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Abstract. Consider a sequence of compactly supported Hamiltonian
diffeomorphisms φk of an exact symplectic manifold, all of which are
“graphical” in the sense that their graphs are identified by a Darboux-
Weinstein chart with the image of a one-form. We show by an ele-
mentary argument that if the φk C0-converge to the identity then their
Calabi invariants converge to zero. This generalizes a result of Oh,
in which the ambient manifold was the two-disk and an additional as-
sumption was made on the Hamiltonians generating the φk. We discuss
connections to the open problem of whether the Calabi homomorphism
extends to the Hamiltonian homeomorphism group. The proof is based
on a relationship between the Calabi invariant of a C0-small Hamilton-
ian diffeomorphism and the generalized phase function of its graph.

1. Introduction

Let (M,λ) be an exact symplectic manifold, that is, M is a smooth, nec-
essarily noncompact manifold of some even dimension 2n endowed with a 1-
form λ such that dλ is nondegenerate. A compactly supported smooth func-
tion H : [0, 1] × M → R defines a time-dependent vector field {XHt

}t∈[0,1]
by the prescription that dλ(XHt

, ·) = d(H(t, ·)); the (compactly-supported)
Hamiltonian diffeomorphism group of the symplectic manifold (M,dλ), which
we will write as Hamc(M,dλ), is by definition the group consisting of the
time-one maps of such Hamiltonian vector fields. We will denote the time-t
map of the Hamiltonian vector field associated to H : [0, 1]×M → R as φt

H .
In [Cal70], Calabi introduced a homomorphism Cal : Hamc(M,dλ) → R

which is determined by the formula

(1) Cal(φ1
H) =

∫

[0,1]×M

Hdt ∧ (dλ)n.

The fundamental importance of this homomorphism is reflected in the fact
that, as follows easily from the simplicity of ker(Cal) [B78, Théorème II.6.2]
and the obvious fact that Hamc(M,dλ) has trivial center, any non-injective
homomorphism f : Hamc(M,dλ) → G to any group G must factor through
Cal as f = g ◦ Cal for some homomorphism g : R → G.

At least since the proof of the Eliashberg-Gromov rigidity theorem [E87] it
has been understood that many features of symplectic geometry survive un-
der appropriate C0 limits; it is natural to ask whether this principle applies
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to the Calabi homomorphism. Specifically, we may consider the following
question:

Question 1.1. Let (M,λ) be an exact symplectic manifold and let {Hk}∞k=1
be a sequence of smooth functions all having support in some compact subset

K ⊂ M , such that φ1
Hk

C0
// 1M and such that there is H ∈ L(1,∞)([0, 1]×

M) such that Hk
L(1,∞)

// H . Must it be true that Cal(φ1
Hk

) → 0? (In other

words, must it be true that
∫

[0,1]×M
Hdt ∧ (dλ)n = 0?)

Here the L(1,∞) norm on the space of compactly supported smooth func-

tions C∞

c ([0, 1]×M) is defined by ‖H‖L(1,∞) =
∫ 1
0 max |H(t, ·)|dt and

L(1,∞)([0, 1] ×M) is the completion of C∞

c ([0, 1] ×M) with respect to this

norm. It would also be reasonable to replace the L(1,∞) norm in Question
1.1 by the C0 norm; our choice of the L(1,∞) norm is mainly for consistency
with [Oh16],[OM07]. However it should be emphasized that some control
over the Hamiltonian functions Hk and not just on the time-one maps φ1

Hk
is

necessary in Question 1.1: the reader should not find it difficult to construct
sequences of Hamiltonian diffeomorphisms φ1

Hk
all having Cal(φ1

Hk
) = 1 that

C0-converge to the identity by taking the supports of the Hk to be small
(see also Example 1.4 below). This need for something like C0 control on
the Hamiltonian functions is consistent with other aspects of the theory of
C0 Hamiltonian dynamics as in [OM07].

In [OM07], the authors introduce the group Hameo(M,dλ) of “Hamilton-
ian homeomorphisms” of the symplectic manifold (M,dλ), and prove that it
is a normal subgroup of the group Sympeoc(M,dλ) of compactly supported
symplectic homeomorphisms of (M,dλ), i.e. of the C0-closure of the group
of compactly supported symplectic diffeomorphisms in the group of com-
pactly supported homeomorphisms of M . As follows from a straightforward
generalization of the discussion in [Oh10, Section 7], an affirmative answer
to Question 1.1 would imply that Hameo(M,dλ) is a proper subgroup of
Sympeoc(M,dλ), and hence that the latter group is not simple. This is
particularly interesting for (M,dλ) equal to the open two-dimensional disk
D2 with its standard symplectic form, in which case Sympeoc(M,dλ) coin-
cides with the compactly supported area-preserving homeomorphism group
of D2, whose simplicity or non-simplicity is a longstanding open problem.
In this case Question 1.1 is equivalent to a slightly stronger version of [Oh10,
Conjecture 6.8], stating that Cal extends continuously to a homomorphism
Hameo(D2, dx ∧ dy) → R. (To obtain Oh’s conjecture precisely one would
strengthen the hypothesis of Question 1.1 to the statement that the isotopies
{φt

k}t∈[0,1] converge uniformly as k → ∞ to some loop of homeomorphisms,
instead of just assuming that their time-one maps converge to the identity.)

The main purpose of this note is to generalize a result of [Oh16] related
to Question 1.1, which we will recall presently after setting up Oh’s nota-
tion and terminology. Given our exact symplectic manifold (M,λ), let us
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write Λ = λ⊕ (−λ) ∈ Ω1(M ×M), so that (M ×M,Λ) is likewise an exact
symplectic manifold. By the Darboux-Weinstein Theorem, there is a sym-
plectomorphism Ψ: U∆ → V where U∆ is a neighborhood of the diagonal
∆ ⊂ M × M and V is a neighborhood of the zero-section in T ∗∆ which
is equipped with the symplectic form −dθcan where θcan ∈ Ω1(T ∗∆) is the
canonical one-form, with Ψ|∆ equal to the inclusion of ∆ as the zero-section.
We fix such a Darboux-Weinstein chart Ψ. If φ : M → M is a compactly sup-
ported symplectic diffeomorphism, then its graph Γφ = {(φ(x), x)|x ∈ M} is
a Lagrangian submanifold of (M×M,dΛ), and if φ is sufficiently C0-close to
1M then Γφ will lie in the domain U∆ of Ψ. One says that φ is Ψ-graphical

if additionally the Lagrangian submanifold Ψ(Γφ) ⊂ T ∗∆ coincides with the
image of a section of the cotangent bundle T ∗∆ → ∆. In particular this
would hold if φ were assumed to be C1-close to the identity; on the other
hand it is possible for a diffeomorphism to be Ψ-graphical while still being
fairly far away from the identity in the C1-sense.

One formulation of the main result of [Oh16] is the following:

Theorem 1.2. [Oh16, Theorem 1.10] For M = D2, let Hk : [0, 1] ×D2 →
R be a sequence as in Question 1.1, and assume moreover that all of the
diffeomorphisms φ1

Hk
are Ψ-graphical. Then Cal(φ1

Hk
) → 0.

Thus, at least for M = D2 the answer to Question 1.1 is affirmative under
an additional hypothesis; one might then hope to answer Question 1.1 by
finding a way to drop this hypothesis. However we will prove the following
generalization of Theorem 1.2, which we interpret as suggesting that such a
strategy raises more questions than might have been anticipated.

Theorem 1.3. Let (M,λ) be an exact symplectic manifold, and let {φk}∞k=1
be a sequence in Hamc(M,dλ) with all φk generated by Hamiltonians that

are supported in a fixed compact subset, such that φk
C0

// 1M . Assume

moreover that each φk is Ψ-graphical. Then Cal(φk) → 0.

We emphasize that no assumption is made on the convergence of the
Hamiltonians Hk generating the φk. On the other hand, if one drops the
graphicality hypothesis then an assumption similar to that in Question 1.1
is certainly needed, see Example 1.4. This author believes that a major
impediment to answering Question 1.1 affirmatively is the current lack of a
precise idea of what role the convergence of the Hamiltonian functions might
play in the convergence of the Calabi invariants; Theorem 1.3 shows that
this role only becomes essential when the φk are no longer graphical.

Example 1.4. On an arbitrary 2n-dimensional exact symplectic manifold
(M,λ), for a sufficiently small δ > 0 we may consider a symplectically
embedded copy of the cube C2n(δ) = [0, δ]2n ⊂ M (with C2n(δ) carrying
the standard symplectic form

∑

i dxi ∧ dyi). Define a sequence of smooth
functions Fk : M → R as follows. Divide C2n(δ) into k2n equal subcubes
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C
(k)
~i

for ~i = (i1, . . . , i2n) ∈ {1, . . . , k}2n, by taking

C
(k)
~i

=
2n
∏

j=1

[

ij − 1

k
δ,
ij
k
δ

]

,

and take Fk to be a smooth function which is supported in the union of the

interiors of the C
(k)
~i

, obeys 0 ≤ Fk ≤ 1 everywhere, and which, for each ~i,

is equal to 1 on a subset of C
(k)
~i

having measure at least (1 − 1/k)(δ/k)2n.

Define Hk : [0, 1]×M → R by Hk(t, x) = Fk(x).
Evidently the sequence Hk converges to the indicator function of [0, 1]×

C2n(δ) in every Lp norm for p < ∞. In particular Cal(φ1
Hk

) =
∫

M
Hkdt ∧

(dλ)n → δ2n > 0 as k → ∞. Meanwhile each φ1
Hk

acts as the identity on

M \ C2n(δ) and maps each of the subcubes C
(k)
~i

to themselves; since these

subcubes have diameter
√
2nδ/k it follows that φ1

Hk

C0
// 1M .

Thus, if the answer to Question 1.1 is to be affirmative, then its assump-
tions must be rather sharp: it is not sufficient for the Hamiltonian functions
to converge in Lp for any finite p, or to be uniformly bounded—one would
need uniform convergence in the space variable. Given the formula (1) for
the Calabi homomorphism, one might naively have expected that L1 con-
vergence would be sufficient, but this is not the case.

Remark 1.5. The uniqueness theorem for the Hamiltonians that generate
Hamiltonian homeomorphisms [V06],[BS13] is somewhat reminiscent of Ques-
tion 1.1. Indeed this theorem (whenM is noncompact as it is in our case) can
be phrased as stating that if Hk : [0, 1]×M → R are compactly supported

smooth functions such that Hk
L(1,∞)

// H and if φt
Hk

C0
// 1M uniformly in

t, thenH ≡ 0. Thus, in comparison to this uniqueness theorem, Question 1.1
asks whether one can obtain the weaker conclusion that

∫

M
Hdt∧ (dλ)n = 0

from the weaker hypothesis that only the time-one map φ1
Hk

C0
// 1M .

Note that Example 1.4 shows that the uniqueness theorem would fail to
hold if we instead were to only assume that the functions Hk converge in
Lp for some finite p, or that the Hk are uniformly bounded, since in Exam-

ple 1.4 we clearly have φt
Hk

C0
// 1M uniformly in t. Thus the (potential)

sharpness of the hypotheses in Question 1.1 has some precedent in prior
results.

Remark 1.6. En route to proving Theorem 1.3 we will prove a related result,
Corollary 2.4, that does not make any graphicality assumptions and suggests

a general viewpoint on Question 1.1. Namely, given that φ1
Hk

C0
// 1M ,

Corollary 2.4 shows that the statement that Cal(φ1
Hk

) → 0 is equivalent to
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the statement that the integrals of suitable pullbacks of generalized phase

functions Sk for the Lagrangian submanifolds Ψ(Γφ1
Hk

) converge to zero.

Here (as in [BW97]) a generalized phase function for a Lagrangian subman-
ifold L ⊂ T ∗∆ is a compactly supported smooth function SL : L → R with
dSL = θcan|L. One way of constructing a generalized phase function for L
is to begin with a generating function S : M × R

N → R (as in [S87]) with
fiber critical set ΣS ⊂ M × R

N and canonical embedding ιL : ΣS → L, and
then define SL = S ◦ ι−1

L . Thus in view of Corollary 2.4, Question 1.1 leads
to a question about the relationship between the behavior of a Hamiltonian
function H and that of the generating function of the graph of the time-one
map of H.

The following section contains the proofs of Corollary 2.4 and Theorem
1.3

2. The Calabi invariant and generalized phase functions

As in the introduction, we work in a fixed exact symplectic manifold
(M,λ), and we fix a Darboux-Weinstein chart Ψ: U∆ → V ⊂ T ∗∆ where
∆ ⊂ (M ×M,dΛ) is the diagonal (and Λ = π∗

1λ− π∗

2λ ∈ Ω1(M ×M) where
π1, π2 : M×M → M are the projections to the two factors). The graph of φ
is Γφ = {(φ(x), x)|x ∈ M} ⊂ M ×M . (Throughout the paper our sign and
ordering conventions are chosen to be consistent with [Oh16].) Assuming
that Γφ ⊂ U∆ we let

Lφ = Ψ(Γφ) ⊂ T ∗∆.

Thus φ is graphical in the sense of the introduction if and only if there is
α ∈ Ω1(∆) such that Lφ = {(x, αx)|x ∈ ∆}. Such an α is necessarily closed,
and we will argue below that it is exact. (This is not completely obvious
since, if φ = φ1

H , we allow the possibility that some Γφt
H

is not contained in

U∆.)
The following is well-known.

Lemma 2.1. Let φ ∈ Hamc(M,dλ). Then there is fλ,φ ∈ C∞

c (M) such
that dfλ,φ = φ∗λ− λ. Moreover

(2) Cal(φ) =
1

n+ 1

∫

M

fλ,φ(dλ)
n.

Proof. Assume that φ = φ1
H for some H ∈ C∞

c ([0, 1]×M). Then

φ∗λ− λ =

∫ 1

0

d

dt
φt∗
Hλdt =

∫ 1

0
φt∗
H

(

dιXHt
λ+ ιXHt

dλ
)

dt

= d

(
∫ 1

0

(

ιXHt
λ+H(t, ·)

)

◦ φt
Hdt

)

so we may take fλ,φ =
∫ 1
0

(

ιXHt
λ+H(t, ·)

)

◦φt
Hdt. The formula (2) is then

a standard calculation involving repeated applications of Stokes’ theorem,
see e.g. [B78, Proposition II.4.3]. �
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Lemma 2.2. Assume that the domain of the Darboux-Weinstein chart
Ψ: U∆ → V has ∆ as a deformation retract. Then there is a smooth function
R : V → R such that R|∆ ≡ 0 and −θcan = (Ψ−1)∗Λ + dR.

Proof. Since Ψ is a symplectomorphism (U∆, dΛ) → (V ,−dθcan), we have
d(Ψ∗θcan + Λ) = 0. Of course, since Λ|∆ = 0 while θcan vanishes on the
zero-section of T ∗∆, and since Ψ maps ∆ to the zero-section, we have
(Ψ∗θcan + Λ)|∆ = 0. So Ψ∗θcan + Λ represents a class in the relative de
Rham cohomology H1(U∆,∆), which is trivial by the assumption that ∆ is
a deformation retract of U∆. So there is g ∈ C∞(U∆) with g|∆ = 0 such
that Ψ∗θcan + Λ = dg. So the lemma holds with R = −g ◦Ψ−1. �

Putting together the two preceding lemmas gives the following.

Proposition 2.3. Assume that φ ∈ Hamc(M,dλ) has Γφ ⊂ U∆ where
Ψ: U∆ → V is a Darboux-Weinstein chart whose domain U∆ has ∆ as
a deformation retract. Let fλ,φ be as in Lemma 2.1, and let R be as in
Lemma 2.2. Where Lφ = Ψ(Γφ), define Sφ : Lφ → R by

(3) Sφ = R+ fλ,φ ◦ π2 ◦Ψ−1.

Then Sφ : Lφ → R is a compactly supported smooth function satisfying
dSφ = −θcan|Lφ

.

Proof. That Sφ is compactly supported follows from the facts that Lφ coin-
cides outside of a compact subset with ∆, on which R vanishes identically,
that π2 ◦Ψ−1 maps Lφ diffeomorphically to M , and that fλ,φ is compactly
supported.

By the defining property of R we have

(4) (dR+ θcan)|Lφ
= (−Ψ−1∗Λ)|Lφ

= −Ψ−1∗(Λ|Γφ
).

Meanwhile since (by the definition of Γφ as {(φ(x), x)|x ∈ M}) we have
φ ◦ π2|Γφ

= π1|Γφ
, we see that

(5) d
(

fλ,φ ◦ π2|Γφ

)

= (π2|Γφ
)∗(φ∗λ− λ) = (π∗

1λ− π∗

2λ)|Γφ
= Λ|Γφ

.

Combining (4) and (5) gives

Ψ∗
(

(dR+ θcan)|Lφ

)

= −d
(

fλ,φ ◦ π2|Ψ−1(Lφ)

)

,

from which the result follows immediately. �

The key point now is that the conditions that Sφ be compactly sup-
ported and that dSφ = −θcan|Lφ

uniquely determine the smooth function
Sφ : Lφ → R. A function satisfying these properties is (perhaps after a sign
reversal) sometimes called a “generalized phase function;” the formula (3)
for such a function together with the formula (2) thus relate generalized
phase functions to the Calabi homomorphism. The relation is especially
simple in the C0-small, graphical case, but first we note a consequence that
does not require graphicality.
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Corollary 2.4. Assume that {φk}∞k=1 is a sequence in Ham(M,dλ) with

each φk supported in a fixed compact set, such that φk
C0

// 1M . Construct

the Lagrangian submanifolds Lφk
= Ψ(Γφk

) ⊂ T ∗∆ (for sufficiently large k)
as above, and suppose that Sk : Lφk

→ R are compactly supported smooth
functions obeying dSk = −θcan|Lφk

. Then Cal(φk) → 0 if and only if

(6)

∫

M

(Sk ◦Ψ ◦ (φk × 1M ))(dλ)n → 0.

Proof. By shrinking the domain of Ψ: U∆ → V and perhaps removing an
initial segment of the sequence {φk}∞k=1 we may assume that U∆ has ∆ as
a deformation retract and that each Γφk

⊂ U∆ so that we are in the setting
of Proposition 2.3.

Note that π2 ◦Ψ−1 : Lφk
→ M is a diffeomorphism with inverse Ψ◦ (φk×

1M ). So (3) gives

(7) fλ,φk
= (Sk −R) ◦Ψ ◦ (φk × 1M ).

But R is a smooth function, independent of k, which vanishes along the zero
section of T ∗∆, so R ◦ Ψ vanishes along the diagonal ∆ ⊂ M ×M . So the

assumption that φk
C0

// 1M implies that max |R ◦Ψ ◦ (φk × 1M )| → 0 as

k → ∞, and the assumption there is a compact set simultaneously containing
the supports of all of the φk implies that the support of each R◦Ψ◦(φk×1M )
is contained in this same compact set. Hence

∫

M
R◦Ψ◦(φk×1M )(dλ)n → 0,

in view of which the corollary follows directly from (7) and (2). �

Proof of Theorem 1.3. We work in the same setting as Corollary 2.4, with
the additional assumption that each φk is Ψ-graphical. As noted at the start
of the proof of Corollary 2.4, we may assume that U∆ deformation retracts
to ∆.

Since φk is Ψ-graphical, let αk ∈ Ω1(∆) have the property that Lφk
is

the image of αk (when the latter is viewed as a map ∆ → T ∗∆). Recall
that, by the definition of the canonical one-form θcan, α

∗

kθcan = αk. De-
noting by π∆ : T ∗∆ → ∆ the bundle projection, π∆|Lφk

: Lφk
→ ∆ is a

diffeomorphism with inverse αk, so it follows that θcan|Lφk
= (π∆|Lφk

)∗αk.

So Proposition 2.3 shows that the function Sφk
: Lφk

→ R defined therein
obeys dSφk

= −θcan|Lφk
= −(π∆|Lφk

)∗αk and hence

(8) αk = −d(Sφk
◦ αk).

In particular αk is the derivative of a compactly supported smooth function.
By assumption each φk is generated by a Hamiltonian Hk with support

contained in some fixed compact set [0, 1] × K where K ⊂ M . As is clear
from the formula for fλ,φk

in the proof of Lemma 2.1, the functions fλ,φk

likewise have support contained in K. So since Lφk
coincides with the zero-

section outside of Ψ(U∆∩ (K×K)), we see from (3) that Sφk
vanishes at all

points of form Ψ(x, x) for x /∈ K. So (identifying K with its image in ∆ by
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the diagonal embedding) the functions −Sφk
◦ αk are all likewise supported

in K.
Now let us fix a Riemannian metric on ∆ and denote by A the diameter

of K with respect to g. Also let x0 ∈ ∆ \K be of distance less than 1 from
K, so for any x ∈ ∆ there is a path γx : [0, 1] → ∆ having |γ′x(t)|g ≤ A+ 1
for all t. Since x0 ∈ ∆ \K, we have Sφk

◦ αk(x0) = 0. Thus, for any x ∈ K,
using (8) we have

Sφk
◦ αk(x) =

∫ 1

0

d

dt
(Sφk

◦ αk(γx(t))) dt ≤ (A+ 1) max
t∈[0,1]

|d(Sφk
◦ αk)(γx(t))|g

≤ (A+ 1)max
∆

|αk|g.

Since for x /∈ K we have Sk◦αk(x) = 0, and since αk : ∆ → Lφk
is surjective,

this proves that

max
Lφ

|Sφk
| ≤ (A+ 1)max

∆
|αk|g.

But now the result is immediate from Corollary 2.4: the integrand of (6)
vanishes outside of K, so the integral is bounded above by

(A+ 1)max
∆

|αk|g
∫

K

(dλ)n.

The assumption that φk
C0

// 1M shows that max∆ |αk|g → 0, so Cal(φk) →
0 as desired. �
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