω],A〉[M] does not vanish. It then follows directly from the
definition of ν[M] that, for (~y ,~z) in this open dense set, we have ν[M]([pt] ∗η(~y ,~z) a0) ≥ −〈[ω],A〉.

�

Corollary 4.3. Suppose that (M ,ω) admits a nonzero Gromov–Witten invariant of the form

〈[pt], a0, [pt], a1, . . . , ak〉0,k+3,A,

where A∈ H2(M ;Z)/torsion and a0, . . . , ak are rational homology classes of even degree. Then

c◦HZ(M ,ω)≤ 〈[ω],A〉.

Proof. By Lemma 4.2, choose η ∈ ⊕n−1
i=0 H2i(M ;C) so that γ := ν[M]([pt] ∗η a0) ≥ −〈[ω],A〉. From

the definition of the Poincaré pairing Π, one then sees that

Π([pt] ∗η T γa0, [pt]) = Π(T γ([pt] ∗η a0), [pt]) 6= 0.

Consequently, for any normalized Hamiltonian H, we have by Proposition 3.13(vi),(vii),

ρ([pt]; H̄)η = sup{−ρ(a; H)η|Π(a, [pt]) 6= 0} ≥ −ρ([pt] ∗η T γa0; H)η ≥−ρ([pt]; H)η −ρ(T
γa0; 0)η

(we’ve also used here that, for normalized H and any a,η, ρ(a; H◊0)η = ρ(a; H)η, which follows
from Proposition 3.13 (v) and the fact that H◊0 is normalized if H is).

Now recall that a0 is a rational homology class, in light of which we have ρ(T γa0; 0)η =
ν(T γa0) =−γ by Proposition 3.13 (iii). Thus we obtain, for any H,

ρ([pt]; H̄)η +ρ([pt]; H)η ≥ γ≥−〈[ω],A〉,

so the desired result follows from Case (ii) of Corollary 4.1. �

Remark 4.4. More generally, one could consider the “mixed” invariants that in [RT] are denoted
by ΦA,ω,0(a1, . . . , ak|b1, . . . , bl) (with k ≥ 3); for this invariant one specifies fixed marked points
zi ∈ S2 (1≤ i ≤ k) and generic representatives αi of ai and β j of b j and formally enumerates pairs
(u, {w j}1≤ j≤l) consisting of a pseudoholomorphic representatives u: S2 → M of A with u(zi) ∈ αi ,
u(w j) ∈ β j for all i, j. A modification of the proof of Corollary 4.3 shows that, if there is a nonzero
invariant of the form ΦA,ω,0([pt], [pt], a3, . . . , ak|b1, . . . , bl) (with the classes b j even-dimensional)
then we have the same estimate c◦HZ(M ,ω) ≤ 〈[ω],A〉. The key idea is to modify the pair of pants
product ∗F loer

η : C F(H)⊗C F(K)→ C F(H◊K) to a map ∗F loer
η,~a,I : C F(H)⊗C F(K)→ C F(H◊K) which

counts pairs of pants u: Σ → M like those in the definition of ∗F loer
η which additionally satisfy

u(zi) ∈ αi for 3 ≤ i ≤ k for some preassigned fixed marked points zi . (On homology, this has
the same effect as composing the pair of pants product and the quantum cap actions (as in [PSS,
Example 3.4]) by each of the ai for 3≤ i ≤ k.) On homology, one obtains the same type of triangle
inequality for the spectral invariants (as in Proposition 3.13 (vi)) for this operation as one does for
the pair-of-pants product, as a result of which the proof of Corollary 4.3 can be extended to this
case. Details are left to the reader.

5. CALABI QUASIMORPHISMS

Recall that if G is a group, a quasimorphism on G is a map µ: G → R such that there exists a
constant C (called the defect of µ) such that, for all g,h ∈ G, we have

|µ(gh)−µ(g)−µ(h)| ≤ C .
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Proposition 5.1. Let (M ,ω) be a closed symplectic manifold, C > 0, η ∈ ⊕n−1
i=0 H2i(M ;Λ0

ω), and

suppose that e ∈ H∗(M ,Λω) has the properties that e ∗η e = e and, for all φ̃ ∈àHam(M ,ω),

(26) ρ(e; H)η +ρ(e; H̄)η ≤ C

for all H : S1 ×M → R. Then the function c(e; ·)η : àHam(M ,ω)→ R defined by c(e; φ̃)η = ρ(e; H)η
for any normalized H with φ̃H = φ̃ defines a quasimorphism with defect at most C.

Proof. Since if H and K are normalized then H◊K is also normalized with φ̃H◊K = φ̃K ◦ φ̃H , the
triangle inequality Proposition 3.13(vi) immediately gives

c(e; φ̃ ◦ ψ̃)η ≤ c(e; φ̃)η + c(e; ψ̃)η

for all φ̃, ψ̃. On the other hand (26) shows, for all φ̃,

c(e; φ̃)η + c(e; φ̃−1)η ≤ C .

So for any φ̃, ψ̃,

c(e; φ̃)η + c(e; ψ̃)η = c(e; φ̃)η + c(e; φ̃−1 ◦ φ̃ ◦ ψ̃)η

≤ c(e; φ̃)η + c(e; φ̃−1)η + c(e; φ̃ ◦ ψ̃)η ≤ C + c(e; φ̃ ◦ ψ̃)η,

proving the proposition. �

If (U ,ωU) is an open symplectic manifold, let Ham(U ,ωU) denote the group of diffeomorphisms
of U which arise as time-one maps of the vector fields of compactly supported time-dependent
Hamiltonians, and let àHam(U ,ωU) be the universal cover. Recall that there is a homomorphism
CalU : àHam(M ,ω)→ R defined by

CalU(φ̃) =

∫ 1

0

H(t, ·)ωn for any compactly supported H : S1 × U → R such that φ̃H = φ̃.

(In particular, the right hand side is independent of H.) Following [EP03], we make the following
definition:

Definition 5.2. If (M ,ω) is a closed symplectic manifold and C > 0, a Calabi quasimorphism on M
is a map µ: àHam(M ,ω)→ R such that

(i) µ is a quasimorphism.
(ii) µ is homogeneous: for all φ̃ ∈àHam(M ,ω) and l ∈ Z we have

µ(φ̃ l) = lµ(φ̃).

(iii) If φ̃ = φ̃H where H : S1 × M → R has support contained in S1 × U for some displaceable
open set U , then

µ(φ̃) =

∫ 1

0

∫

M

H(t, ·)ωn.

Recall that [Ban, Théorème II.6.1] shows that àHam(M ,ω) is perfect, and so cannot admit any
nontrivial homomorphism to R.

The following is an easy generalization of results of [EP03]:

Proposition 5.3. Suppose that η ∈ ⊕n−1
i=0 H∗(M ;Λ0

ω) and that e ∈ H∗(M ,Λω) has the properties that
e ∗η e = e and, for some C > 0, the estimate

ρ(e; H)η +ρ(e; H̄)η ≤ C
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holds for all normalized H : S1 ×M → R. Then the formula

µe,η(φ̃) =

�
−

∫

M

ωn

�
lim
k→∞

c(e, φ̃k)η

k

defines a Calabi quasimorphism µe,η : àHam(M ,ω)→ R on M with defect at most 2C
∫

M
ωn. More-

over, µe,η obeys the following stability property (cf. [EPZ, (3)]): If H, K : S1×M → R are normalized
then ∫ 1

0

min
M
(H(t, ·)− K(t, ·))d t ≤

−1∫
M
ωn

�
µ(φ̃H)−µ(φ̃K)

�
≤

∫ 1

0

max
M
(H(t, ·)− K(t, ·))d t.

Proof. The fact that µe,η is well-defined (i.e. that the relevant limit always exists) follows from
Proposition 5.1 and standard facts about subadditive sequences (e.g., [PoSz, Problem 99]). Given
that µe,η is well-defined, the fact that it satisfies the homogeneity condition (ii) is trivial. Quite
generally (see [Ca, Lemmas 2.21,2.58]) the homogenization λ̄ of a quasimorphism λ is a quasi-
morphism, with defect at most twice the defect of λ; this establishes condition (i) and the estimate
on the defect for µe,η. The Calabi property (iii) is just a restatement of Proposition 3.14. Finally,
the stability property follows directly by homogenizing Proposition 3.13(ii).

�

For η ∈ ⊕n−1
i=0 H2i(M ;Λ0

ω), we denote by QH(M ,ω)η the commutative Λω-algebra whose under-
lying Λω-module is the even-degree homology ⊕n

i=0H2i(M ;Λω), equipped with multiplication given
by the deformed product ∗η.

Proposition 5.4. Suppose that there is a direct sum splitting of algebras QH(M ,ω)η = F ⊕A, and let
e ∈ F be the multiplicative identity for the subalgebra F. Then, for some C > 0, we have

ρ(e; H)η +ρ(e, H̄)η ≤ C

for all Hamiltonians H : S1 ×M → R.

The above three propositions immediately imply:

Corollary 5.5. If there is a direct sum splitting of algebras QH(M ,ω)η = F ⊕ A, then where e is the

multiplicative identity in F, the function µe,η : àHam(M ,ω)→ R defines a Calabi quasimorphism.

Proof of Proposition 5.4. Given what we have already done the argument is essentially a duplicate
of one in [EP03, Section 3]; we include it for completeness. First, one notes that by [EP03, Lemma
3.2] there is a constant K such that, for any x ∈ F , we have

ν(x) + ν(x−1)≤ K;

recall from Proposition 3.13(iii) that ρ(x; 0)η = ν(x). Also, since e∗η e = e, for any a ∈QH(M ,ω)η
we have e ∗η a ∈ F with ρ(e ∗η a; H)η ≤ ρ(a; H)η + ν(e). We now have, making liberal use of
Proposition 3.13,

−ρ(e; H̄)η = inf{ρ(a; H)η|Π(e, a) 6= 0}

≥ −ν(e) + inf{ρ(e ∗η a; H)η|Π(e ∗η a, [M]) 6= 0}

≥ −ν(e) + inf{ρ(e; H)η − ν((e ∗η a)−1)|Π(e ∗η a, [M]) 6= 0}

≥ −ν(e) +ρ(e; H)η − K + inf{ν(e ∗η a)|Π(e ∗η a, [M]) 6= 0}.

Since whenever Π(x , [M]) 6= 0 we have ν(x)≥ 0, we hence obtain

ρ(e; H)η +ρ(e; H̄)η ≤ ν(e) + K ,

completing the proof with C = ν(e) + K . �
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Remark 5.6. It follows also that, under the assumptions of Corollary 5.5, the function ζη,e : C(M)→

R defined by ζ(F) = limk→∞
ρ(e;kF)η

k
defines a symplectic quasi-state in the sense of [EP06]; given

Proposition 3.13 and Corollary 5.5 the proof of the quasi-state axioms for ζη,e is an exact replication
of [EP06, Section 6].

The remainder of the paper will be concerned with studying circumstances in which the hypoth-
esis of Corollary 5.5 and some other similar conditions are satisfied.

6. SOME ALGEBRAIC INPUT

In this section all rings are assumed commutative with unit, and a ring morphism necessarily
maps unit to unit. We deliberately do not assume our rings to be Noetherian. If R is a ring and
p ∈ Spec R we use the customary notations Rp for the localization at p (i.e. (R\ p)−1R) and κ(p) for

the residue field
Rp

pRp

.

The commutative algebra background that we require is mostly summarized by the following
two-pronged theorem (we imagine that little if any of this will be surprising to an expert in com-
mutative algebra). For our later purposes, the most important implications of this theorem are that
the subset of Spec R on which the condition denoted (A3) holds is open and is equal to the subset
on which (A4) holds, and similarly that the subset on which (B3) holds is open and equal to that
on which (B4) holds.

Theorem 6.1. Let R be a ring containing Q as a subfield and let A be a commutative R-algebra
which, considered as an R-module, is finitely-generated and free. Denote by f : Spec A→ Spec R the
morphism of schemes induced by the unique ring morphism R→ A (sending r to r · 1).

(A) The following are equivalent, for a point p ∈ Spec R:
(A1) The morphism f is unramified at every point in f −1({p}).
(A2) There exists a field extension κ(p) → k such that the map Spec (A⊗R k) → Spec k

induced by the unique ring morphism k→ A⊗R k is unramified.
(A3) There exists a field extension κ(p)→ k such that A⊗R k decomposes as a direct sum13 of

field extensions of k.
(A4) For every field extension κ(p)→ k the algebra A⊗R k decomposes as a direct sum of field

extensions of k.
Moreover, the set U1 of points p ∈ Spec R at which (A1) holds is open in Spec R.

(B) The following are equivalent, for a point p ∈ Spec R:
(B1) There is some q ∈ Spec A such that f (q) = p and the morphism f : Spec A→ Spec R is

unramified at q.
(B2) There exists a field extension κ(p)→ k such that the map Spec (A⊗Rk)→ Spec k induced

by the unique ring morphism k→ A⊗R k is unramified at some point q ∈ Spec (A⊗R k).
(B3) There exists a field extension κ(p)→ k and a direct sum splitting of k-algebras A⊗R k =

K ⊕ S where k→ K is a field extension.
(B4) For every field extension κ(p)→ k there is a direct sum splitting of k-algebras A⊗R k =

K ⊕ S where k→ K is a field extension.
Moreover, the set U2 of points p ∈ Spec R at which (B1) holds is open in Spec R.

Proof of Theorem 6.1.

Lemma 6.2. The morphism f : Spec A→ Spec R induced by R→ A is flat, open, and closed.

13All direct sums in this theorem are direct sums in the category of algebras—thus both addition and multiplication split
component-wise
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Of course, f : Spec A→ Spec R is defined by sending a prime p in Spec A to its preimage under
R→ A, i.e. to p∩R. By definition, a morphism of schemes is open (resp. closed) iff it is open (resp.
closed) as a map of topological spaces.

Proof of Lemma 6.2. We first show that f is closed. Let V (I) = {q ∈ Spec A|I ⊂ q} be an arbitrary
closed set in Spec A. The set V (I ∩ R) = {p ∈ Spec R|I ∩ R ⊂ p} is then closed in Spec R (of course
we’ve identified R with its image in A), and clearly f (V (I)) = {q ∩ R|q ∈ V (I)} ⊂ V (I ∩ R). We
claim that in fact equality holds. Indeed, note that by [Eis, Corollary 4.5], A is integral over R. Let
p ∈ V (I ∩ R), so I ∩ R ⊂ p. The Going Up theorem ([Eis, Proposition 4.15]) then shows that there
is q ∈ Spec A such that q∩ R = p (i.e., f (q) = p) and I ⊂ q. But this is precisely the statement that
p ∈ f (V (I)). Thus f takes an arbitrary closed set V (I) to the closed set V (I ∩ R), proving that f is
closed.

Since A is finitely-generated and free as an R-module, it is clearly flat as an R-module, and then
the standard fact that flat ring maps induce flat morphisms on Spec ([Ha, Proposition III.9.2.d])
shows that f is flat.

We now show that f is open. Since f is of finite presentation (as A is a finitely-presented R-
algebra), [GIV1, Corollaire 1.10.4] asserts that f is open if and only if for any q ∈ Spec A and any
generalization14

p
′ of the point p = f (q), there is a generalization q

′ of q so that f (q′) = p
′. But

by [Mat, 5.D] the Going Down theorem holds for R → A because A is a flat R-module, and the
statement of the Going Down theorem precisely amounts to the existence of such a p

′. �

Let
U = {x ∈ Spec A| f is unramified at x}.

By definition ([GIV4, 17.3.7]), f is unramified at x iff there is a neighborhood U of x so that the
restricted morphism f |U is unramified; thus our setU is obviously open. Consequently Lemma 6.2
shows that f (U ) is open, and that f (Spec A \ U ) is closed. In the statement of Theorem 6.1, we
evidently have

U2 = f (U ) and U1 = (Spec R) \ f (Spec A\U ).

This proves that these sets are open.
Now since R contains Q as a subfield, the residue fields κ(p) all have characteristic zero, so they

are perfect fields (that is, all of their extensions are separable). The equivalence (A3)⇔(A4) is
then a quick consequence of the following basic theorem about coefficient extensions of algebras
over fields.

Theorem 6.3. [Bo, V.6.7, Theorem 4] If B is a finite-dimensional algebra over a field k, the following
are equivalent:

• There is one perfect field extension k′ of k such that the k′-algebra B⊗k k′ is reduced (i.e. its
only nilpotent element is 0).
• For every extension k→ k′, the k′-algebra B⊗k k′ is reduced.
• B decomposes as a direct sum B = K1 ⊕ · · · ⊕ Kn where each Ki is an algebraic field extension

of k.

The equivalence (A3)⇔(A4) follows immediately from this: if A⊗R k is a direct sum of k-
extensions for one extension k of κ(p) (which will necessarily be of characteristic zero and hence
perfect), Theorem 6.3 shows that A⊗R k will be reduced for all extensions k of κ(p), and so any
such A⊗R k will be a direct sum of k-extensions by another application of Theorem 6.3.

14If x and y are points in a topological space, x is called a generalization of y if we have y ∈ {x}. In the case where
the topological space in question is the Spec of a ring, so that x and y are prime ideals, this is equivalent to requiring that
x ⊂ y .



DEFORMED HAMILTONIAN FLOER THEORY 45

Meanwhile, the equivalence (B3)⇔(B4) follows in a similar way from [EP08, Proposition
2.2(A)], which asserts that if k → k′ is an extension of a field of characteristic zero and B is a
finite-dimensional algebra over k then B has a field as a direct summand if and only if B⊗k k′ has
a field as a direct summand. In particular, this result shows that if (B3) holds then it holds with
k = κ(p), and so applying the result again proves (B4).

(A1)⇔(A2)⇔(A4) and (B1)⇒(B2): Since f −1({p}) = Spec(A⊗R κ(p)), we appeal to [GIV4,
Théorème 17.4.1,(a)⇔(d)], which asserts that f is unramified at q iff f −1({ f (q)}) is unramified
over κ( f (q)) at q. It immediately follows that (A1)⇒(A2) and (B1)⇒(B2) (just take k = κ(p)) in
view of the fact that a morphism of schemes is unramified iff it is unramified at every point of the
domain, as noted just after [GIV4, Définition 17.3.7]. It also follows that the special case of (A2)
in which k = κ(p) implies (A1), in view of which the proof of the implications stated at the start of
this paragraph will be completed by the following lemma:

Lemma 6.4. Condition (A2) is equivalent to the following condition:

(A2’) For every field extension κ(p) → k, the map Spec (A⊗R k) → Spec k induced by the unique
ring morphism k→ A⊗R k is unramified.

Moreover, we have the equivalence (A2’)⇔(A4).

Proof. Let p ∈ Spec R and let k be a field extension of κ(p) obeying the conclusion of (A2). Write
fk,p : Spec (A⊗R k)→ Spec k for the morphism induced by k → A⊗R k. Since the latter ring map
is flat ([Mat, 3.C]), fk,p is flat. Our assumption (A2) also states that fk,p is unramified. So by the
implication (c)⇒(c’) of [GIV4, Corollaire 17.6.2], the unique fiber of fk,p is the Spec of a direct sum
of finite extensions of k. Thus A⊗R k is reduced. Of course k is perfect since it has characteristic
zero, so Theorem 6.3 shows that A⊗R κ(p) is reduced, and moreover decomposes as a direct sum
of κ(p)-extensions. Applying Theorem 6.3 again shows that if k′ is now an arbitrary extension of
k then A⊗R k′ is a direct sum of k′-extensions. We have now shown that (A2)⇒(A4). Given (A4),
applying the implication (c’)⇒(c) of [GIV4, Corollaire 17.6.2] shows that for any extension k of
κ(p) the morphism Spec (A⊗R k) → Spec k is unramified, thus establishing (A4)⇒(A2’). Since
(A2’)⇒(A2) is trivial the proof of the lemma is complete. �

We have now established all of part (A) of Theorem 6.1; to complete the proof of (B) we will
prove that (B2)⇒(B3) and (B4)⇒(B1).

Assume that (B2) holds for p ∈ Spec R and the extension κ(p) → k, write C = A⊗R k and let
fk,p : Spec C → Spec k be the map associated to k → A⊗R k = C . (B2) asserts that fk,p has an
unramified point, and we claim that we may reduce to the case that this unramified point is a
closed point, i.e. corresponds to a maximal ideal in C . Indeed, the set of unramified points of fk,p

is open in Spec C , and hence is equal to a set of the form {q ∈ Spec C |I 6⊂ q} for some ideal I . The
set in question is nonempty, and so I must not be contained in the intersection of all prime ideals
of C . But C , being a finitely-generated algebra over a field, is a Jacobson ring by the Nullstellensatz
[Eis, Theorem 4.19]; thus the intersection of all prime ideals of C is equal to the intersection of
all maximal ideals. So there is a maximal ideal, say q, such that I 6⊂ q, and so our open set of
unramified points contains this closed point q.

Since fk,p is unramified at q, the implication (a)⇒(d’) of [GIV4, Théorème 17.4.1] shows that
the localization Cq is a field extension of κ(p) and that q is isolated in Spec C . If q were the only
point of Spec C then since q is maximal C would be a local ring, and we would have Cq = C , so C
would be a field and so (B3) would certainly hold. So we may assume Spec C \{q} to be nonempty.
Thus since q is isolated we can write Spec C as a disjoint union of nonempty closed sets

Spec C = {q}
∐
{r|I ⊂ r}
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for some ideal I ≤ C . Since q is maximal and I 6⊂ q, q+ I = C . Arguing as in [Eis, Exercise 2.25],
we find idempotents e1 ∈ q, e2 ∈ I with e1 + e2 = 1 and e1e2 = 0. This gives a direct sum splitting
C = e1C ⊕ e2C . Now since e2 ∈ I , the distinguished open set D(e2) = {r ∈ Spec C |e2 /∈ r} is equal
to {q}, so the ring e−1

2 C is isomorphic to the localization Cq (for instance this follows directly from
[Ha, Proposition II.2.2]) and therefore is a field. But the natural map C → e−1

2 C is easily seen to
restrict to e2C as an isomorphism. Thus C decomposes as a direct sum isomorphic to e1C ⊕ Cq

where Cq is a field extension of k. This proves the implication (B2)⇒(B3).
Finally, assume that (B4) holds; in particular we may choose k = κ(p), so that A⊗R κ(p)

∼= K⊕S
where K is a field extension of κ(p). Then S is easily seen to be a maximal ideal, which may
alternatively be characterized as the annihilator {x ∈ A⊗R κ(p)|xK = 0}. Denote the multiplicative
unit in K by e ∈ K ⊂ A⊗R κ(p). If r is any prime ideal in A⊗R κ(p), the factorization 0 = e(1− e)
shows that either e ∈ r or 1− e ∈ r; in the latter case r contains and hence is equal to S. Thus
the open set D(e) = {r|e /∈ r} is equal to {S}. So S is an isolated point of Spec (A⊗R κ(p)) and
the local ring (A⊗R κ(p))S at S is isomorphic to e−1(A⊗R κ(p)), which in turn is isomorphic to
the field K . So (A⊗R κ(p))S

∼= K is a field extension of κ(p), which is separable since we are
working in characteristic zero. So the implication (d’)⇒(a) of [GIV4, Théorème 17.4.1] proves
that Spec A→ Spec R is unramified at the point q = ι(S) where ι : Spec (A⊗R κ(p)) → Spec A is
the map induced by the natural map A→ A⊗R κ(p). This completes the proof of the implication
(B4)⇒(B1) and thus of all of Theorem 6.1. �

Definition 6.5. Let A be an R-algebra as in Theorem 6.1.

• We say that A is generically semisimple if the subset U1 ⊂ Spec R of Theorem 6.1(A) is
nonempty.
• We say that A is generically field-split if the subset U2 ⊂ Spec R of Theorem 6.1(B) is

nonempty.

Proposition 6.6. Let A be an R-algebra as in Theorem 6.1, let φ : R→ S be a ring map, and consider
the resulting S-algebra A⊗R S.

(i) If A⊗RS is generically semisimple (resp. generically field-split) then A is generically semisimple
(resp. generically field-split).

(ii) Suppose that R and S are integral domains and that the ring map φ : R→ S is injective. Then
A⊗R S is generically semisimple (resp. generically field-split) if and only if A is generically
semisimple (resp. generically field-split).

Proof. For (i), that A⊗R S is generically semisimple (resp. generically field split) implies, by the
equivalence (A1)⇔(A3) (resp. (B1)⇔(B3)), that there is a field k and a ring map ψ : S→ k such
that (A⊗R S)⊗S k decomposes as a direct sum of extensions of k (resp. has an extension of k as
a direct summand) (indeed we could take k = κ(p) where p is an arbitrary element of U1 (resp.
U2)). Now where k is made into an R-algebra via the map ψ ◦φ, we have

A⊗R k = (A⊗R S)⊗S k.

Where q= ker(ψ◦φ), q is a prime ideal of R, and since κ(q) is the field of fractions of R/q the map
ψ ◦φ factors as a composition R→ κ(q)→ k where κ(q)→ k is a field extension. So since A⊗R k
decomposes as a direct sum of extensions of k (resp. has an extension of k as a direct summand)
we have q ∈ U1 (resp. q ∈ U2), proving (i).

As for (ii), since R and S are integral domains their spectra contain generic points ηR ∈ Spec R,
ηS ∈ Spec S, corresponding to the zero ideals in the respective rings. The residue fields κ(ηR) and
κ(ηS) at these generic points are just the fields of fractions of the respective domains, and so the
monomorphism R→ S induces a field extension κ(ηR)→ κ(ηS). Moreover we have

(A⊗R κ(ηR))⊗κ(ηR)
κ(ηS) = (A⊗R S)⊗S κ(ηS).
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Consequently, by Theorem 6.3 and [EP08, Proposition 2.2(A)], A⊗R κ(ηR) decomposes as a direct
sum of extensions of κ(ηR) (resp. has an extension of k as a direct summand) if and only if the
corresponding property holds for (A⊗R S)⊗Sκ(ηS). Now any nonempty open set in Spec R contains
ηR, and likewise any nonempty open set in Spec S contains ηS , so by the equivalence (A1)⇔(A3)
(resp. (B1)⇔(B3)) it follows that the set UR

1 ⊂ Spec R (resp. UR
2 ⊂ Spec R) associated to A via

Theorem 6.1 is nonempty if and only if the corresponding subset of Spec S associated to A⊗R S via
Theorem 6.1 is nonempty. �

7. QUANTUM HOMOLOGY II

What we will call the “universal big quantum homology” ARM
in this paper may be regarded

as an invariant associated to a pair (M ,C ) where C is a nonempty connected component of the
space of symplectic forms on the 2n-dimensional closed manifold M ; the pair (M ,C ) shall be fixed
throughout this section. This invariant is a commutative algebra ARM

over a ring RM ; this latter ring
will be referred to as the “universal quantum coefficient ring” of M (or, more properly, of (M ,C )).
Writing

Hk(M) :=
Hk(M ;Z)

torsion
, Hev(M) =⊕

n
i=0H2i(M),

let {∆0,∆1, . . . ,∆N} be an integral basis of Hev(M) for which each∆i has some even homogeneous
grading |∆i |, such that

∆0 = [M], and for some s ∈ {1, . . . , N}, |∆ j |= 2n− 2⇔ 1≤ i ≤ s.

Thus the subgroup of Hev(M) with codimension at least 4 is spanned by∆s+1, . . . ,∆N . As a module,
we will have ARM

= Hev(M)⊗Z RM , with {∆0, . . . ,∆N} serving as a standard RM -basis for ARM
. We

must now describe the ring RM , and the multiplication rule for ARM
.

7.1. The universal quantum coefficient ring RM . As before Gromov–Witten invariants are de-
noted with the notation 〈a1, . . . , ak〉0,k,β ; from now on we will always take ai ∈ H∗(M) to be ho-
mogeneous, and β ∈ H2(M). Note that these quantities are rational numbers (integers if M is
semipositive) which are independent of J and of the particular symplectic form ω representing the
deformation class C . The quantity is nonzero only when

(27)
k∑

i=1

(2n− |ai |) = 2
�
n+ 〈c1(T M),β〉+ (k− 3)

�
.

Let

H e f f
2 (M) = {β ∈ H2(M)|(∃a1, . . . , ak ∈ H∗(M))(〈a1, . . . , ak〉0,k,β 6= 0)}

and define the “GW-effective cone” to be

C e f f = C e f f (M) =

(
l∑

i=1

niβi

�����n1, . . . , nl ∈ N,β1, . . . ,βl ∈ H e f f
2 (M).

)
.

Since the Gromov–Witten invariants are independent of the choice of ω ∈ C , so too is the
GW-effective cone C e f f .

Lemma 7.1. (i) If ω is any symplectic form in the deformation class C and if D ∈ R, there are
only finitely many elements β ∈ C e f f such that

∫
β
ω≤ D.

(ii) If β ∈ C e f f then there are just finitely many pairs (β1,β2) such that β1,β2 ∈ C e f f and
β1 + β2 = β .
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Proof. If β ∈ C e f f \ {0} with
∫
β
ω ≤ D, say β =

∑l
i=1 niβi with each niβi 6= 0 (so ni ≥ 1) and βi ∈

H e f f
2 (M), then for J an arbitraryω-compatible almost complex structure the existence of a nonzero
〈a1, . . . , ak〉0,k,βi

produces for each i a genus-zero J -holomorphic bubble tree representing βi . Then∫
βi
ω ≤

∫
β
ω ≤ D for each i. By Gromov compactness, there are only finitely many nonzero classes

βi of energy at most D represented by a J -holomorphic bubble tree, and ω evaluates on each
of these as at least some positive number ħh. Consequently there are only finitely many positive
integer combinations of these βi having energy at most D, and therefore there are only finitely
many possibilities for the class β . This proves (a).

Part (b) then follows immediately: choose an arbitrary symplectic formω from C . If β1+β2 = β
and β1,β2 ∈ C e f f , then β1 and β2 are necessarily each drawn from among the finitely many classes
γ ∈ C e f f with

∫
γ
ω ≤ D :=

∫
β
ω. �

We can now define the ring RM : set theoretically, let

RM =




∑

β∈C e f f

fβqβ

������
(∀β ∈ C e f f )( fβ ∈ Q[xs+1, . . . , xN ])



 .

We use the obvious componentwise addition
∑

fβqβ +
∑

gβqβ =
∑
( fβ + gβ )q

β , while multipli-
cation is, as one would expect, defined by



∑

β∈C e f f

fβqβ






∑

η∈C e f f

gηqη


 =

∑

ζ∈C e f f


 ∑

β+η=ζ

fβ gη


qζ.

That the right hand side is well-defined follows directly from Lemma 7.1(ii), which ensures that
the inner sum on the right is finite for any given ζ. So since 0 ∈ C e f f and C e f f is closed under
addition, RM is a well-defined ring (with unit 1 := q0). It is not difficult to check that RM is an
integral domain. On the other hand I do not know what assumptions, if any, on M are needed to
ensure that RM is Noetherian; fortunately, Theorem 6.1 applies regardless of whether or not the
ring R in its hypothesis is Noetherian.

Given other conventions in the literature, it perhaps bears emphasizing that while an element
of RM may have a nonzero coefficient fβ on qβ for infinitely many different β , the coefficients fβ
themselves are taken to be polynomials, not power series, in the variables xs+1, . . . , xN . These latter
variables may be regarded as being dual to the basis {∆s+1, . . . ,∆N} for ⊕n−2

i=0 H2i(M) from earlier.
Formal variables dual to the basis {∆1, . . . ,∆s} for H2n−2(M) (or, more accurately, exponentiated
versions of these formal variables) can be regarded as being incorporated into the formal symbol
q. It will typically not be true that the various polynomials fβ appearing in a given element of RM

have uniformly bounded degree.

Remark 7.2. This choice of coefficient ring RM is motivated by the fact that it enjoys the following
two properties:

(a) The quantum homology ARM
of M may be naturally defined as an algebra over RM for any

M .
(b) For many other rings Λ obeying property (a), there is a diagram of ring maps incorporating

the rings RM and Λ which allows Proposition 6.6 to be used to relate the properties of the
quantum homology with coefficients in Λ to the properties of ARM

.

We will see many examples of (b) below. In the simplest cases, the diagram alluded to in
(b) simply consists of a map RM → Λ, and the quantum homology with coefficients in Λ is just
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ARM
⊗RM
Λ. In other cases the diagram will be more complicated: the one involved in our discussion

of the quantum homology of blowups M̃ in Section 7.4 takes the form

(28) RM̃

��

B� _

��

// B/ZB

R0
M̃

� � // R0
M̃
[q±

E′

n−1 ]

7.2. Quantum multiplication. Having introduced RM , we now define the quantum product ∗ on
the big quantum homology ARM

in a standard way. Recall that ARM
is freely generated as a RM -

module by the homogeneous basis ∆0, . . . ,∆N for Hev(M), where ∆0 = [M] and ∆1, . . . ,∆s span
H2n−2(M). For i, j, k ∈ {0, . . . , N}, consider the formal sum

ci jk =
∑

β∈H e f f
2




∑

α=(αs+1,...,αN )∈N
N−s

1

α!
〈∆i ,∆ j ,∆k,∆s+1, . . . ,∆s+1︸ ︷︷ ︸

αs+1

, . . . ,∆N , . . . ,∆N︸ ︷︷ ︸
αN

〉0,|α|+3,β xα


qβ .

Here we use standard multi-index notation for a tuple of nonnegative integers α= (αs+1, . . . ,αN ),
namely |α|=

∑
αi , α!=

∏N
i=s+1(αi!), and xα = xαs+1

s+1 · · · x
αN
N .

Proposition 7.3. For each i, j, k we have ci jk ∈ RM .

Proof. This proposition amounts to the statement that, for any given β ∈ H e f f
2 (M), the expression

∑

α=(αs+1,...,αN )∈N
N−s

1

α!
〈∆i ,∆ j ,∆k,∆s+1, . . . ,∆s+1︸ ︷︷ ︸

αs+1

, . . . ,∆N , . . . ,∆N︸ ︷︷ ︸
αN

〉0,|α|+3,β xα

is a polynomial, which in turn is to say that, again for any given β ∈ H e f f
2 (M), there are just finitely

many multi-indices α such that

〈∆i ,∆ j ,∆k,∆s+1, . . . ,∆s+1︸ ︷︷ ︸
αs+1

, . . . ,∆N , . . . ,∆N︸ ︷︷ ︸
αN

〉0,|α|+3,β 6= 0.

Bearing in mind that, for l = s+ 1, . . . , N , we have 2n− |∆l | ≥ 4, by (27) the above invariant can
be nonzero only if

4|α|+ (2n− |∆i |) + (2n− |∆ j |) + (2n− |∆k|)≤ 2(n+ 〈c1(T M),β〉+ |α|),

which in turn forces

|α| ≤
|∆i |

2
+
|∆ j |

2
+
|∆k|

2
+ 〈c1(T M),β〉 − 2n.

Since, for fixed β , there are only finitely many multi-indices α obeying this bound on |α| the
proposition follows. �

For k = 0, . . . , N define a dual element ∆k ∈ H2n−|∆k |
by the property that

∆ j ∩∆
k = δk

j for all j

where ∩ is the Poincaré intersection pairing and δk
j is the Kronecker symbol (equivalently, ∆k =∑

j gk j∆ j if {gk j} is the inverse of the matrix representing the Poincaré pairing in the basis∆0, . . . ,∆N ).
The multiplication law for the algebra ARM

is then defined by extending bilinearly from

∆i ∗∆ j =

N∑

k=0

ci jk∆
k.
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Since the ci jk belong to RM this multiplication law is well-defined. ARM
is then a commutative

(since we are restricting to even dimensional homology) algebra with unit ∆0 = [M]; from [KM,
Section 4] it follows that the associativity of the algebra is a formal consequence of a certain set of
axioms for Gromov–Witten invariants, and in [FO, Section 23] it is shown that the Gromov–Witten
invariants for general symplectic manifolds constructed in [FO] indeed satisfy all of the axioms
needed for associativity ([LiT],[Ru] also contain such results).

We have now associated to the deformation class (M ,C ) of symplectic manifolds a ring RM

and an RM -algebra ARM
which, module-theoretically, is free and finitely generated. Theorem 6.1

and Definition 6.5 thus apply to the algebra ARM
, so we may consider the questions of whether

ARM
is generically semisimple or generically field-split (in which case we say that the symplectic

deformation class (M ,C ) “has generically semisimple big quantum homology” or “has generically
field-split big quantum homology,” respectively).

7.3. Other coefficient systems. Given a ring map φ : RM → S, we may form a quantum homology
ring with coefficients in S:

QHφ(M ; S) := ARM
⊗RM

S

where we use φ to view S as an RM -algebra (if the map φ is obvious from the context we will just
write QH(M ; S)). Thus QHφ(M ; S) is the S-algebra freely generated as a module by ∆0, . . . ,∆N

with the multiplication law

∆i ∗∆ j =

N∑

k=0

φ(ci jk)∆
k

where ci jk ∈ RM are the constants defined at the start of Section 7.2. As mentioned in Remark 7.2,
our choice of universal quantum coefficient ring RM has been motivated in part by the existence of
many ring maps from RM to various rings in common use as coefficient rings for quantum homology.

7.3.1. Small quantum homology. For example, let

R0
M =




∑

β∈C e f f

cβqβ

������
cβ ∈ Q





where as before C e f f is the GW-effective cone and we use the obvious “power series” multiplication
(which is well-defined by Lemma 7.1(ii)). There is an obvious map σ : RM → R0

M defined by
σ
�∑

fβqβ
�
=
∑

fβ (0)q
β .

Definition 7.4. Let a deformation class (M ,C ) of symplectic manifolds be given.

• The small quantum homology of (M ,C ) is the R0
M -algebra

QH(M ; R0
M ) =QHσ(M ; R0

M ) = ARM
⊗RM

R0
M

where σ : RM → R0
M is the above map.

• We say that (M ,C ) has generically semisimple small quantum homology (resp. has gener-
ically field-split small quantum homology) if the R0

M -algebra QH(M ; R0
M ) is generically

semisimple (resp. generically field-split) in the sense of Definition 6.5.

Proposition 7.5. If (M ,C ) has generically semi-simple (resp. generically field-split) small quantum
homology, then (M ,C ) has generically semi-simple (resp. generically field-split) big quantum homol-
ogy.

Proof. Indeed, this follows immediately from Proposition 6.6(i). �
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Consulting the definitions of the map σ and of the multiplication law in big quantum homology,
we see that QH(M ; R0

M ) is the free R0
M -module generated by∆0, . . . ,∆N subject to the multiplication

law

∆i ∗∆ j =

N∑

k=0




∑

β∈H e f f
2 (M)

〈∆i ,∆ j ,∆k〉0,3,βqβ


∆k,

consistently with a formulation that some readers may find more familiar (again, {∆l} is a Poincaré
dual basis to {∆l}).

7.3.2. Novikov rings. Choose a symplectic form ω belonging to the given deformation class C of
forms on M , with de Rham cohomology class [ω]. Let the subgroup Γω ≤ R and the Novikov ring
Λω be as before (see Section 2).

Consider a general element

η = ηD +

N∑

i=s+1

ηi∆i ∈

n−1⊕

k=0

H2k(M ;Λ0
ω)

where ηi ∈ Λ
0
ω and ηD ∈ H2n−2(M ;Λ0

ω); here as before∆s+1, . . . ,∆N is a fixed basis of⊕n−2
k=0H2k(M).

Define a map

φη : RM → Λω

∑

β∈C e f f




∑

α=(αs+1,...,αN )

cαxα


qβ 7→

∑

β

 ∑

α

cα

N∏

i=s+1

η
αi

i

!
exp(ηD ∩ β)T

〈[ω],β〉.(29)

Here ηD ∩ β denotes the Poincaré intersection pairing between the “divisor” class ηD and β ∈
H2(M). That this map is well-defined (i.e. that φη sends every element of RM to a formal sum
which obeys the finiteness condition in the definition of Λω) follows directly from Lemma 7.1(i).

Definition 7.6. Let (M ,ω) be a symplectic manifold, determining a symplectic deformation class
(M ,C ) where ω ∈ C . Let η= ηD +

∑N
i=s+1ηi∆i ∈ ⊕

n−1
k=0H2k(M ;Λ0

ω).

(i) The η-deformed quantum homology of (M ,ω), denoted QH(M ,ω)η, is the Λω-algebra

QH(M ,ω)η =QHφη(M ;Λω) = ARM
⊗RM

Λω,

where the RM -algebra structure on Λω is that induced by the ring map φη of (29).
(ii) In the special case that η = ηD ∈ H2n−2(M), QH(M ,ω)η will also be called the “η-twisted

small quantum homology” of (M ,ω).

This is clearly consistent with the terminology from before: as in Section 5 QH(M ,ω)η is the
even part of the algebra (H∗(M ;Λω);∗η).

To prepare for our next result, we introduce some notation:

Definition 7.7. Given a basis B = {∆0, . . . ,∆N} for Hev(M) with ∆0 = [M] and ∆1, . . . ,∆s a basis
for H2n−2(M), we define

EB : ⊕n−1
k=0 H2k(M ;C)→ CN

by

EB

 
N∑

i=1

ηi∆i

!
=
�
eη1 , . . . , eηs ,ηs+1, . . . ,ηN

�
,

and
E0
B : H2n−2(M ;C)→ Cs
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by

E0
B

 
s∑

i=1

ηi∆i

!
= (eη1 , . . . , eηs) .

Theorem 7.8. For a closed symplectic manifold (M ,ω), the following are equivalent:

(i) For some η ∈ ⊕n−1
k=0H2k(M ;Λ0

ω), the η-deformed quantum homology QH(M ,ω)η is a semisim-
ple Λω-algebra (resp. has a field as a direct summand).

(ii) Where C is the deformation class of ω, (M ,C ) has generically semisimple big quantum
homology (resp. has generically field-split big quantum homology).

(iii) There is a nonzero Laurent polynomial

f ∈ Q[z1, z−1
1 , . . . , zs, z

−1
s , zs+1, zs+2, . . . , zN]

such that, for all η ∈ ⊕n−1
k=0H2k(M ;C) such that f (EB (η)) 6= 0, the η-deformed quantum

homology QH(M ,ω)η is a semisimple Λω-algebra (resp. has a field as a direct summand).

Remark 7.9. Note that since, in (iii), the polynomial f has its coefficients in Q, it follows that
when any of the above equivalent conditions holds, if we choose a particular η with the property
that the coordinates of EB (η) =

�
eη1 , . . . , eηs ,ηs+1, . . . ,ηN

�
are algebraically independent over Q,

then QH(M ,ω)η will automatically be semisimple (resp. have a field as a direct summand) for this
specific choice of η.

Proof. The fact that (i)⇒(ii) follows directly from Proposition 6.6(i). The implication (iii)⇒(i) is
trivial. It remains to prove that (ii)⇒(iii).

Accordingly, assume that (M ,C ) has generically semisimple big quantum homology (resp. has
generically field-split big quantum homology). Thus the open subset U1 (resp. U2) of Spec RM

produced by applying Theorem 6.1 to the RM -algebra ARM
is nonempty. Recall that a basis for the

topology of Spec RM is formed by distinguished open sets of the form D(g) = {p ∈ Spec RM |g /∈ p}
where g ∈ RM . So the open set produced by Theorem 6.1 contains one of these sets D(g) with
g 6= 0 (as of course D(0) = ∅); we fix this g.

Since the codomain of the map φη : RM → Λω is a field, kerφη is a prime ideal; let us denote
this prime ideal by pη. If pη ∈ D(g), then ARM

⊗RM
κ(pη) is semisimple (resp. has a field as a direct

summand). Now φη : RM → Λω factors through the canonical map RM → κ(pη) to give a field
extension κ(pη) → Λω, so the equivalences in Theorem 6.1 show that QH(M ,ω)η is semisimple
(resp. has a field as a direct summand) whenever the same property holds for ARM

⊗RM
κ(pη).

As such, the proof will be complete if we show that, whenever 0 6= g ∈ RM , there is f ∈
Q[z1, z−1

1 , . . . , zs, z
−1
s , zs+1, zs+2, . . . , zN] such that kerφη ∈ D(g)whenever f (EB (η)) 6= 0. Of course,

kerφη ∈ D(g) if and only if φη(g) 6= 0. Let us write

g =
∑

β∈C e f f

gβqβ

where each gβ ∈ Q[zs+1, . . . , zN ]. Since g 6= 0, let λ0 be the minimal value of 〈[ω],β〉 over all
those β with gβ 6= 0. By Lemma 7.1(i), there are just finitely many β ∈ H2(M), say β1, . . . ,βk, such
that gβ 6= 0 and 〈[ω],β〉= λ0.

For i = 1, . . . , s and j = 1, . . . , k write

∆i ∩ β j = ni j .

Then, if

η =

N∑

i=1

ηi∆i ,
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the coefficient on Tλ0 in φη(g) is

k∑

j=1

gβ j
(ηs+1, . . . ,ηN )

s∏

i=1

(eηi )ni j .

So let

(30) f (z1, . . . , zN ) =

k∑

j=1

gβ j
(zs+1, . . . , zN )

s∏

i=1

z
ni j

i .

The above discussion and the definitions show that we will have kerφη ∈ D(g)whenever f (EB (η)) 6=
0. So the proof will be complete if we establish that f is not the zero polynomial. But, recalling
that by definition H2(M) =

H2(M ;Z)
torsion

, since {∆1, . . . ,∆s} is a basis for H2n−2(M), the map

H2(M)→ Z
s

β 7→ (∆1 ∩ β , . . . ,∆s ∩ β)

is injective. Consequently the only terms in (30) with powers of z1, . . . , zs respectively equal to
ni1, . . . , nis are those arising from j = 1. So since gβ1

is not the zero polynomial it follows that f is
not the zero polynomial and we are done. �

Similarly, we have

Theorem 7.10. For a closed symplectic manifold (M ,ω), the following are equivalent:

(i) For some η ∈ H2n−2(M ;Λ0
ω), the η-twisted small quantum homology QH(M ,ω)η is a semisim-

ple Λω-algebra (resp. has a field as a direct summand).
(ii) Where C is the deformation class of ω, (M ,C ) has generically semisimple small quantum

homology (resp. has generically field-split small quantum homology).
(iii) There is a nonzero Laurent polynomial

f ∈ Q[z1, z−1
1 , . . . , zs, z

−1
s ]

such that, for all η ∈ H2n−2(M ;C) such that f (E0
B (η)) 6= 0, the η-twisted small quantum

homology QH(M ,ω)η is a semisimple Λω-algebra (resp. has a field as a direct summand).

Proof. The proof differs only notationally from that of Theorem 7.8 and so is left to the reader. �

A reader who still prefers to work with undeformed (i.e. η = 0) quantum homology may
take solace in the following, which is somewhat reminiscent of [OT, Theorem 4.1] and [FOOO10,
Proposition 8.8]:

Proposition 7.11. Given a deformation class (M ,C ) of closed symplectic manifolds, the following are
equivalent:

(i) There exists a symplectic formω ∈ C such that the undeformed quantum homology QH(M ,ω)0
is semisimple (resp. has a field as a direct summand).

(ii) (M ,C ) has generically semisimple (resp. generically field-split) small quantum homology.
(iii) Where [C ] = {[ω] ∈ H2(M ;R)|ω ∈ C}, there is a countable intersection B of open dense

subsets of [C ] such that QH(M ,ω)0 is semisimple (resp. has a field as a direct summand)
whenever ω ∈ C and [ω] ∈B .

Proof. Again (i)⇒(ii) follows from Proposition 6.6(i) and (iii)⇒(i) is trivial so we just need to
prove (ii)⇒(iii). So assume that (M ,C ) has generically semisimple (resp. generically field-split)
small quantum homology.

We may then choose a basis for H2(M ;Q), let B0 ⊂ H2(M ;R) be the set of classes having
rationally independent coefficients when written in terms of this basis, and let B = B0 ∩ [C ].
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Since B0 is a countable intersection of open dense subsets of H2(M ;R) and [C ] is open (because
nondegeneracy is an open condition on a 2-form), B is a countable intersection of open dense
subsets of [C ]. Moreover if [ω] ∈ B then β 7→ 〈[ω],β〉 is an injective map C e f f → R, and so the
map

ψω : R0
M → Λω∑

β∈C e f f

cβqβ 7→
∑

β∈C e f f

cβT 〈[ω],β〉

is also injective. So since QH(M ,ω)0 =QH(M ; R0
M )⊗R0

M
Λω where Λω is made into a R0

M -module by
ψω, it follows from Proposition 6.6(ii) that, for [ω] ∈ B , QH(M ,ω)0 is semisimple (which, since
its coefficient ring is a field, is equivalent to being generically semisimple) if and only if (M ,C ) has
generically semisimple small quantum homology. �

Remark 7.12. There is an obvious isomorphism between our Novikov field Λω and the field denoted
byKΓ in [EP08], and the algebra Λω-algebra QH(M ,ω)0 is straightforwardly seen to be isomorphic
to the KΓ-algebra QH2n(M ,ω) from [EP08] (in [EP08] a degree-shifting parameter q, which does
not belong toKΓ, is used to move all of the even-degree homology into degree 2n; note that the ring
denoted by ΛΓ in [EP08] plays a different role than our Λω). In particular the notion of semisimple
quantum homology from [EP08] is equivalent to, in our notation, the property that QH(M ,ω)0 is
semisimple. In turn, in the case that (M ,ω) is monotone, this notion can be identified with that in
[EP03] by the argument in [EP08, Section 5].

In [OT], the authors use a slightly different convention for the Novikov ring, in that they consider
the ring K↓ in which the exponents are allowed to be arbitrary real numbers rather than being
restricted to the period group Γ = Γω. However, as follows from Proposition 6.6 (or, indeed, [EP08,
Proposition 2.2]), this distinction does not affect whether the quantum homology is semisimple or
field-split provided that one works in characteristic zero.

In particular, it follows from this that the symplectic manifolds that were found to have semisim-
ple or field-split quantum homology in [EP03], [EP08], or [OT] all fall under the purview of
Theorem 7.10 and Proposition 7.11.

7.3.3. The case of convergent structure constants. Having proven results relating generic semisim-
plicity in the sense of Definition 6.5 to quantum homology over the Novikov rings used in symplectic
topology, we now connect Definition 6.5 to semisimplicity as it is studied by algebraic geometers.
As before, we will consider a basis ∆0, . . . ,∆N for Hev(M) with ∆0 = [M] and ∆1, . . . ,∆s span-
ning H2n−2(M). Consistently with algebraic geometry conventions, we will choose ∆1, . . . ,∆s to
be “nef” in the sense that ∆i ∩ β ≥ 0 whenever β ∈ H e f f

2 (it’s straightforward to find such a ba-
sis, regardless of whether the symplectic deformation class (M ,C ) arises from algebraic geometry:
choose ∆1 equal to the Poincaré dual to a symplectic form in C representing a primitive integral
homology class; complete this to an integral basis ∆1,∆′2, . . . ,∆′s for H2n−2(M), and then for some
large integer K set ∆ j =∆

′
j + K∆1 for 2≤ j ≤ s).

As far as I can tell, there is not a universal consensus in the algebraic geometry community
regarding the most appropriate coefficient ring for quantum homology. Some authors use the
Novikov rings of Section 7.3.2. In other cases, a formal power series ring of the formQ[[t1, . . . , tN ]]

is used (see for instance [Ir, Section 2], [Bay]); in this case the quantum homology can be described
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in our language as being obtained from the RM -algebraAM induced by the coefficient extension

Φ : RM → Q[[t1, . . . , tN ]]

∑

β∈C e f f

gβqβ 7→
∑

β∈C e f f

gβ (ts+1, . . . , tN )

s∏

i=1

t∆i∩β
i .

Since Φ is injective (because β 7→ (∆1 ∩ β , . . . ,∆s ∩ β) is injective, as was noted in the proof of
Theorem 7.8) it immediately follows from Lemma 6.6(ii) that (M ,C ) has generically semisimple
(resp. generically field-split) quantum homology in our sense if and only if this coefficient extension
over Q[[t1, . . . , tN]] is generically semisimple (resp. generically field-split).

The context in which semisimple quantum homology has been of greatest interest in algebraic
geometry is when the power series that appear in the algebra converge, so that the coefficient ring
may be taken to be C; in this case the quantum homology gives a Frobenius manifold (rather than a
formal Frobenius manifold in the terminology of [Man]), and the Frobenius manifolds obtained in
the semisimple case have remarkable relations to disparate areas of mathematics (see for instance
[Dub]).

Where ε > 0 and Bε(~0) denotes the ball of radius ε around the origin in CN , let

Sε = { f ∈ Q[[t1, . . . , tN ]]| f is absolutely convergent on Bε(~0)}

Also let
RM ,ε = Φ

−1(Sε).

Clearly RM ,ε and Sε are rings, and Φ restricts to an injective map Φ : RM ,ε → Sε. Similarly define
R0

M ,ε = R0
M ∩ RM ,ε.

Definition 7.13. Given ε > 0, we say that (M ,C ) has ε-convergent big (resp. small) quantum
homology if the structure constants ci jk of the start of Section 7.2 (resp. the elements σ(ci jk) ∈ R0

M

where σ is defined at the start of Section 7.3.1) belong to RM ,ε (resp. R0
M ,ε).

If (M ,C ) has ε-convergent big quantum homology, then we may define AεRM
to be the RM ,ε-

algebra freely generated as a module by the ∆i with ∆i ∗ ∆ j =
∑

k ci jk∆
k, so that obviously

ARM
= AεRM

⊗RεM
RM . Similarly we may define a version Aε,0RM

of the small quantum homology

with coefficients in R0
M ,ε so that the small quantum homology as we originally defined it, namely

QH(M ; R0
M ), is given by QH(M ; R0

M ) = A
ε,0
RM
⊗R0

M ,ε
R0

M .
Incidentally, note that if (M ,C ) is symplectically Fano (i.e. if there is a symplectic form in C

representing c1(T M); this subsumes all cases where M is Fano in the complex algebraic sense), then
the structure constants σ(ci jk) for the small quantum homology are all just finite sums. Indeed, the
σ(ci jk) involve only Gromov–Witten invariants with three insertions, and (27) imposes an upper
bound on 〈c1(T M),β〉 for the homology class β ∈ H2(M) of the curves counted by such invariants;
in the symplectically Fano case Gromov compactness then implies that there can be only finitely
many β represented by pseudoholomorphic curves which obey this bound. So in this case (M ,C )
has ε-convergent small quantum homology for every ε > 0.

The definition of RM ,ε ensures that, for any ~t ∈ Bε(~0) ∈ C
N , we have a well-defined ring map

ev~t : RM ,ε→ C

defined by

ev~t


∑

β

gβqβ


 =

∑

β∈C e f f

gβ (ts+1, . . . , tN )

s∏

i=1

t∆i∩β
i .
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By the same token, if ~z ∈ Cs with ‖~z‖< ε, we have a ring map

ev~z : R0
M ,ε→ C

defined by

ev~z


∑

β

gβqβ


 =

∑

β∈C e f f

gβ

s∏

i=1

z∆i∩β
i .

Definition 7.14. If ~t ∈ CN (resp. ~z ∈ Cs), the big (resp. small) quantum homology of (M ,C ) at
~t (resp. at ~z) is the algebra defined by QH(M)|~t = A

ε
RM
⊗RM ,ε
C (resp. QH(M)|~z = A

ε,0
RM
⊗R0

M ,ε
C),

where C has been made into an algebra over RM ,ε by the map ev~t (resp. C has been made into an
algebra over R0

M ,ε by the map ev~z).

Theorem 7.15. If (M ,C ) has ε-convergent big quantum homology, the following are equivalent:

(i) There exists ~t ∈ Bε(~0) such that QH(M)|~t is a semisimple C-algebra (resp. contains C as a
direct summand).

(ii) (M ,C ) has generically semisimple (resp. generically field-split) big quantum homology.
(iii) There is a nonzero analytic function f : Bε(~0) → C such that QH(M)|~t is a semisimple C-

algebra (resp. contains C as a direct summand) whenever f (~t) 6= 0.

There is an essentially identical theorem for small quantum homology, whose statement is left
to the reader.

Proof. As has become customary in this paper, (i)⇒(ii) by Theorem 6.6, while (iii)⇒(i) is trivial,
so we just need to prove (ii)⇒(iii).

Assume that (M ,C ) has generically semisimple (resp. generically field-split) big quantum ho-
mology. Since ARM

= AεRM
⊗RM ,ε

RM , it follows from Theorem 6.6(i) that the RM ,ε-algebra AεRM

is generically semisimple (resp. generically field-split). So Theorem 6.1 produces an open set
U1 (resp. U2) in Spec RM ,ε, which necessarily contains an open set of the form D( f ) = {p ∈
Spec RM ,ε| f /∈ p} where f 6= 0. By an argument that we have used before, the point ~t ∈ Bε(~0)
will have the property that QH(M)|~t is a semisimple C-algebra (resp. contains C as a direct sum-
mand15) provided that ker ev~t ∈ D( f ), i.e. provided that f /∈ ker ev~t . But by definition elements
f of RM ,ε are power series which define analytic functions on Bε(~0), and ev~t is just given by eval-
uating such a function at ~t. Thus our condition on ~t is simply that, viewing f now as an analytic
function, f (~t) 6= 0. �

7.3.4. Examples from the literature. From our above results we can immediately read off from the
literature some broad families examples of deformation classes (M ,C ) which have generically
semisimple (small or big) quantum homology:

• Any symplectic toric Fano manifold has generically semisimple small quantum homology.
This follows from the Batyrev-Givental formula for the quantum homology of such a man-
ifold as re-expressed in, e.g., [FOOO10], [OT]; in particular, in light of Proposition 7.11
above, we can simply read off this conclusion from [OT, Theorem 4.1].
• Any closed symplectic toric manifold, Fano or not, has generically semisimple big quantum

homology. Indeed, Delzant’s theorem [Del] shows that any closed symplectic toric mani-
fold is deformation equivalent to a projective toric manifold (isotope the Delzant polytope
to have integral vertices), and Iritani showed [Ir, Theorem 1.3] that the big quantum ho-
mology of a projective toric manifold has convergent structure constants and is generically
semisimple in the sense considered in Theorem 7.15.

15Typically the condition is “contains a field as a direct summand,” but in any event this field is a finite extension of the
base field, and here the base field in C, whose only finite extension is itself
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• Of the 59 Fano 3-folds which have no odd rational cohomology, 36 of them were shown
to have generically semisimple small quantum homology (over C) in [Cio]; by the small-
quantum-homology version of Theorem 7.15 this is equivalent to generically semisimple
small quantum homology in our sense (i.e. over R0

M ).
• It was shown in [Bay] that a blowup at a point of a manifold with generically semisim-

ple quantum homology still has generically semisimple quantum homology (the theorem
is stated for big quantum homology, but the proof works equally well for small quantum
homology). Bayer works over a formal power series ring into which RM admits an embed-
ding as in Section 7.3.3, so once again this is equivalent to semisimple quantum homology
in our sense.

On the negative side, it was observed in [HMT] that a projective algebraic manifold M cannot
have generically semisimple quantum homology if there are any nonzero Hodge numbers hp,q(M)
with p 6= q. In the symplectic category it remains true that a symplectic manifold cannot have
generically semisimple quantum homology if it has any nonzero odd Betti numbers (the point is
that the product of a Poincaré dual pair of odd homology classes would be a nonzero even homology
class, which would however be nilpotent by the supercommutativity properties of the Gromov–
Witten invariants). On the other hand nonzero odd Betti numbers do not give any particular
obstruction to the quantum homology of M being generically field-split, as Theorem 7.16 below
demonstrates.

Also, all evidence points to the notion that one cannot delete the word “generically” from the
above discussion. For example, there is given in [OT, Section 5] an example of a monotone Fano
toric 4-fold (thus of 8 real dimensions) whose untwisted small quantum homology is not semisim-
ple.

7.4. Symplectic blow-ups. The purpose of this final subsection is to prove the following, thus
establishing Theorem 1.6(ii):

Theorem 7.16. Let (M̃ ,C ) be a deformation class of symplectic manifolds obtained by blowing up a
symplectic manifold (M ,ω) at a point. Then (M̃ ,C ) has generically field-split small quantum homol-
ogy.

As mentioned earlier, Bayer showed in [Bay] that if M has generically semisimple quantum
homology then so does M̃ . At the other extreme, if M is not uniruled, then the undeformed quantum
homology of the blowup has a field direct summand; this fact is proven based on results of [M] in
[EP08, Section 3], where its discovery is attributed to McDuff.

Our proof of Theorem 7.16 will be based on largely the same approach used by Bayer in his
proof of the semisimple case. Let E ∈ H2n−2(M̃) denote the class of the exceptional divisor, and for
j ≥ 1 abbreviate E∩ j = E j . We have a splitting

Hev(M̃) = Hev(M)⊕ span{E1, . . . , En−1}

which is orthogonal with respect to the classical cap product. Also let E′ be the class of a line in the
exceptional divisor E; thus

E′ = (−1)nEn−1.

Let ∆0, . . . ,∆N be a basis of the usual form for Hev(M) with ∆1, . . . ,∆s a basis for H2(M), so that
∆1, . . . ,∆s, E′ is a basis for H2(M̃).

The standard universal coefficient ring R0
M̃

for the small quantum homology of M̃ , according to
the conventions that we have used so far, consists of formal sums∑

β∈C e f f

cβqβ
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where cβ ∈ Q, and where here and below C e f f refers to the GW-effective cone of M̃ (not of M).
Following [Bay], we formally adjoin to this ring an invertible element

Z = q−
1

n−1
E′

to obtain a ring R0
M̃
[q±

E′

n−1 ]. If we decompose a general element β ∈ H2(M̃) as

β = β ′ + dβ E′ β ′ ∈ H2(M), dβ ∈ Z,

then a general element of R0
M̃
[q±

E′

n−1 ] may be written

K∑

k=−K

∑

β∈C e f f

cβ ,kqβ
′

Z k−(n−1)dβ

where the natural number K depends on the particular element. Now let

B =





K∑

k=−K

∑

β∈C e f f

cβ ,kqβ
′

Z k−(n−1)dβ ∈ R0
M̃
[q±

E′

n−1 ]

������
k− (n− 1)dβ ≥ 0 whenever cβ ,k 6= 0



 .

In other words, B consists of those elements c =
∑

cβ ,kqβ Z k of R0
M̃
[q±

E′

n−1 ] such that, when the qβ

appearing in the sum are broken up as qβ
′

Z l where β ′ ∈ H2(M), all powers of Z appearing in the
expansion of c are nonnegative.

Lemma 7.17. (cf. [Bay, Lemma 3.4.2]) Let

N = spanB{Hev(M), Z E, Z2E2, . . . , Zn−1En−1}.

(Thus N is an additive subgroup of the small quantum homology QH(M̃ ; R0
M̃
[q±

E′

n−1 ]).) Then N is
closed under quantum multiplication, and so quantum multiplication makes N into a B-algebra. More-
over, this B-algebra N is generically field-split.

Theorem 7.16 immediately follows from Lemma 7.17 and Proposition 6.6. Indeed, assuming the

lemma, we have QH(M̃ ; R0
M̃
[q±

E′

n−1 ]) = N ⊗B R0
M̃
[q±

E′

n−1 ] as algebras, so Proposition 6.6(ii) applied

to the inclusion B → R0
M̃
[q±

E′

n−1 ] implies that QH(M̃ ; R0
M̃
[q±

E′

n−1 ]) is generically field-split. Then

applying Proposition 6.6 to the inclusion map R0
M̃
→ R0

M̃
[q±

E′

n−1 ] shows that M̃ has generically field-
split small quantum homology (as defined in Definition 7.4). (The relations between the various
rings involved here were summarized in (28).)

Proof of Lemma 7.17. As in the corresponding result in [Bay], we will use properties of the Gromov–
Witten invariants of blowups that were discovered by Gathmann [Ga] in the context of convex
algebraic varieties, and which were extended to the symplectic case by Hu and McDuff [Hu],[M].
(To be specific, we will require extensions to the context of genus zero symplectic Gromov–Witten
invariants of Lemmas 2.2 and 2.4 and Proposition 3.1 of [Ga]. Of these, Lemma 2.2 is generalized
to the symplectic context by [Hu, Theorem 1.2], while [Ga, Lemma 2.4(i)] is generalized by [Hu,
Lemma 1.1] and [Ga, Lemma 2.4(ii)] is generalized by [M, Lemma 2.3]. Meanwhile Gathmann’s
proof of his Proposition 3.1 depends only on these other results together with the splitting axiom
[MS, pp. 224-225] for Gromov–Witten invariants, which of course also extends to the symplectic
case.)

Having started with a basis ∆0, . . . ,∆N for Hev(M), we have a standard basis

∆0,∆1, . . . ,∆s, En−1,∆s+1, . . . ,∆N , E1, . . . , En−2,
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where ∆1, . . . , En−1 form a basis for H2(M̃). If ∆0, . . . ,∆N is a Poincaré dual basis for the above
basis Hev(M), then our basis for Hev(M̃) will have Poincaré dual basis

∆0, . . .∆s, (−1)n−1E,∆s+1, . . . ,∆N , (−1)n−1En−1, . . . , (−1)n−1E2.

Consider a (small) quantum product of elements ∆i ,∆ j ∈ Hev(M̃) which come from classes in
Hev(M). We have

(31) ∆i ∗∆ j =

N∑

k=0

∑

β∈C e f f

〈∆i ,∆ j ,∆k〉0,3,βqβ∆k + (−1)n−1
n−1∑

k=1

∑

β∈C e f f

〈∆i ,∆ j , Ek〉0,3,βqβ En−k.

With respect to invariants of the form 〈∆i ,∆ j ,∆k〉0,3,β , [Hu, Theorem 1.2] shows that, when-
ever β belongs to the subgroup H2(M) ≤ H2(M̃), such a Gromov–Witten invariant is equal to the
corresponding Gromov–Witten invariant in M . As for classes β not belonging to H2(M̃), if such a
class has the form β = β ′ + dβ E′ where β ′ ∈ H2(M) with β ′ 6= 0, [Ga, Proposition 3.1(ii),(iii)]
shows that the invariant vanishes unless dβ < 0. Now we have qβ = qβ

′

Z−(n−1)dβ , so the term
〈∆i ,∆ j ,∆k〉0,3,βqβ∆k belongs to N , and indeed belongs to the B-submodule Zn−1N of N . Mean-
while if β = dβ E′ then [Hu, Lemma 1.1] shows that the invariant 〈∆i ,∆ j ,∆k〉0,3,β is zero. Thus
all of the terms in (31) arising from invariants 〈∆i ,∆ j ,∆k〉0,3,β with β /∈ H2(M) contribute terms
belonging to the submodule Zn−1N ≤ N , while all of the terms arising from 〈∆i ,∆ j ,∆k〉0,3,β with
β ∈ H2(M) contribute terms in H2(M)≤ N .

Now we consider the invariants 〈∆i ,∆ j , Ek〉0,3,β appearing in (31). Again writing β = β ′+dβ E′,
if β ′ = 0 then by [Hu, Lemma 1.1] the invariant vanishes. So we may assume β ′ 6= 0. Then
Gathmann’s vanishing theorem [Ga, Proposition 3.1] shows that, in order that 〈∆i ,∆ j , Ek〉0,3,β 6= 0,
we must have

k− 1≥ (dβ + 1)(n− 1), and therefore (n− 1)dβ ≤ k− n.

Bearing in mind that qβ = qβ
′

Z−(n−1)dβ , this shows that the term in ∆i ∗∆ j corresponding to any
such invariant has En−k multiplied by some Z l where l ≥ n− k. In particular such terms always
give rise to elements of N . This completes the analysis of the various terms of ∆i ∗∆ j and proves
that, for all i, j,

(32) ∆i ∗∆ j ∈ N .

Now consider a quantum product of elements ∆i , Z j E j ∈ N , where i ≥ 1, j ≥ 2. We have

(33) ∆i ∗ Z j E j =

N∑

k=0

∑

β∈C e f f

〈∆i , E j ,∆k〉0,3,βqβ Z j∆k + (−1)n−1
n−1∑

k=1

∑

β∈C e f f

〈∆i , E j , Ek〉0,3,βqβ Z j En−k.

For any of the Gromov–Witten invariants appearing in (33), we write β = β ′+ dβ E′ where β ′ ∈
H2(M) and dβ ∈ Z. According to [Hu, Lemma 1.1], an invariant 〈∆i , E j ,∆k〉0,3,β or 〈∆i , E j , Ek〉0,3,β

necessarily vanishes if β ′ = 0, so we assume that β ′ 6= 0. In this case, since we assume j ≥ 2 we may
apply Gathmann’s vanishing theorem [Ga, Proposition 3.1] to infer the following: the invariants
〈∆i , E j ,∆k〉0,3,β vanish unless (n− 1)dβ ≤ j − n, while the invariants 〈∆i , E j , Ek〉0,3,β vanish unless
(n− 1)dβ ≤ j + k− n− 1. The invariants of the former type lead in (33) to a term in which ∆k is
multiplied by a power of Z at least equal to n, while the invariants of the latter type lead to a term
in which En−k is multiplied by a power of Z at least equal to j+(n+1− j− k) = n− k+1. Hence,
recalling that N is by definition spanned over B by generators ∆k, Z l El , it follows that

(34) ∆k ∗ Z j E j ∈ ZN if k ≥ 1, j ≥ 2.

As for ∆i ∗ Z E1, consulting again (the j = 1 version of) (33), note first that any invariant
〈∆i , E1,∆k〉0,3,β or 〈∆i , E1, Ek〉0,3,β vanishes unless β ′ 6= 0 by [Hu, Lemma 1.1]. So we assume that
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β ′ 6= 0, in which case for some l ∈ {1, . . . , s} we will have ∆l ∩ β 6= 0. In this case we can use the
divisor axiom twice to obtain

〈∆i , E1,∆k〉0,3,β = −
dβ
∆l ∩ β

〈∆i ,∆l ,∆k〉0,3,β , 〈∆i , E1, Ek〉0,3,β =−
dβ
∆l ∩ β

〈∆i ,∆l , Ek〉0,3,β ,

so in particular the invariants are trivial unless dβ 6= 0. We can then use Gathmann’s vanishing
theorem again to see that the only nonzero invariants of the first type have dβ ≤ 0 and that the
only nonzero invariants of the second type have k− 1 ≥ (dβ + 1)(n− 1), i.e. −(n− 1)dβ ≥ n− k.
From this it follows directly that (34) extends to the case j = 1:

(35) ∆k ∗ Z E1 ∈ ZN if k ≥ 1.

Finally, we consider products
(36)

Z i Ei ∗ Z j E j = Z i+ j




N∑

k=0

∑

β∈C e f f

〈Ei , E j ,∆k〉0,3,βqβ∆k + (−1)n−1
n−1∑

k=1

∑

β∈C e f f

〈∆i ,∆ j , Ek〉0,3,β En−k


 .

[Hu, Lemma 1.1] and Gathmann’s vanishing theorem show that the invariants 〈Ei , E j ,∆k〉0,3,β with
k 6= 0 can be nonzero only when β ′ 6= 0 and (n−1)dβ ≤ i+ j−n−1, and so they contribute terms in
(36) in which ∆k is multiplied by Z to a power at least n+1. As for the case k = 0 (so ∆0 = [M̃]),
we have 〈Ei , E j , [M̃]〉0,3,β = 0 unless β = 0 and i+ j = n, in which case it equals Ei ∩ E j = (−1)n−1.
Thus the contribution of the terms in (36) arising from ∆0 is equal to (−1)n−1Z i+ j Ei+ j

As for the invariants 〈Ei , E j , Ek〉0,3,β , if β ′ 6= 0 Gathmann’s vanishing theorem shows that they
are zero unless (n−1)dβ ≤ i+ j+ k−n−2, so that they contribute a term to (36) in which En−k is
multiplied by a power at least n− k+ 2. Meanwhile the invariants 〈Ei , E j , Ek〉0,3,β with β ′ = 0, i.e.
the invariants 〈Ei , E j , Ek〉0,3,rE′ are, according to [M, Lemma 2.3], equal to 0 unless r = 0 (in which
case they come from the classical cap product Ei ∩ E j = Ei+ j) or r = 1, in which case they are −1 if
i + j + k = 2n− 1 and zero otherwise. In view of this, we have

(37) Z i Ei ∗ Z j E j ∈

�
Z i+ j Ei+ j + ZN i + j < n
(−1)nZ i+ j+1−nEi+ j+1−n + ZN i + j ≥ n

Combining (32),(34),(35), and (37), it is immediate that N closed under quantum multiplica-
tion, so that quantum multiplication endows N with the structure of a B-algebra. It remains to show
that N is generically field-split. For this it suffices to find one prime ideal in the set U2 ⊂ Spec B
associated to N by Theorem 6.1. Consider the ideal ZB ≤ B, which is evidently prime. Define

B =
B

ZB
N = N ⊗B B.

If we let

C1 = spanB{∆1, . . . ,∆N}, C2 = spanB{E1, . . . , En−1},

we have a direct sum decomposition of modules (not of algebras, of course)

N = B∆0 + C1 + C2.

Of course ∆0 acts as the mutliplicative identity, and (34),(35) show that (as we have reduced mod
Z) C1C2 = 0. Meanwhile (37) shows that C2 is closed under quantum multiplication, and that we
have, as an algebra,

C2
∼=

B[s]

〈sn − (−1)ns〉
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(where the variable s corresponds to Z E). Moreover, as in [Bay, p. 9], the element Y = (−1)nZn−1En−1 =

−(−s)n−1 ∈ C2, Y acts as a multiplicative identity on C2, which is thus a subalgebra. So since
Y C1 = 0, we have a direct sum splitting of algebras

N = C2 ⊕ (〈∆0 − Y 〉+ C1)

(here ⊕ denotes direct sum of algebras and + denotes module sum). But then when we extend
coefficients to the fraction field k of B, we will have

N ⊗B k ∼=
k[s]

〈sn − (−1)ns〉
⊕ D

for some k-algebra D. It’s obvious from the Chinese Remainder Theorem that k[s]
〈sn−(−1)ns〉

in turn
decomposes as a direct sum of a field and an algebra. Thus N ⊗B k has a field as a direct summand.
In the notation of Theorem 6.1 we have k = k(ZB), so the prime p = ZB belongs to the open set
U2 of Theorem 6.1. �

APPENDIX A. PROOF OF PROPOSITION 3.4

This appendix outlines the proof of the basic properties of the perturbed moduli spaces which are
used in Section 3.2.2 to give a construction of the deformed Floer boundary operator in the semi-
positive case without appealing to [FOOO09]. As described there, the basic strategy is to achieve
transversality by means of “domain-dependent incidence conditions”: we modify the evaluation
map at the ith marked point on the cylinder by the time-τβ ,i flow of a vector field V where τβ ,i

depends on the locations of the various marked points as in (8). As we will see, in analyzing moduli
spaces of expected dimension 0 or 1, one in principle encounters many strata corresponding to var-
ious configurations of Floer cylinders, holomorphic spheres, and flowlines of V ; all of these strata
except the simplest, expected, ones can be shown to be empty for generic choices of the auxiliary
data. A complete combinatorial analysis of all of these strata would be something of a notational
nightmare to which we will not subject the reader, but we will provide enough of an outline of
the required arguments that a diligent reader who is comfortable with standard techniques such as
those in [MS, Chapter 6] should be able to fill in the details.

We fix a strongly nondegenerate Hamiltonian H0 and consider tuples (H, J , V,β) where H varies
in a small C l+1-neighborhood H l of H0 in the space of those Hamiltonians whose 2-jet with co-
incide with H0 near each of its 1-periodic orbits; J belongs to the space J l of S1-families of C l

ω-compatible almost complex structures; the vector field V varies in the space V l of C l gradient-
like vector fields for a fixed Morse function g whose critical points are disjoint from the fixed
submanifolds fi(Ni); and β varies in the space B of functions introduced shortly after Definition
3.3; recall that this space is a Banach manifold (it is diffeomorphic to an open subset of a Banach
space) and that all of its members are smooth positive functions with Gaussian decay.

For any given γ−,γ+ ∈ P(H), C ∈ π2(γ
−,γ+) and I = (i1, . . . , ik) ∈ {1, . . . , m}k write

U l(C) =



(u, J , H)

�������

u: R× S1→ M , J ∈ J l , H ∈H l ,

∂̄J ,Hu= 0,
∫
R×S1

��� ∂ u
∂ s

���
2

dsd t <∞,

u(s, ·)→ γ± as s→±∞, [u] = C ∈ π2(γ
−,γ+)





and

U l(C , I) =



(u,~z, n1, . . . , nk, J , H, V,β)

�������

(u, J , H) ∈ U l(C), ~z ∈ (R× S1)k, n j ∈ Ni j
,

V ∈ V l , β ∈B ,

ψ
τβ , j(~z)
V (u(z j)) = fi j

(n j)
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(The reader can think of U as standing for “universal moduli space.”) We have:

Proposition A.1. Assume that it is not the case that both γ− = γ+ and C ∈ π2(γ
−,γ+) is the triv-

ial class. Then U l(C) is a C l−1-Banach manifold. Moreover, for any fixed J0 ∈ J
l , the subspace

U l(C; J0) = {(u, H) : (u, J0, H) ∈ U l(C)} is also a C l−1-Banach manifold, and for any distinct points
w1, . . . , wp ∈ R× S1 the evaluation map

evw1,...,wp
: U l(C; J0)→ M p

(u, H) 7→ (u(w1), . . . ,u(wp))

is a submersion.

Proof. The proof of [FHS, Theorem 5.1 (ii)] shows that, for fixed J0, the map (u, H) 7→ ∂̄J0,Hu (which
is a class C l−1 map between appropriate Banach manifolds) is transverse to the zero section; by
the implicit function theorem this suffices to show that both U l(C) and U l(C; J0) are C l−1 Banach
manifolds. The statement about the evaluation map can be proven by combining the argument
used in the proof of [MS, Lemma 3.4.3] with properties of the linearization of (u, H) 7→ ∂̄J ,Hu from
[FHS]; see also the proof of [LO, Proposition A.1.4] for a similar argument.

�

Definition A.2. If p ∈ N and if S is a subset of N, a surjective map π: S → {1, . . . , p} is called
order-respecting if whenever 1 ≤ i < j ≤ p the minimal element of π−1{i} is less than the minimal
element of π−1{ j}.

Note that the correspondence which assigns to each order-respecting surjectiveπ: S→ {1, . . . , p}
the collection of sets {π−1{i}|1 ≤ i ≤ p} is a one-to-one correspondence onto the set of partitions
of S into p disjoint subsets.

The space U l(C , I) has various strata corresponding to the extent to which the marked points
z j ( j = 1, . . . , k) overlap. We label any one of these strata by means of a surjective order-respecting
map π: {1, . . . , k} → {1, . . . , p} for some natural number p: the stratum U l

π(C , I) will consist of
those (u,~z,~n, J , H, V,β) for which z j1 = z j2 iff π( j1) = π( j2).

Proposition A.3. Fix a surjective order-respecting map π: {1, . . . , k} → {1, . . . , p} and let τ1, . . . ,τk ∈
[0,∞) have the property that τ j > τ j′ whenever j > j′ and π( j) = π( j′). Let

∆π = {(m1, . . . , mk) ∈ M k|(∃ j, j′)(π( j) 6= π( j′) and m j = m j′)}.

Then the map
φπ,τ1,...,τk

: M p ×V l → M k

defined by

φπ,τ1,...,τk
(m1, . . . , mp, V ) =

�
ψ
τ1
V (mπ(1)), . . . ,ψτk

V (mπ(k))
�

restricts to φ−1
π,τ1,...,τk

((M \ C ri t(g))k \∆π) as a submersion.

Proof. Let (m1, . . . , mp, V ) ∈ φ−1
π,τ1,...,τk

((M \ C ri t(g))k \∆π). Write x j =ψ
τ j

V (mπ( j)), so

φπ,τ1,...,τk
(m1, . . . , mp, V ) = (x1, . . . , xk).

Of course, since the vector field V has zero locus equal to C ri t(g), for each j neither mπ( j) nor
x j lies in V−1(0). Note also that the x j are all distinct points: the fact that (x1, . . . , xk) /∈ ∆π
immediately implies that x j 6= x j′ when π( j) 6= π( j′), while if π( j) = π( j′) and j > j′ we have by

assumption τ j > τ j′ and x j =ψ
τ j

V (mπ( j)) and x j′ =ψ
τ j′

V (mπ( j)); so since V is a gradient-like vector
field and mπ( j) /∈ V−1(0) we indeed have x j 6= x j′ .
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We are to show that if v ∈ Tx j
M then the element of T(x1,...,xk)

M k whose jth component is equal
to v and whose other components equal zero lies in the image of the linearization of φπ,τ1,...,τk

at (m1, . . . , mp, V ). Now since the x j are all distinct and lie in V−1(0), we can find disjoint flow
boxes for V around each of the x j , say with the property that the integral curve of V starting at
mπ( j) enters the flow box around x j at time τ j − ε and exits at time τ j + ε; moreover we can
arrange that the jth flow box intersects the integral curve of V through one of the mr iff mr and
x j lie on the same flowline of V . In the case that τ j 6= 0, it is straightforward to construct a
one-parameter family of perturbations {Vs, j}s∈(−δ,δ) of V , each equal to V outside the flow box,

such that ψ
τ j±ε

Vs, j
(mπ( j)) = ψ

τ j±ε

V (mπ( j)) while d
ds
ψ
τ j

Vs, j
(mπ( j)) = v. Then where ξ =

dVs, j

ds
the element

(0, . . . , 0,ξ) is sent by the linearization to our desired element (0, . . . , v, . . . , 0). Meanwhile if τ j = 0
(so that x j = mπ( j)) we can obtain the element (0, . . . , v, . . . , 0) as the image under the linearization
of an element of form (0, . . . , v, . . . , 0,ξ) where v ∈ Tmπ( j)

M = Tx j
M and the perturbation ξ of V is

supported in the flow boxes around the various x j with j 6= j′ but π( j) = π( j′).
�

Now, as suggested earlier, if γ−,γ+ ∈ P(H0), C ∈ π2(γ
−,γ+), I ∈ {1, . . . , m}k, andπ: {1, . . . , k} →

{1, . . . , p} is a surjective order-respecting map, let

U l
π(C , I) = {(u,~z,~n, J , H, V,β) ∈ U l(C , I)|z j = z j′⇔ π( j) = π( j′)}.

Also let

U l,∗
π (C , I) = {(u,~z,~n, J , H, V,β) ∈ U l

π(C , I)| if π( j) 6= π( j′) then fi j
(n j) 6= fi j′

(n j′)}.

Proposition A.4. Assume that it is not the case that both γ− = γ+ and C ∈ π2(γ
−,γ+) is the trivial

class.

(i) For any surjective order-respecting map π: {1, . . . , k} → {1, . . . , p}, U l,∗
π (C , I) is a C l−1-

Banach manifold.
(ii) Let a = (J , H, V,β) ∈ J l ×H l ×V l ×B be a regular value of the projection U l,∗

π (C , I)→
J l ×H l ×V l ×B . Then

M̃ a,∗
π (γ

−,γ+, C; NI ) =
¦
(u,~z,~n)|(u,~z,~n, J , H, V,β) ∈ U l,∗

π (C , I)
©

is a C l−1 manifold of dimension µ̄(C)−δ(I)− 2(k− p).
(iii) A residual subset of the space A = ∩∞l=2J

l ×H l × V l ×B has the property that all of its
members are regular values of the projections in (ii) above for all sufficiently large l.

Proof. For r = 1, . . . , p write jr for the minimal element of π−1(r).
Modulo reordering of the factors, U l,∗

π (C , I) may be identified with the space of tuples

((u, J , H),~z, (m1, . . . , mp, V ), n1, . . . , nk,β) ∈ U l(C)× (R× S1)k × (M p ×V l)×




k∏

j=1

Ni j


×B

such that

• z j = z j′ if π( j) = π( j′),
• evz j1

,...,z jp
(u, J , H) = (m1, . . . , mp),

• φπ,τβ ,1(~z),...,τβ ,k(~z)(m1, . . . , mp, V ) = ( fi1(n1), . . . , fik(nk)) ∈ (M \ C ri t(g))k \∆π

The first condition above is obviously cut out transversely (and imposes a condition of codimen-
sion two for each of the k− p indices j which are not equal to jr for some r), while the second and
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third are cut out transversely by, respectively, Proposition A.1 and Proposition A.3. Said differently,
U l,∗
π (C , I) is identified with the preimage of the diagonal under a certain map

U l(C)×(R×S1)k×(M p×V l)×




k∏

j=1

Ni j


×B →

�
(R× S1)k−p ×M p × ((M \ C ri t(g))k \∆π)

�2
,

and the above shows that this map is transverse to the diagonal. Since U l(C)× (R× S1)k× (M p×

V l)×
�∏k

j=1 Ni j

�
×B is a C l−1 Banach manifold it therefore follows from the implicit function

theorem that U l,∗
π (C , I) is as well, proving (i).

As for (ii), the implicit function theorem implies that M̃ a,∗
π (γ

−,γ+, C; NI ) is a C l−1 manifold of
dimension equal to the index of the projection; we need only determine this index. Now as in
[Sal, Section 2],[RS], the index of the projection U l(C)→ J l ×H l is µ̄(C), while of course the
identity map on V l×B has index zero. So by using the characterization of the previous paragraph
of U l,∗

π (C , I) as the preimage of the diagonal under a certain map, and recalling that the manifold
Ni j

has dimension 2d(i j), we calculate the dimension to be

µ̄(C) + 2k+ 2np+

k∑

j=1

2d(i j)


− �2(k− p) + 2np+ 2nk

�

= µ̄(C) + 2k+
k∑

j=1

2d(i j)− 2nk− 2(k− p) = µ̄(C)−δ(I)− 2(k− p),

as claimed in (ii).
Finally, assertion (iii) follows from the Sard-Smale theorem (applied with l sufficiently large)

together with a straightforward adaptation of the argument of Taubes described on [MS, pp. 52–
53] which allows one to pass from C l auxiliary data (J , H, V ) to C∞ such data.

�

The complement U l
π(C , I) \ U l,∗

π (C , I) involves configurations in which one has, among other
conditions, a Floer cylinder u: R × S1 → M and distinct marked points z j , z j′ ∈ R × S1 (with
π( j) 6= π( j′)) such that u(z j) and u(z j′) are connected to the same point fi j

(n j) = fi j′
(n j′) by

prescribed-length flowlines of V . This gives rise to a variety of different substrata of U l
π(C , I)

determined by precisely which indices j correspond to “duplicated” contact points with the fi j
(N j).

All of these substrata can easily be seen to have large codimension in U l
π(C , I). Namely, although

the condition that fi j
(n j) = fi j′

(n j′) implies that one cannot directly appeal to Proposition A.3, one
can (assuming without loss of generality that d(i j′) ≥ d(i j)) forget about the incidence constraint
corresponding to index j′, but impose the constraint that the distinct points z j and z j′ are mapped
by u to points lying on the same flowline of the vector field V , and that moreover this flowline
passes at the time τβ , j(~z) through the submanifold fi j

(N j). This amounts to replacing a constraint
of codimension 2n− 2− 2d(i j′) by a constraint of codimension 2n− 3+ 2n− 2d(i j); thus at least
formally the codimension increases by at least 2n− 1. (Of course, we have 2n ≥ 4, since if 2n = 2
there are no “big deformations” to consider.) Moreover the newly imposed constraints (on u(z j)

and u(z j′)) are easily seen to be cut out transversely using Propositions A.1 and A.3. Any additional
duplicated incidence conditions may be handled by repeating this same procedure of forgetting the
duplicated condition but imposing the condition that different marked points on R× S1 are both
mapped to the same flowline of V which itself satisfies various incidence conditions; it is easy to
see that at each stage the expected dimension only decreases. Consequently just as in the proof of
Proposition A.4, the Sard–Smale theorem allows one to show that:
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Proposition A.5. For a residual set of a= (J , H, V,β), the set

M̃ a

π (γ
−,γ+, C; NI ) =

¦
(u,~z,~n)|(u,~z,~n, J , H, V,β) ∈ U l

π(C , I)
©

has the property that M̃ a

π (γ
−,γ+, C; NI ) \ M̃

a,∗
π (γ

−,γ+, C; NI ) is contained in a union of manifolds of
dimension at most M̃ a,∗

π (γ
−,γ+, C; NI )− (2n− 1).

From this we quickly obtain:

Corollary A.6. Assume that it is not the case that both γ+ = γ− and C ∈ π2(γ
−,γ+) is the trivial

class. For a residual set of a= (J , H, V,β), if µ̄(C)−δ(I)≤ 2 then

M a(γ−,γ+, C; NI ) =M
a,∗
id (γ

−,γ+, C; NI )

where id : {1, . . . , k} → {1, . . . , k} is the identity, and M a(γ−,γ+, C; NI ) is a smooth manifold of
dimension µ̄(C)−δ(I).

Proof. Since all of the various strata and substrata of M̃ a(γ−,γ+, C; NI ) admit free R-actions, these
strata and substrata are empty unless they have positive dimension. But if µ̄(C)− δ(I) ≤ 2 then
Propositions A.4 and A.5 show that all strata have nonpositive dimension for generic a except
when p = k. Since the only surjective order-respecting map {1, . . . , k} → {1, . . . , k} is the identity,
the result follows. �

Of course, M̃ a,∗
id (γ

−,γ+, C; NI ) can be oriented using coherent orientations in a standard way.
This therefore completes the proof of Proposition 3.4(i). For the remainder of Proposition 3.4 we
must of course address the failure of compactness of M a(γ−,γ+, C; NI ) = M̃

a(γ−,γ+, C; NI )/R.
The idea is familiar from [HS]: the standard Gromov-Floer compactification ofM a(γ−,γ+, C; NI )

involves configurations of broken trajectories and sphere bubbles; those configurations involving a
two-stage broken trajectory and no sphere bubbles form a codimension-one stratum of the bound-
ary, while all other strata have codimension at least two. The analysis is somewhat trickier than in
[HS], however, in part because in our case the possible sphere bubbles that arise in studying the
boundaries of moduli spaces of dimension two can have arbitrarily large Chern number. Indeed, the
reader may have noticed that to prove Corollary A.6 it was not necessary let the function β which
determines the “contact times” τβ ,i vary in the universal moduli space; a version of Corollary A.6

would have held if we had simply set β equal to (for instance) the Gaussian s 7→ e−s2
. However in

analyzing certain highly degenerate substrata of the compactification ofM a(γ−,γ+, C; NI ) we will
see that it becomes useful to vary β .

At an initial level, any stratum of the compactification ofM a(γ−,γ+, C; NI ), where I = (i1, . . . , ik) ∈
{1, . . . , m}k, may be described by the following data:

• A sequence γ0 = γ
−,γ1, . . . ,γρ = γ

+ ∈ P(H)
• Classes Ca ∈ π2(γa−1,γa) (1 ≤ a ≤ ρ) and classes A1, . . . ,Aσ ∈ π2(M) such that, where #

denotes the obvious gluing operation, we have

(C1# · · ·#Cρ)#(A1# · · ·#Aσ) = C .

• A function ζ : {1, . . . ,σ} → {1, . . . ,ρ} (the significance of ζ is that its domain parametrizes
the (stable, possibly multi-component) sphere bubbles, while its codomain parametrizes
the cylindrical components; the sth bubble will be attached to the ζ(s)th cylindrical com-
ponent.)
• A partition of the index set {1, . . . , k} as

{1, . . . , k}= (SC
1 ∪ · · · ∪ SC

ρ )∪ (S
S
1 ∪ · · · ∪ SS

σ)
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(this partition specifies the components onto which the various marked points fall). We
will write IC

a (resp. IS
b ) for the tuple consisting of those i j for j ∈ SC

a (resp. SS
b), taken in

increasing order of j.
• Surjective order-respecting maps πC

a : SC
a → {1, . . . , pC

a } and πS
b : SS

b → {1, . . . , pS
b} for ap-

propriate integers pC
a , pS

b. (These maps play the same role as our earlier mapsπ: {1, . . . , k} →
{1, . . . , p}).

Any element of such a stratum of the compactification of M̃ a(γ−,γ+, C; NI ) for a fixed a =

(J , H, V,β) is determined by the following data:

(i) Solutions ua : R× S1 → M (1 ≤ a ≤ ρ) to the equation ∂̄J ,Hua = 0 which represent the
classes Ca ∈ π2(γa−1,γa).

(ii) Stable genus-zero J -holomorphic maps vb (1 ≤ b ≤ σ) with domain D(vb) representing
the classes Ab ∈ π2(M). The vb will be assumed to have no trivial components. (For
background on stable genus-zero maps see [MS, Chapter 6].)

(iii) For each b = 1, . . . ,σ, a point zb0 ∈ D(vb) and a point wb ∈ R× S1 with the property that
uζ(b)(wb) = vb(zb0).

(iv) For each c = 1, . . . , pC
a (resp. c = 1, . . . , pS

b), distinct points zC
ac ∈ R × S1 (resp., distinct

points zS
bc ∈ D(vb)).

(v) For each j ∈ {1, . . . , m}k, points n j ∈ Ni j

These data are required to satisfy the incidence conditions which we now describe: For a = 1, . . . ,ρ,
let Ĩa denote the multi-index obtained by combining together IC

a and all of the IS
b such that ζ(b) = a,

and arranging the indices in the original order in which they appeared in I . Define ~ηa ∈ (R×S1)# Ĩa

by setting the entry corresponding to an index j ∈ SC
a equal to zC

aπC
a ( j)

from (iv) above, and the entry

corresponding to an index j ∈ SS
b where ζ(b) = a equal to the point wb from (iii). We then require

that, if j is the r jth index appearing in the multi-index Ĩa, we have

(38) fi j
(n j) =




ψ
τβ ,r j

(~ζa)

V (ua(z
C
aπC

a ( j)
)) if j ∈ SC

a

ψ
τβ ,r j

(~ηa)

V (vb(z
S
aπS

b( j)
)) if j ∈ SS

b where ζ(s) = a

Informally, these strata thus involve various combinatorial arrangements of Floer cylinders rep-
resenting the Ca; stable genus-zero J -holomorphic curves representing the Ab; and flowlines of the
vector field V which begin at marked points on the cylinders or spheres and pass through the sub-
manifolds fi j

(Ni j
) at times that are prescribed by the locations of the various marked points. The

reader will likely be relieved to learn that we do not intend to analyze these strata in full gener-
ality in the above complicated combinatorial notation; rather we will indicate the arguments that
are generally used, and leave it to the reader to convince themselves that these arguments can be
applied to deal with all of the strata as described above.

Let us call an element of the compactification simple provided that: none of the spherical com-
ponents of any of the stable curves vb are multiply-covered; none of the cylindrical components are
“trivial cylinders” (s, t) 7→ γ(t); all cylindrical and spherical components have distinct images; and
all of the contact points fi j

(n j) are distinct. Within any of the strata described above, the space of
simple elements of the compactification can be shown to be a manifold for generic data a in much
the same way as we handled M̃ a,∗

id (γ
−,γ+, C; NI ): for this purpose we appeal again to Propositions

A.1 and A.3 and (for the sphere bubbles) [MS, Lemma 3.4.2]. Note that the evaluation maps for
the universal moduli spaces of cylinders are made submersive by varying H (in Proposition A.1);
those for the flowlines of V are made submersive by varying V (in Proposition A.3) and those for
spheres are made submersive in [MS] by varying J ; hence by varying the tuple (J , H, V ) we can
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simultaneously achieve transversality for all of the evaluation maps at the marked points for the
universal moduli spaces of simple configurations in any one of our strata. In view of this, if we
restrict to simple configurations, arguments much like those given in [MS, Chapter 6] show that
these universal moduli spaces are Banach manifolds and that, using the Sard-Smale theorem, for
generic a the associated stratum of the moduli space has dimension at most, with notation as above
and after dividing by symmetry groups (given by translation of the cylindrical components and
automorphisms of S2 for the spherical component),

µ̄(C)−δ(I)−ρ− 2σ− 2

 
k−

 
ρ∑

a=1

pC
a +

σ∑

b=1

pS
b

!!
.

Thus if, as in Proposition 3.4 (ii) and (iii), we have µ̄(C)− δ(I) ≤ 2, then all of these strata are
(for generic a) empty unless σ = 0 (i.e., there are no sphere bubbles),

∑ρ

a=1 pC
a = k, and either

µ̄(C)− δ(I) = 1 and ρ = 1 or µ̄(C)− δ(I) = 2 and ρ ∈ {1,2}. In case µ̄(C)− δ(I) = 1, the only
stratum containing any simple configurations for generic a is thus precisely M̃ a,∗

id (γ
−,γ+, C; NI )/R,

while if µ̄(C) − δ(I) = 2 the only such strata are M̃ a,∗
id (γ

−,γ+, C; NI )/R (which has dimension
1) together with all those strata involving two cylindrical components, no sphere bubbles, and k
distinct points distributed among the two cylindrical components connected by flowlines of V to
the appropriate fi j

(Ni j
). These latter strata precisely give (10) in Proposition 3.4. As described in

Remark 3.2, standard gluing arguments show that corresponding to each element of (10) one can
obtain a unique end of the space M̃ a,∗

id (γ
−,γ+, C; NI )/R. Consequently the proof of Proposition 3.4

will be complete if we show that the compactification of M̃ a,∗
id (γ

−,γ+, C; NI )/R generically does
not include any nonsimple configurations when µ̄(C)−δ(I)≤ 2.

Since

ρ∑

a=1





µ̄(Ca) +

∑

b∈ζ−1(a)

2c1(Ab)


−


δ(IC

a ) +
∑

b∈ζ−1(a)

δ(IS
b )





 = µ̄(C)−δ(I),

we may reduce to the case that there is just one cylindrical component, and so it suffices to prove:

Proposition A.7. For generic a the following holds. Consider a stratum as described above with
ρ = 1 and associated data (C1, IC

1 ,πC
1 , {Ab, IS

b ,πS
b}
σ
b=1). Assuming that µ̄(C)− δ(I) ≤ 2, this stratum

contains no nonsimple configurations.

We complete this appendix by outlining the proof of Proposition A.7, leaving some details to the
reader. Within each of the strata of configurations as described above there are various substrata
describing ways in which the configuration may fail to be simple. In effect, we show that each of
these substrata is, for generic a, contained in a manifold of negative dimension; this suffices since
there are only countably many substrata and a countable intersection of residual sets is residual.
For the most part, the proof follows the standard strategy of associating to a nonsimple configu-
ration by an “underlying simple configuration” and appealing to transversality for the underlying
simple configuration; of course this only works if this replacement does not increase the expected
dimension.

In particular, the semipositivity condition implies that for generic J there will be no J -holomorphic
spheres of negative Chern number. Thus as a first step we may replace any multiply-covered sphere
bubble components by their underlying simple spheres; since the Chern numbers of these spheres
are nonnegative doing so cannot increase the expected dimension of the configuration.

In most cases, nonsimple configurations in which two or more of the fi j
(n j) are equal can be

handled by essentially the same method as in our earlier analysis of U l
π(C , I) \U l,∗

π (C , I): namely,
we use the fact that if fi j

(n j) = fi j′
(n j′) and if j ∈ SC

a and j′ ∈ SC
a′ then ua(z

C
aπC

a ( j)
) and ua′(z

C
a′πC

a′
( j′)
)
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must both lie on the same flowline of V , and this flowline satisfies additional incidence condi-
tions (if instead j ∈ SS

b and/or j′ ∈ SS
b′ for some b, b′ then of course a similar condition holds

for vb(z
S
aπS

b( j)
) and/or vb′(z

S
aπS

b′
( j)
)). Just as discussed earlier, replacing the duplicated incidence

condition at fi j
(n j) by this new condition lowers the expected dimension.

However there is a new complication in this analysis that did not appear earlier, namely that our
configurations may have more than one spherical component, and it might be the case that two
different spherical components have the same image, in which case the new condition produced
by the previous paragraph may not be cut out transversely in the appropriate universal moduli
space. (Such a configuration could in principle arise in the compactification as a limit in which
the same sphere bubbles off from two distinct points on the cylinder.) Now most configurations
in which there is such a “duplicated sphere” can also be ruled out by a similar technique as in the
previous paragraph: the sphere would have to meet the other components of the configuration at
two distinct points, and by forgetting one copy of the sphere but imposing the condition that the
other components meet the sphere twice we replace a condition which is not cut out transversely in
the universal moduli space by one which usually is cut out transversely and does not have a larger
expected dimension.

We noted that this new condition is “usually” cut out transversely: the proof of this requires
Proposition A.1 (or, in the case where the components meeting the duplicated sphere are also
spheres, [MS, Lemma 3.4.2]), but that proposition of course requires the assumption that it is not
true that γ− = γ+ and C1 ∈ π2(γ

−,γ−) is the trivial class. Thus we arrive at the one remaining set
of cases where a new argument is required, namely that where the unique cylindrical component of
our configuration represents the trivial class; of course, by energy considerations it is easy to show
that this is equivalent to the unique cylindrical component u: R×S1→ M being a “trivial cylinder”
u(s, t) = γ(t). In all other cases, the arguments sketched above allow one to replace a hypothetical
nonsimple configuration by a simple configuration contained in a moduli space whose expected
dimension before taking the quotient by translations of the cylinder is at most µ̄(C)−δ(I)−2≤ 0;
hence for generic a once we take the R-symmetry into account the appropriate moduli space will
be empty.

Accordingly we consider configurations in which the unique cylindrical component is a trivial
cylinder u(s, t) = γ(t). It is in analyzing these types of configurations that we find it useful to vary
the function β : R→ R that we have included in our auxiliary data.

The first observation to make in this context is that for generic choices of the vector field V , no
flowline of V will pass through both a periodic orbit γ ∈ P(H) and one of the submanifolds fi(Ni)

(since the latter have codimension at least four). Consequently for generic a the only possible
nonempty strata corresponding to a single, trivial, cylindrical component are ones in which, in our
earlier notation, SC

1 =∅, i.e., in which all of the marked points used for the incidence conditions are
on the spheres, not on the cylinder. Moreover just as in [HS] one can see that for generic choices
of the pair (J , V ) any stratum involving just a trivial cylinder together with a single sphere bubble
will be empty: the single sphere bubble would represent a class A with 2c1(A) = µ̄(C) ≤ 2+ δ(I),
and by imposing the incidence conditions corresponding to I together with the condition that the
sphere would need to pass through the periodic orbit γ we would find the dimension of the relevant
space equal to

2n+ 2c1(A)− 6−δ(I) + 2− (2n− 1) = 2c1(A)−δ(I)− 3< 0.

(Note that this conclusion uses the fact that since all of the marked points are on the sphere which
has bubbled off at a single point (s0, t0) on the cylinder, the element ~η1 ∈ (R× S1)k from (38) will
have all its entries equal to (s0, t0), and so the various τβ ,i(~η1) will all be zero).
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A similar analysis together with the tricks that have been discussed earlier deal with all of the
other strata, except those where the following situation holds: we have two or more copies of the
same sphere (or potentially multiple covers thereof) which have bubbled off at different points
(s1, t), . . . , (sr , t) on the cylinder. Indeed, in this case we have u(s1, t) = . . . = u(sr , t) = γ(t) since
the cylinder is a trivial cylinder and so the condition that the sphere meets the cylinder at all r of
these points is obviously not cut out transversely.

The main new difficulty that this situation creates is that, because the incidence conditions that
a sphere must satisfy depend in part on the positions on the cylinder at which the other spheres
are considered to have bubbled off, there may be particular choices of the bubbling points (si , t)
that force us to consider possible sphere bubbles whose homology classes and incidence conditions
would have been ruled out by a dimension count if the other sphere components had not been
present. The way that we resolve this issue is by noting that the occurrence of such unexpected
spheres imposes conditions on the parameters si , and that we can ensure that these conditions on
the si are cut out transversely in the universal moduli space by varying the function β : R→ R.

To keep the notational difficulties under control, we will illustrate the method on a particular
type of substratum in which the essential point is present, leaving the general case to the reader.
Consider a case in which the cylindrical component is a trivial cylinder u(s, t) = γ(t), while the
spherical components have homology classes A1 = . . . = Ar = A and Ar+1 = B, with all of the first
r spherical components represented by the same map v1 : S2 → M and the remaining component
represented by vr+1 : S2 → M . Assume moreover that the multi-indices IS

1 , . . . , IS
r representing

the incidence conditions obeyed by the various copies of v1 are all the same, say equal to G =
(g1, . . . , gp) ∈ {1, . . . , m}p. We then have (since µ̄(C)−δ(I)≤ 2),

(39) 2rc1(A) + 2c1(B)− rδ(G)−δ(IS
r+1)≤ 2.

Also write IS
r+1 = (g

′
1, . . . , g ′q) for the multi-index representing the incidence condition correspond-

ing to the other sphere. We will consider the most highly degenerate case in which, on the r copies
of the representative of A, each of the p incidence conditions are satisfied at the same point for each
of the r copies; less degenerate situations can be handled by combining the methods described be-
low with earlier techniques.

The problematic configurations then entail the data of tuples

(J , H, V,β , v1, vr+1, (s1, t1), (s2, t1), . . . , (sr , t1), (sr+1, t r+1), z10, . . . , z1p, zr+1,0, . . . , zr+1,q, n1, . . . , np, n′1, . . . , n′q)

such that

(i) ∂̄J v1 = ∂̄J vr+1 = 0,
(ii) v1(z10) = γ(t1)

(iii) vr+1(zr+1,0) = γ(t r+1)

(iv) Where ~η ∈ (R× S1)pr+q has its jth entry given by (sb, t1) if j ∈ SS
b with 1 ≤ b ≤ r and by

(sr+1, t r+1) if j ∈ SS
r+1, we have

ψ
τβ , j(~η)

V (v1(z1ℓ)) = fgℓ(nℓ) if j is the ℓth largest element of SS
b (1≤ b ≤ r)

and

ψ
τβ , j(~η)

V (vr+1(zr+1,ℓ)) = fg ′
ℓ
(nℓ) if j is the ℓth largest element of SS

r+1.

Here all of the zi j vary in S2; nℓ ∈ Ngℓ ; and n′ℓ ∈ Ng ′
ℓ
. For simplicity we will assume that these

points are all distinct, as the case where some of them coincide can be handled by incorporating
our previous methods.

This is equivalent to the data of

(J , H, V,β , v1, vr+1, t1, t r+1, s1, s2, . . . , sr+1, {zi j}, {nℓ}, {n
′
ℓ})
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such that (i), (ii), (iii) above hold and we replace (iv) by

(v)

ψ
τβ , j(~η)

V (v1(z1ℓ)) = fgℓ(nℓ) if j is the ℓth largest element of SS
1

and

ψ
τβ , j(~η)

V (vr+1(zr+1,ℓ)) = fg ′
ℓ
(nℓ) if j is the ℓth largest element of SS

r+1,

and
(vi) For 1 ≤ b ≤ r and 1 ≤ ℓ ≤ p write j(bℓ) for the ℓth largest element of SS

b . Then for
2≤ b ≤ r, τβ , j(bℓ)(~η) = τβ , j(1ℓ)(~η) .

For j = 1, . . . , r, j(b1) is the minimal element of SS
b . The map

B ×Rr+1→ Rr

(β , s1, . . . , sr+1) 7→ (τβ , j(11)(~η), . . . ,τβ , j(1r)(~η))

is easily seen by (8) to have rank at least r − 1 (the only reason that it might not have rank r is
that one of the indices j(b1) might be equal to one and we always have τβ ,1 = 0). Consequently
at least r − 2 of the equations in (vi) above are cut out transversely. Meanwhile the conditions in
(i), (ii), (iii), and (v) are also cut out transversely, using Proposition A.3 and [MS, Lemma 3.4.2].
Therefore the space of data (J , H, V,β ,~t,~s,~z,~n) obeying (i),(ii),(iii),(v), and the aforementioned r
equations of (vi) will be a Banach manifold, and we compute that the index of the projection to
(J , H, V,β) is

(2n+ 2c1(A)− 6) + (2n+ 2c1(B)− 6) + 2+ (r + 1) + 2p+ 2q+ 2
p∑

ℓ=1

d(igℓ) + 2
q∑

ℓ=1

d(ig ′
ℓ
)

−
�
2n+ 2n+ 2np+ 2nq+ r − 2

�

= 2c1(A) + 2c1(B)− 7−δ(G)−δ(IS
r+1)

In view of (39), this quantity is negative if 2c1(A) − δ(G) ≥ 0, and so in this case the usual ap-
plication of the Sard-Smale theorem shows that for generic a = (J , H, V,β) the substratum under
consideration will not appear. It remains to analyze the case that 2c1(A)−δ(G)< 0.

This case is handled by an argument along the following lines. Note first of all that, if the
function β were set equal to zero, then there would generically be no J -holomorphic representative
of A obeying the incidence conditions given by G (and meeting the orbit γ), since the expected
dimension of the space of such spheres is 2n+ 2c1(A)− 6− δ(I)− (2n− 3) = 2c1(A)− δ(G)− 3.
However the presence of β leads to the various τβ , j changing as the si vary, and for generic but
fixed J and V the τβ , j may occasionally attain exceptional values for which the sphere in question
does occur. Indeed if 2c1(A)− δ(G) = −α then for generic J and V the presence of such a sphere
imposes a condition of codimension α+ 3 on the various τβ , j(1ℓ)(~η) for 1 ≤ ℓ ≤ p (in particular
if p < α+ 3, or more generally if (s1, . . . , sr+1) 7→ (τβ , j(11), . . . ,τβ , j(1p)) has rank less than α+ 3,
then the sphere will not arise for generic J and V ). Now if (s1, . . . , sr+1) 7→ (τβ , j(11), . . . ,τβ , j(1p)) has
rank c ≥ α+ 3 one can see by taking advantage of the freedom to vary β that at least (r − 1)c of
the conditions in (vi) will be cut out transversely; this increases the codimension in the appropriate
universal moduli space to α+ 3+ (r − 1)c ≥ r(α+ 3) = −r(2c1(A)− δ(G)− 3). Using this, the
space of configurations of the form in question is found to be contained in a transversely-cut-out
moduli space which, for generic a, has dimension

2n+ 2c1(B)− 6−δ(IS
r+1)− (2n− 3) + (r + 1) + r(2c1(A)−δ(G)− 3),

which by (39) is at most −2r; thus the relevant space is empty for generic a.
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To sum up, using the methods that we have developed a sufficiently persistent reader may show
that, for generic a, if µ̄(C)−δ(I)≤ 2 the only nonempty stratum of our compactified moduli space
corresponding to just one cylindrical component is the main stratumM a,∗

id (γ
−,γ+, C; NI ), and the

only nonempty stratum corresponding to more than one cylindrical component is the usual space
of two-stage broken trajectories (which arises only if µ̄(C) − δ(I) = 2). This suffices to prove
Proposition 3.4.
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