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1. Introductory remarks

Recall that a symplectic manifold is a pair (M, ω) consisting of a smooth manifold M and a 2-form ω ∈ Ω2(M)
which is closed (dω = 0) and non-degenerate (i.e., whenever v ∈ T M is a nonzero tangent vector there is some
other tangent vector w such that ω(v,w) , 0). The standard example is M = R2n = {(x1, . . . , xn, y1, . . . , yn)}
equipped with the symplectic form ω0 =

∑n
i=1 dxi ∧ dyi. A basic result asserts that, locally, all symplectic

manifolds are equivalent to this one:

Theorem 1.1. (Darboux’s Theorem) If (M, ω) is a symplectic manifold and p ∈ M, there is a neighborhood U
of p and a diffeomorphism φ : U → V ⊂ R2n onto an open subset V ⊂ R2n such that φ∗ω0 = ω.

Thus in order to construct invariants of symplectic manifolds (or, more broadly, to study properties that may
hold in some symplectic manifolds of a given dimension but not in all of them), one has to go beyond local
considerations. Pseudoholomorphic curves have emerged as powerful tools in extracting such global information.
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Recall that an almost complex structure J on a smooth manifold M is a map J : T M → T M whose restriction
to each tangent space TpM is a linear map whose square is −I (where I is the identity). We make the following
definitions:

Definition 1.2. Let (M, ω) be a symplectic manifold, and let J : T M → T M be an almost complex structure.
• J is called ω-tame if, for all nonzero v ∈ T M, we have

ω(v, Jv) > 0.

• J is called ω-compatible if J is ω-tame and moreover, for all p ∈ M and v,w ∈ TpM we have

ω(Jv, Jw) = ω(v,w).

Let
J(M, ω) = {J : T M → T M|J is ω-compatible}

and
Jτ(M, ω) = {J : T M → T M|J is ω-tame}.

We showed last semester that J(M, ω) is always contractible (in particular it’s nonempty), and it’s also true that
Jτ(Mω) is contractible (the proof is marginally harder, and can be found in [MS1, Chapter 4]).

If J ∈ Jτ(M, ω) and v,w ∈ TpM for some p ∈ M, define

gJ(v,w) =
1
2

(ω(v, Jw) + ω(w, Jv)) .

A routine exercise shows that gJ is an inner product on TpM, and so gJ defines a Riemannian metric on M.
In particular we have gJ(v, v) = ω(v, Jv), which is positive for nonzero v by the definition of tameness. If J is
ω-compatible and not just ω-tame then the above formula simplifies to gJ(v,w) = ω(v, Jw).

Recall that a complex manifold is by definition a smooth manifold M which can be covered by coordinate
charts φα : Uα → φα(Uα) ⊂ Cn with the property that the transition functions φβ ◦ φ−1

α : φα(Uα ∩ Uβ) →
φβ(Uα ∩ Uβ) are holomorphic. In other words, where i : TCn → TCn is the endomorphism which multiplies
tangent vectors by

√
−1, we require that the linearizations of the coordinate charts obey

φβ∗ ◦ φ
−1
α∗ ◦ i = i ◦ φβ∗ ◦ φ−1

α∗ ,

or equivalently

(1) φ−1
α∗ ◦ i ◦ φα∗ = φ−1

β∗ ◦ i ◦ φβ∗.

If M is a complex manifold it has a natural almost complex structure J : T M → T M defined by requiring that
in every chart φα : Uα → C

n we should have φα∗ ◦ J = i ◦ φα∗. Thus J = φ−1
α∗ ◦ i ◦ φα∗, so (1) makes clear that this

definition is consistent over all the charts and so indeed does define a map on all of T M, which is smooth and
obeys J2 = −I.

Thus we have a fairly broad class of examples of almost complex structures, arising from complex manifolds.
Almost complex structures that arise in the way described in the above paragraph are called integrable. If
ω ∈ Ω2(M) is a symplectic form with which some integrable almost complex structure is compatible then ω is
called a Kähler form. Last semester we showed that there are symplectic manifolds which are not Kähler (the
odd-dimensional Betti numbers of a Kähler manifold are even, and one can construct symplectic manifolds with
b1 odd)—from this it should be rather obvious that not all almost complex structures are integrable, since a non-
Kähler symplectic manifold still has compatible almost complex structures. The fact that some almost complex
structures aren’t integrable can be seen more directly: there is a particular tensor called the Nijenhuis tensor NJ

which can be constructed from an almost complex structure J (see [MS1, Chapter 4], or any number of other
references), and it’s not hard to show that for J to be integrable this tensor has to vanish. NJ can be written out in
local coordinates, and if dim M ≥ 4 it’s routine to construct almost complex structures (just in a local coordinate
chart) for which NJ is nonzero, so such J must be non-integrable. A much harder theorem, due to Newlander
and Nirenberg, shows that if NJ = 0 then J is integrable. Now NJ is always zero when dim M = 2, so it follows
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then that every almost complex structure on a 2-manifold is integrable. There’s a proof of the two-dimensional
case of the Newlander-Nirenberg theorem in [MS2, Appendix E].

Definition 1.3. If (M, J) is an almost complex manifold, a (parametrized) J-holomorphic curve in M is a map
u : Σ→ M where (Σ, j) is an almost complex 2-manifold such that

u∗ ◦ j = J ◦ u∗.

Convention has it that a pseudoholomorphic curve in a symplectic manifold (M, ω) is a map from a surface to
M which is J-holomorphic for some J ∈ Jτ(M, ω).

As partial justification for the terminology, note that since the almost complex structure j on Σ is integrable Σ

admits the structure of a complex manifold of dimension 1, i.e., a complex curve.
If p ∈ Σ, we can work in a local chart around p, so we identify a neighborhood of p with an open set in C

parametrized by the complex coordinate z = s + it. Thus j∂s = ∂t and j∂t = −∂s.
The equation u∗ ◦ j = J ◦ u∗ (the Cauchy-Riemann equation associated to j and J) can be rearranged as

u∗ + J ◦ u∗ ◦ j = 0.

Applying this to ∂s gives
∂u
∂s

+ J(u(s, t))
∂u
∂t

= 0.

(Applying it to ∂t instead gives an equivalent equation and hence no new information). If J were integrable then
it would be possible to choose (local) coordinates on M in terms of which J is just the constant endomorphism i,
but if J is not integrable then this is not the case, and so the Cauchy-Riemann equation is nonlinear, even if we’re
only interested in its behavior in local coordinate charts.

2. Energy and area

Consider a compact almost complex 2-manifold (Σ, j) (possibly with boundary), a Riemannian manifold
(M, g), and a map u : Σ → M (say u is continuously differentiable, though slightly less would suffice). From
these data we will presently define the (Dirichlet) energy E(u), and then we will make some observations about
the energies of J-holomorphic curves (with respect to the metric g = gJ).

First of all, note that the almost complex structure j on Σ determines a conformal class H j of Riemannian
metrics h on Σ: namely, h ∈ H j if and only if h(v, jv) = 0 and h( jv, jv) = h(v, v) whenever v ∈ TΣ. Because the
conditions on h for membership in H j are preserved under convex combinations, it’s easy to see that H j , ∅:
take an atlas of coordinate charts {Uα} and a subordinate partition of unity {φα}, let hα be metrics in Uα which
satisfy the appropriate conditions, and then h =

∑
φαhα ∈ H j. If h1, h2 ∈ H j then it’s not hard to see that h1 and

h2 are conformally equivalent, which is to say that there is a function f : Σ→ (0,∞) such that

h2(v,w) = f (p)h1(v,w) for v,w ∈ TpΣ.

Now choose an arbitrary h ∈ H j. Like any metric, h determines a volume form volh which, in local coordi-
nates, is given by volh = e1 ∧ e2 where {e1, e2} is a local oriented h-orthonormal frame for TΣ and ei are locally
defined 1-forms obeying ei(e j) = δi j. The fact that h ∈ H j means that we will have e2 = je1. If h′ = f h
is conformally equivalent to h then one gets an h′-orthonormal basis by multiplying an h-orthonormal basis by
f −1/2, so the corresponding e1 and e2 covectors get multiplied by f 1/2 and so vol f h = f · volh.

Given a map u : Σ → M (and also the metric g on M) choose h ∈ H j and, for p ∈ Σ and a nonzero v ∈ TpΣ

consider the quantity

|du(p)|2 =
g(u∗v, u∗v) + g(u∗ jv, u∗ jv)

h(v, v)
.

Now a general nonzero vector in TpΣ has form w = av + b jv (so jw = −bv + a jv) where a and b aren’t both zero,
and it’s easy to see that replacing v by w leaves the above formula for |du(p)|2 unchanged. Thus |du(p)|2 depends
just on the point p and the metrics h and g.
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Now our assumption wasn’t that h was given, but rather that j was. If we replace h by another metric h′ ∈ H j,
so h′ = f h for some function f , then obviously |du(p)|2 gets multiplied by f −1. On the other hand the associated
volume form, as mentioned above, gets multiplied by f when we replace h by h′. Hence the energy density
2-form

|du(·)|2volh
is independent of the representative h ofH j. The Dirichlet energy is then half the integral of this energy density
2-form over Σ:

E(u) =
1
2

∫
Σ

|du(·)|2volh.

As advertised, E(u) depends only on u : Σ→ M, on the almost complex structure j on Σ, and on the Riemannian
metric g on M.

We now specialize to the case that (M, ω) is a symplectic manifold with J ∈ Jτ(M, ω) an ω-tame almost
complex structure, inducing a metric gJ on M. Recall in particular that gJ(v, v) = ω(v, Jv). The metric gJ will be
the one used in the definitions of all energies below.

Proposition 2.1. Let u : Σ→ M be a J-holomorphic curve, where (Σ, j) is a compact almost complex manifold.
Then

E(u) =

∫
Σ

u∗ω.

Proof. E(u) is half the integral of the energy density 2-form |du(·)|2volh, so we need to show that this 2-form is
equal to 2u∗ω.

So choose p ∈ Σ and let z = s + it be a local complex coordinate around p; in particular j∂s = ∂t. There is
then a metric h ∈ H j with h(∂s, ∂s) = 1 at p, so on TpΣ the energy density 2-form is

|du(p)|2volh = (gJ(u∗∂s, u∗∂s) + gJ(u∗∂t, u∗∂t))ds ∧ dt.

But the Cauchy-Riemann equation says that Ju∗∂s = u∗∂t and Ju∗∂t = −u∗∂s, so by the definition of gJ we get
(at p)

|du(p)|2volh = 2ω(u∗∂s, u∗∂t)ds ∧ dt = 2u∗ω,
as desired. �

In particular, this shows that if Σ is closed (i.e. compact without boundary) the Dirichlet energy of a J-
holomorphic map is a topological quantity:

Corollary 2.2. Let (Σ, j) be a closed almost complex 2-manifold and let u : Σ→ M be a J-holomorphic map to
a symplectic manifold (M, ω) with J ∈ Jτ(M, ω). Writing [ω] ∈ H2(M,R) for the de Rham cohomology class of
ω, if u∗[Σ] = A ∈ H2(M;Z) then we have

〈[ω], A〉 = E(u).
In particular 〈[ω], A〉 ≥ 0, with equality only if u is constant.

In particular it follows that no nonconstant pseudoholomorphic curves exist within a coordinate chart—rather
they are a more global phenomenon as was suggested earlier.

We will also have occasion to consider the case where Σ is compact with boundary, and u : Σ → M is J-
holomorphic, with boundary mapping to a Lagrangian submanifold L ⊂ M (i.e., dim L = 1

2 dim M and ω|L = 0).
In this case it again holds that the energy of the map is a topological quantity:

Corollary 2.3. Let (M, ω) be a symplectic manifold and let L ⊂ M be a Lagrangian submanifold. There is a
homomorphism Iω : H2(M, L;Z)→ R such that whenever J ∈ Jτ(M, ω) and u : Σ→ M is a J-holomorphic map
where Σ is a compact 2-manifold with boundary ∂Σ such that U(∂Σ) ⊂ L, we have

E(u) = Iω(A),

where A ∈ H2(M, L;Z) is the relative homology class represented by u.
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Proof. If u : (Σ, ∂Σ) → (M, L) is such a map we have E(u) =
∫

Σ
u∗ω; what needs to be shown is that this

quantity depends only on the relative homology class of u. To see this, suppose that ui : (Σi, ∂Σi) → (M, L)
are two (smooth, but not necessarily pseudoholomorphic) maps representing the same relative homology class
A ∈ H2(M, L;Z); we’ll show that

∫
Σ1

u∗1ω =
∫

Σ2
u∗2ω. Denote by Pi the relative chains represented by ui; the fact

that the Pi are homologous amounts to the statement that there is a 3-dimensional chain c ∈ C3(M) such that
∂c = P1 − P2 modulo C2(L). Thus for some v : S → L we have (using Stokes’ theorem)

0 =

∫
c

dω =

∫
∂c
ω =

∫
Σ1

u∗1ω −
∫

Σ2

u∗2ω +

∫
S

v∗ω.

But the last term is zero since v has image contained in L and since ω|L = 0. This proves that
∫

Σ1
u∗1ω =

∫
Σ2

u∗2ω,
and so Iω(A) may be set equal to the common value. This defines Iω, and it’s straightforward to see that it is a
homomorphism. �

All of the above is valid as long as J is ω-tame. If additionally J is ω-compatible one gets additional conclu-
sions about the energy and, relatedly, the area. So let us fix a symplectic manifold (M, ω) and J ∈ J(M, ω) and
consider a C1 (and not necessarily J-holomorphic) map u : Σ → M where Σ is a compact surface (perhaps with
boundary).

The area of u (as measured by the metric gJ) is defined as follows. If m ∈ M and v,w ∈ TmM write
|v ∧ w|gJ =

√
gJ(v, v)gJ(w,w) − gJ(v,w)2 (thus |v ∧ w|gJ is the area of the parallelogram spanned by v and w). At

each p ∈ Σ choose an oriented basis {e1, e2} for TpΣ, with dual basis {e1, e2} for T ∗pΣ. Then it’s easy to see that
the element α(p) ∈ Λ2T ∗pΣ defined by

α(p) = |(u∗e1) ∧ (u∗e2)|gJ e1 ∧ e2

is independent of the chosen basis. Thus we get an area form α ∈ Ω2(Σ), and we define

Area(u) =

∫
Σ

α.

Of course this definition can be made given any metric on M in place of gJ and depends on this metric; mean-
while, unlike the Dirichlet energy, it doesn’t depend on a metric (or even on a conformal class of metrics) on
Σ.

Proposition 2.4. If J is ω-compatible, a C1 map u : Σ→ M obeys

(2) Area(u) ≥
∫

Σ

u∗ω,

with equality if u is J-holomorphic (for some almost complex structure j on Σ).

Proof. It’s enough to show that, if p ∈ Σ, ω(u∗e1, u∗e2) ≤ |(u∗e1) ∧ (u∗e2)|gJ for some (and hence any) oriented
basis for TpΣ, with equality if u is J-holomorphic. By replacing e2 with e2 − ae1 for a suitable a ∈ R if necessary
we may assume that gJ(u∗e1, u∗e2) = 0. Then |(u∗e1) ∧ (u∗e2)|gJ = (gJ(u∗e1, u∗e1)gJ(u∗e2, u∗e2))1/2, while (since
by compatibility for v,w ∈ Tu(p)M we have gJ(Jv,w) = ω(Jv, Jw) = ω(v,w))

ω(u∗e1, u∗e2) = gJ(Ju∗e1, u∗e2) ≤ (gJ(Ju∗e1, Ju∗e1)gJ(u∗e2, u∗e2))1/2 = |(u∗e1) ∧ (u∗e2)|gJ ,

where the inequality is the Cauchy–Schwarz inequality for gJ and the final equality uses that gJ(Jv, Jw) =

gJ(v,w) (as follows directly from the definition of gJ). This proves (2) (by integrating over Σ), and shows that
equality holds (2) exactly when equality holds in the Cauchy–Schwarz inequality

gJ(Ju∗e1, u∗e2) ≤ (gJ(Ju∗e1, Ju∗e1)gJ(u∗e2, u∗e2))1/2

at each point p ∈ Σ (where e1, e2 ∈ TpΣ are chosen so that gJ(u∗e1, u∗e2) = 0). If u is J-holomorphic (with
respect to the almost complex structure j on Σ), then if e1, e2 ∈ TpΣ with je1 = e2 we will have Ju∗e1 = u∗e2,
and hence gJ(u∗e1, u∗e2) = ω(u∗e1, J2u∗e1) = 0 (so e1, e2 can be used in the above computation), and since
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Ju∗e1 = u∗e2 equality does indeed hold in the above Cauchy–Schwarz inequality. Thus Area(u) =
∫

Σ
u∗ω when

u is J-holomorphic. �

It follows from this that, when J is ω-compatible, J-holomorphic curves are minimal surfaces, i.e., that if
ut : Σ → M is a smooth family of maps with u0 = u such that ut coincides with u outside a compact subset of
the interior of Σ, then t 7→ Area(ut) has a critical point (indeed, a minimum, namely

∫
Σ

u∗ω) at t = 0. Minimal
surfaces have a rich theory going back as far as Lagrange (one reference is [Law]), and this allows results from
that theory to be brought to bear on pseudoholomorphic curves.

Remark 2.5. If J is just ω-tame rather than ω-compatible then it’s still true that a J-holomorphic map u : Σ→ M
will have Area(u) =

∫
Σ

u∗ω. Indeed if e1 ∈ TpM is nonzero (so that {e1, je1} is an oriented basis for TpΣ), then

gJ(u∗e1, u∗ je1) = gJ(u∗e1, Ju∗e1) =
1
2

(ω(u∗e1,−u∗e1) + ω(Ju∗e1, Ju∗e1)) = 0

while

gJ(u∗ je1, u∗ je1) = gJ(Ju∗e1, Ju∗e1) = ω(Ju∗e1,−u∗e1) = gJ(u∗e1, u∗e1).

Thus

|(u∗e1) ∧ (u∗ je1)|gJ =

√
gJ(u∗e1, u∗e1)gJ(u∗ je1, u∗ je1) − gJ(u∗e1, u∗ je1)2 = gJ(u∗e1, u∗e1)

= ω(u∗e1, u∗ je1) = u∗ω(e1, je1).

Thus the area 2-form α coincides with u∗ω, so Area(u) =
∫

Σ
u∗ω. However, when J is just ω-tame it’s no longer

true that an arbitrary map u : Σ→ M always has area at least
∫

Σ
u∗ω.

When J is ω-compatible it is also true that J-holomorphic curves minimize the Dirichlet energy E(u) among
curves coinciding with them outside a compact subset of the interior, as the following shows:1

Proposition 2.6. If (Σ, j) is a compact almost complex 2-manifold and u : Σ→ M is C1 then

E(u) :=
1
2

∫
Σ

|du|2vol ≥
∫

Σ

u∗ω,

with equality if and only if u is J-holomorphic.

Proof. Choose a metric h on Σ in the conformal classH j. Define

∂̄Ju =
1
2

(du + J ◦ du ◦ j)

and, for p ∈ Σ, choose an h-orthonormal basis {e1, e2} for TpΣ with e2 = je1 and define

|∂̄Ju(p)|2 = gJ(∂̄Ju(e1), ∂̄Ju(e1)) + gJ(∂̄Ju(e2), ∂̄Ju(e2)).

Now

∂̄Ju(e1) =
1
2

(u∗e1 + Ju∗e2)

and

∂̄Ju(e2) =
1
2

(u∗e2 − Ju∗e1).

1Actually, the fact that they minimize the Dirichlet energy implies that they’re minimal surfaces, as explained in [Law, p. 61]; however
it’s quite a bit harder to prove this implication than it is to just prove area-minimization directly as we did above.
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Hence

|∂̄Ju(p)|2 = ω(∂̄Ju(e1), J∂̄Ju(e1)) + ω(∂̄Ju(e2), J∂̄Ju(e2))

=
1
4

(ω(u∗e1 + Ju∗e2, Ju∗e1 − u∗e2) + ω(−Ju∗e1 + u∗e2, u∗e1 + Ju∗e2)

=
1
2

(ω(u∗e1, Ju∗e1) + ω(u∗e2, Ju∗e2) − ω(u∗e1, u∗e2) − ω(Ju∗e1, Ju∗e2))

=
1
2
|du(p)|2 − u∗ω(e1, e2)

where we’ve used compatibility of J with ω in the last equation. Multiplying by the volume form of h and
integrating over Σ then gives, in obvious notation

E(u) −
∫

Σ

u∗ω =

∫
Σ

|∂̄Ju|2vol.

Since the right hand side is nonnegative and is zero iff u is J-holomorphic the result follows. �

3. Exact Lagrangian submanifolds and the non-squeezing theorem

A substantial amount of machinery needs to be set up before we can begin to prove significant applications
of the theory of pseudoholomorphic curves; before setting up the machinery I’d like to discuss two sample
applications of the theory to indicate how pseudoholomorphic curves can be used in practice. Both of these
results were proven in Gromov’s paper [Gr], which initiated the whole theory. Proofs will be outlined in sufficient
detail as to make clear that, in both cases, the pivotal point is the existence of a pseudoholomorphic curve with
certain properties—the proof that this curve exists (or indeed any indication of why it would be reasonable to
expect it to exist) will have to wait until later.

The first result deals with the properties of Lagrangian submanifolds in R2n. Consider a bit more generally
a symplectic manifold (M, dλ) where the symplectic form is an exact 2-form. If L ⊂ M is Lagrangian, i.e.
dim L = 1

2 dim M and dλ|L = 0, then (since d commutes with restriction) the 1-form λ|L ∈ Ω1(L) is closed. The
Lagrangian submanifold L is then called exact if λ|L is exact, i.e. if there is a function f : L → R such that
d f = λ|L. Note that in principle the notion of exactness depends on the primitive λ, since λ could be replaced
by λ + θ for any closed 1-form θ on M to get the same symplectic manifold (M, dλ). Clearly L is automatically
exact if all closed 1-forms on L are exact, i.e. if it has first Betti number b1(L) = 0.

The standard example of an exact Lagrangian submanifold occurs when M = T ∗N is the cotangent bundle of
a smooth manifold N, and λ ∈ Ω1(T ∗N) is the Liouville 1-form λ(x,p)(v) = p(π∗v) where π : T ∗N → N is the
bundle projection. Then where L is the zero-section of T ∗N we in fact have λ|L = 0, so certainly L is exact. You
might also recall that a standard set of Lagrangian submanifolds in (T ∗N, dλ) is given by the images Lα of closed
1-forms α ∈ Ω1(N), and one can show that Lα is exact if and only if α is exact as a 1-form.

The standard symplectic structure ω0 =
∑n

i=1 dxi ∧ dyi is certainly exact, for example ω0 = dλ where λ =∑n
i=1 xidyi.

Theorem 3.1. In the symplectic manifold (R2n, ω0), there are no embedded closed exact Lagrangian submani-
folds.

You might first try proving this when 2n = 2. When 2n = 4, note that it in particular follows that neither S 2

nor RP2 can be embedded into (R4, ω0) as a Lagrangian submanifold, since these manifolds have b1 = 0.

Sketch of proof. The key is the following lemma of Gromov:

Lemma 3.2. Where J0 is the standard almost complex structure on R2n compatible with ω0, if L is any embedded
closed Lagrangian submanifold there is a nonconstant J0-holomorphic curve u : D2 → R2n with u(∂D2) ⊂ L
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Note that when 2n = 2 the Riemann mapping theorem produces such a curve. I hope to prove this lemma by
the end of the course.

Given the lemma, suppose for contradiction that L were an exact Lagrangian submanifold. With u : (D2, ∂D2)→
(M, L) as in the lemma, Stokes’ theorem, Proposition 2.1 and the fact that u is nonconstant give

0 < E(u) =

∫
D2

u∗ω0 =

∫
D2

d(u∗λ) =

∫
∂D2

(u|∂D2 )∗λ.

Hence u|∂D2 : S 1 → L is a loop in L over which λ has nontrivial integral. But if λ|L is an exact one-form no
such loop exists (by another application of Stokes’ theorem). So λ|L must not be exact, i.e., L is not exact. �

Interestingly, when 2n ≥ 4 it’s possible to construct a symplectic form ω′ = dλ′ on R2n with the property that
(R2n, ω′) does have closed exact Lagrangian submanifolds. It follows that (R2n, ω′) is not symplectomorphic to
(R2n, ω0) (or indeed to any subset thereof)! Some details of this are explained at the end of [AL, Chapter X]. On
the other hand, with a bit of work one can show that any symplectic form on R2 is symplectomorphic to ω0.

The other result that I’ll mention is the famous nonsqueezing theorem. Consider R2n with its standard sym-
plectic structure ω0 =

∑n
i=1 dxi ∧ dyi. For r > 0 let

B2n(r) =

(~x, ~y) ∈ R2n|

n∑
i=1

(x2
i + y2

i ) < r2


and

Z2n(r) =
{
(~x, ~y) ∈ R2n|x2

1 + y2
1 < r2

}
So B2n(r) is a standard ball of radius r and Z2n(r) is a cylinder of radius r (over a circle in the x1y1 plane.

Theorem 3.3. If r,R > 0 and if there is a symplectic embedding φ : B2n(r) ↪→ Z2n(R) (i.e. φ is an embedding
and φ∗ω0 = ω0), then r ≤ R.

Note that this is sensitive to how exactly the cylinder was defined—if instead we put Y2n(r) = {x2
1 + x2

2 < r2}

then for any ε > 0 the symplectomorphism (~x, ~y) 7→ (ε~x, ε−1~y) maps B2n(1) to Y2n(ε). Prior to this theorem
rather little was known about how the properties of symplectomorphisms differ from those of volume-preserving
diffeomorphisms, but this is obviously a strong constraint that goes well beyond volume preservation.

Sketch of proof. We first “compactify” the problem. Let ε be any number with 0 < ε < r/2. Then φ restricts
to the closed ball B2n(r − ε) as a continuous map on a compact set, which therefore has image contained in
B2(R)×{(~x′, ~y′) ∈ R2n−2||~x′|2 + |~y′|2 < M}. Write S 2(R + ε) for the sphere endowed with a symplectic form of area
π(R+ε)2 (this contains B2(R) as an open subset) and write T 2n−2(M) = R2n−2/2MZ2 endowed with the symplectic
form pushed down from the standard one on R2n−2. Let g : Z2n(R) = B2(R) × R2n−2 → S 2(R + ε) × T 2n−2(M) be
the map given by inclusion on the first factor and projection on the second; then

ψ := g ◦ φ : B2n(r − ε)→ S 2(R + ε) × T 2n−2(M)

is a symplectic embedding (where we use the product symplectic form Ω on the codomain). The key lemma is:

Lemma 3.4. Let J ∈ J(S 2(R + ε) × T 2n−2(M),Ω) be any compatible almost complex structure and let p ∈
S 2(R − ε) × T 2n−2(M). Then there is a J-holomorphic sphere u : S 2 → S 2(R + ε) × T 2n−2(M) such that u(~0) = p
which represents the homology class [S 2 × (pt)] ∈ H2(S 2 × T 2n−2;Z).

We should be able to prove this soon after we start discussing Gromov–Witten invariants in the middle of the
course.

Since ψ is an embedding, we can put an almost complex structure on its image by pushing forward the
standard almost complex structure J0 on B2n(r) (i.e. this almost complex structure is ψ∗ ◦ J0 ◦ ψ

−1
∗ ). The same

argument that proves the contractibility of J(S 2(R + ε) × T 2n−2(M),Ω) can easily be adapted to produce J ∈
J(S 2(R + ε) × T 2n−2(M),Ω) which restricts to any preassigned compact subset of Im(ψ) (say ψ(B2n(r − 2ε))) as
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the pushed-forward almost complex structure ψ∗ ◦ J0 ◦ ψ
−1
∗ . Now let u : S 2 → S 2(R + ε) × T 2n−2(M) be the

pseudoholomorphic curve produced by the lemma. We have Area(u) = π(R+ε)2 by construction and Proposition
2.4.

Consider S := u−1(ψ(B2n(r − 2ε))). For simplicity assume that this is a submanifold with boundary of
B2n(r − 2ε) with boundary contained in ∂(B2n(r − 2ε)) (it’s not hard to use Sard’s theorem to show that this
will at least hold with 2ε replaced by 2ε + δ for arbitrarily small δ). By the construction of J, S is the image
of a J0-holomorphic curve (potentially with multiple connected components); moreover by construction S both
contains the origin and intersects ∂B2n(r − 2ε) (the latter is true because of the condition on the homology class
represented by u). It turns out to be possible to show that this implies that S has area at least π(r − 2ε)2. (At
least when [Gr] was written, the easiest way to show this was to note that, as mentioned after Proposition 2.4,
S is a minimal surface, and then to appeal to a “monotonicity” result from minimal surface theory which shows
that a minimal surface in a ball of radius ρ in R2n with its standard metric that passes through the origin and is
compact with boundary on the boundary of the ball has at least πρ2. This is proven in [AL, Chapter 3, Theorem
3.2.4]; Google also turns up a very-detailed and locally-produced proof at [Ra]. Later in these notes we will
prove the relevant area estimate directly from the J0-holomorphicity of S using just the isoperimetric inequality
without appealing to anything from minimal surface theory—see Remark 8.8.) Since the almost complex struc-
tures have been set up so that ψ|

ψ−1(B2n(r−2ε)) is an isometric embedding, this shows that u|
ψ−1(B2n(r−2ε)) has area at

least π(r − 2ε)2. But since Area(u) = π(R + ε)2 we get

π(R + ε)2 ≥ π(r − 2ε)2.

ε was arbitrary, so r ≤ R.
�

4. Sobolev spaces

For a natural number d and for 1 ≤ p < ∞, let Lp(Rd) denote as usual the space of Lebesgue measurable
functions f : Rd → R such that ∫

Rd
| f (x)|pdd x < ∞,

equipped with the Lp norm

‖ f ‖p =

(∫
Rd
| f (x)|pdd x

)1/p

.

If we regard two functions as being the same if they coincide Lebesgue-almost-everywhere,2 the Minkowski
inequality shows that (Lp(Rd), ‖ · ‖p) is a normed vector space. Moreover, an important standard theorem in real
analysis shows that this normed vector space is a Banach space, i.e. a normed vector space whose associated
metric is complete (every Cauchy sequence has a limit in the space).

While (Lp(Rd), ‖·‖p) contains some functions that are rather poorly behaved, it has dense subspaces consisting
of much better-behaved functions. Notably:

Proposition 4.1. The set

C∞0 (Rd) =

{
f : Rd → R

∣∣∣ support( f ) is compact and all partial derivatives
of f of all orders exist and are continuous

}
is dense in (Lp(Rd), ‖ · ‖p).

2As one learns to do in a real analysis course, we’ll generally neglect to include annoying qualifiers like “modulo equivalence almost
everywhere.” Note that any two continuous functions that coincide almost everywhere in fact coincide everywhere, since the set on which
they disagree is open and any nonempty open set has positive measure. An element of Lp(Rd) which has a continuous function in its
almost-everywhere-equivalence class will always be identified with this continuous function (which is unique when it exists by the previous
sentence). Thus, when we say something like “ f ∈ Lp(Rd) is differentiable,” what strictly speaking is meant is “there is a continuous function
equal to f almost everywhere, and this continuous function is differentiable.”
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In other words, for any f ∈ Lp(Rd) there is a sequence { fn}∞n=1 of compactly supported, smooth functions such
that

lim
n→∞
‖ fn − f ‖p = 0.

Since we’ll have occasion to use not just the statement of Proposition 4.1 but also some facts that arise in the
course of (one approach to) proving it, let us give a detailed proof, which involves the properties of a procedure
called mollification.

Choose an arbitrary smooth function β : Rd → [0, 1] such that β(x) = β(−x) for all x, β(x) = 0 whenever
‖x‖ ≥ 1 and such that

∫
Rd β(x)dd x = 1. Now set βn(x) = ndβ(nx); thus βn has support in {‖x‖ ≤ 1/n} and still has

integral 1. Now if f ∈ Lp(Rd) define

fn(x) = (βn ∗ f )(x) :=
∫
Rd
βn(x − y) f (y)ddy.

We will show that the fn are smooth functions which belong to Lp(Rd) and have ‖ fn − f ‖p. (If f is compactly
supported it’s easy to see that the fn are as well.)

More generally, if u and v are two functions on Rd (sufficiently regular for the following to be defined) the
convolution of u and v is the function

(u ∗ v)(x) =

∫
Rd

u(x − y)v(y)ddy.

Note that a simple change of variables shows that u ∗ v = v ∗ u when both are defined. Here are some basic
properties of convolutions:

Theorem 4.2. Let u ∈ C∞0 (Rd) and f ∈ Lp(Rd) with 1 ≤ p < ∞. Then:

(i) The integral (u ∗ f )(x) =
∫
Rd u(x − y) f (y)ddy exists for every x ∈ Rd.

(ii) The function u ∗ f : Rd → R is differentiable, with partial derivatives

∂

∂xi
(u ∗ f ) =

(
∂u
∂xi

)
∗ f .

Consequently u ∗ f ∈ C∞(Rd).
(iii) (Young’s inequality) u ∗ f ∈ Lp(Rd), with

‖u ∗ f ‖p ≤ ‖u‖1‖ f ‖p.

Proof. For any given x, since u is compactly supported there is a bounded set Ωx such that u(x − y) = 0 unless
y ∈ Ωx. Moreover the continuity and compact support of u ensure that it is bounded; say |u(z)| ≤ M for all z.
Hence where for a set A we denote by χA the indicator function of A (equal to 1 on A and 0 away from A) we
have |u(x − y) f (y)| ≤ M| f (y)|χΩx (y) for all y ∈ Rd. Hence∫

Rd
|u(x − y) f (y)|ddy ≤ M

∫
Rd
| f (y)|χΩx (y)ddy ≤ M‖ f ‖p‖χΩx‖q

where 1
p + 1

q = 1 by Hölder’s inequality. Of course ‖χΩx‖q = vol(Ωx)1/q < ∞, so this shows that the integral
defining (u ∗ f )(x) is always absolutely convergent, so u ∗ f is a well-defined function on all of Rd, proving (i).

As for (ii), we have (where ei is the standard basis vector in the xi direction)

(3)
(u ∗ f )(x + hei) − (u ∗ f )(x)

h
=

∫
Rd

(
u(x − y + hei) − u(x − y)

h

)
f (y)ddy.

Now where M′ is the maximal value of
∣∣∣∣ ∂u
∂xi

∣∣∣∣, the integrand in (3) is bounded in absolute value by M′| f (y)| as a

result of the mean value theorem. Moreover, for a given x ∈ Rd, there is a bounded set Ω′x such that whenever
|h| < 1 the integrand vanishes unless y ∈ Ω′x. So in fact the integrand is bounded above (independently of h with
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|h| < 1) in absolute value by M′| f (y)|χΩ′x (y), which is integrable by the same Hölder inequality argument as we
used in (i). Hence the Lebesgue dominated convergence theorem shows that the limit as h→ 0 of (3) is equal to∫

Rd
lim
h→0

(
u(x − y + hei) − u(x − y)

h

)
f (y)ddy =

∫
Rd

∂u
∂xi

(x − y)h(y)ddy,

proving the formula for the derivative in (ii). The statement that u ∗ f is C∞ follows immediately by induction,
since if u belongs to C∞0 (Rd) then so do all derivatives of u.

As for (iii), where 1
p + 1

q = 1, we have

|(u ∗ f )(x)| ≤
∫
Rd
| f (y)||u(x − y)|ddy =

∫
Rd

(| f (y)||u(x − y)|1/p)|u(x − y)|1/qddy

≤

(∫
Rd
| f (y)|p|u(x − y)|ddy

)1/p (∫
Rd
|u(x − y)|ddy

)1/q

.

Thus, since p/q = p − 1,

|(u ∗ f )(x)|p ≤ ‖u‖p−1
1

(∫
Rd
| f (y)|p|u(x − y)|ddy

)
,

so that ∫
Rd
|(u ∗ f )(x)|pdd x ≤ ‖u‖p−1

1

∫
Rd

∫
Rd
| f (y)|p|u(x − y)|ddydd x

≤ ‖u‖p−1
1

∫
Rd
| f (y)|p

(∫
Rd
|u(x − y)|dd x

)
ddy = ‖u‖p1

∫
Rd
| f (y)|pddy

= ‖u‖p1‖ f ‖
p
p,

proving (iii). �

Lemma 4.3. Suppose that g : Rd → R is a continuous, compactly supported function. Then βn∗g→ g uniformly.
Hence also βn ∗ g→ g in Lp.

Proof. Recalling that βn ≥ 0, supp(βn) ⊂ B1/n(0), and
∫
Rd βn(x)dd x = 1, we have

|βn ∗ g(x) − g(x)| ≤
∣∣∣∣∣∫
Rd

g(x − y)βn(y)ddy − g(x)
∣∣∣∣∣ =

∣∣∣∣∣∫
Rd

(g(x − y) − g(x))βn(y)ddy
∣∣∣∣∣

≤

∫
B1/n(0)

|g(x − y) − g(x)|βn(y)ddy.

Since g is continuous and compactly supported it is uniformly continuous. Hence if ε > 0 there is a natural
number N so that |g(x−y)−g(x)| < ε whenever y ∈ B1/N(0). So once n ≥ N, again using that

∫
B1/n(0) βn(y)ddy = 1,

the above shows that |βn ∗ g(x) − g(x)| ≤ ε for all x. This proves that βn ∗ g→ g uniformly.
Convergence in Lp then follows quickly since g has compact support: notice that if Ω is a bounded set which

contains every point having distance one or less from a point of the support of g, then both βn ∗ g and g vanish
outside Ω. So

‖βn ∗ g − g‖pp ≤
∫

Ω

|βn ∗ g(x) − g(x)|pdd x,

which clearly tends to zero by the uniform convergence of βn ∗ g to g since Ω has finite measure. �

Corollary 4.4. If f ∈ Lp(Rd) then ‖βn ∗ f − f ‖p → 0 as n→ ∞.

Proof. Let ε > 0. It is then a standard measure theory exercise to find a compactly supported continuous
g : Rd → R such that ‖g − f ‖p < ε/3 (First approximate f by simple functions

∑m
i=1 aiχAi , then approximate

the χAi by characteristic functions of finite unions of d-dimensional rectangles, and then approximate these
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characteristic functions of unions of rectangles by continuous piecewise linear functions). Let N be so large that
‖βn ∗ g − g‖p < ε/3 when n ≥ N, as can be achieved by the preceding lemma. We then have, for n ≥ N,

‖βn ∗ f − f ‖p ≤ ‖βn ∗ ( f − g)‖p + ‖βn ∗ g − g‖p + ‖g − f ‖p

≤ ‖βn‖1‖ f − g‖p +
2ε
3
< ε,

where we’ve used Young’s inequality. �

Proof of Proposition 4.1. Let f ∈ Lp(Rd) and ε > 0. The Lebesgue dominated convergence theorem shows that
χBn(0) f → f in Lp as n→ ∞, so let N be large enough that

‖χBN (0) f − f ‖p < ε/2.

Note that, since χBN (0) f is compactly supported, so are the functions βm ∗ (χBN (0) f ) for each m (specifically they
are supported in BN+1/m(0). Using Corollary 4.4, let M be so large that ‖βM ∗ (χBN (0) f ) − χBN (0) f ‖p < ε/2. Thus
βM ∗ (χBN (0) f ) ∈ C∞0 (Rd), and ‖βM ∗ (χBN (0) f ) − f ‖p < ε, as desired. �

Proposition 4.1 implies that the Banach space (Lp(Rd), ‖·‖p) can (at least up to isomorphism of Banach spaces)
be equivalently characterized as the completion of C∞0 (Rd) with respect to the norm ‖ · ‖p. Sobolev spaces can be
characterized as completions of C∞0 (Rd) with respect to certain norms which are stronger than ‖ · ‖p by virtue of
taking into account the behavior of derivatives.

We first introduce standard “multi-index” notation that is used in PDE theory. The letter α will generally
denote a multi-index, i.e. a d-tuple (α1, . . . , αd) of natural numbers. Then for a (sufficiently-differentiable)
function f : U → R where U ⊂ Rd is open, we define

Dα f =
∂α1

∂xα1
1
· · ·

∂αd

∂xαd
d

f

whenever the derivative on the right hand side exists. In particular for α = ~0 we have Dα f = f . Also, for a
multi-index α, define

|α| = α1 + · · · + αd.

Thus the derivative Dα f is a certain partial derivative of order |α|.

Definition 4.5. The Sobolev space Wk,p(Rd) is the (Cauchy-)completion of the normed vector space C∞0 (Rd)
equipped with the Sobolev norm

‖ f ‖k,p =
∑

0≤|α|≤k

‖Dα f ‖p.

Thus W0,p(Rd) = Lp(Rd). As a vector space, I claim that we can also describe Wk,p(Rd) as

(4) Wk,p(Rd) =

{
f ∈ Lp(Rd)

∣∣∣∣∣∣ (∃{ fn}∞n=1 ⊂ C∞0 (Rd))( fn → f in Lp and for all α with |α| < k,
{Dα fn}∞n=1 is a Cauchy sequence in Lp)

}
.

Indeed, Wk,p(Rd), as initially defined, consists of equivalence classes of Cauchy sequences of functions in
C∞0 with respect to ‖ · ‖k,p, where { fn}∞n=1 and {gn}

∞
n=1 are equivalent provided that ‖ fn − gn‖k,p → 0. Any such

Cauchy sequence { fn}∞n=1 has Dα fn Cauchy in Lp for all |α| ≤ k; in particular fn is Cauchy and so converges to
some f ∈ Lp(Rd) which belongs to the set on the right hand side of (4), and if { fn}∞n=1 and {gn}

∞
n=1 are equivalent

they have the same Lp limit and so determine the same f . This provides a surjective map from Wk,p to the set on
the right hand side of (4); to show that the map is injective we need that if both { fn}∞n=1 and {gn}

∞
n=1 are Cauchy

with respect to ‖ · ‖k,p and have the same Lp limit f then they are equivalent as Cauchy sequences in Wk,p (i.e.
‖Dα fn − Dαgn‖p → 0 for |α| ≤ k). This is not particularly obvious, but follows from:
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Lemma 4.6. (i) If f , h ∈ C∞0 (Rd) then∫
Rd

(Dα f (x))h(x)dd x = (−1)|α|
∫
Rd

f (x)Dαh(x)dd x.

(ii) Let f ∈ Wk,p(Rd) where 1 < p < ∞, and choose a multi-index α with |α| ≤ k. Then there is a unique3

function Dα f ∈ Lp(Rd) obeying, for all f , h ∈ C∞0 (Rd),

(5)
∫
Rd

(Dα f (x))h(x)dd x = (−1)|α|
∫
Rd

f (x)Dαh(x)dd x.

Specifically, if { fn}∞n=1 is any sequence in C∞0 (Rd) which is Cauchy in the norm ‖ · ‖k,p and such that ‖ fn − f ‖p = 0,
then Dα f is the Lp limit of Dα fn.

(iii) If { fn}∞n=1 and {gn}
∞
n=1 are both sequences in C∞0 (Rd) which are Cauchy with respect to ‖ · ‖k,p and have the

same Lp limit f , then ‖Dα fn − Dαgn‖p → 0 when |α| ≤ k. Consequently (4) holds.

Proof. (i) follows by integration by parts (and the fact that the involved functions have compact support): for
instance choosing R such that the supports of f and h are contained in [−R,R]d we have∫

Rd

∂ f
∂x1

(x)h(x)dd x =

∫ R

−R

∫
{s}×[−R,R]d−1

∂ f
∂x1

(s, x′)h(s, x′)dd−1x′ds

= −

∫ R

−R

∫
{s}×[−R,R]d−1

f (s, x′)
∂h
∂x1

(s, x′)dd−1x′ds = −

∫
Rd

f (x)
∂h
∂x1

dd x,

where we’ve used the assumption on the supports to see that the boundary term in the integration by parts is zero.
The same argument applies to derivatives with respect to the other coordinates xi (thus proving (i) for |α| = 1),
and then an induction on |α| proves (i) in general.

As for (ii), if f ∈ Wk,p(Rd) choose fn ∈ C∞0 (Rd) as in (4) and define Dα f as the Lp limit of Dα fn. Let
1
p + 1

q = 1, so since 1 < p < ∞ we also have 1 < q < ∞. For h ∈ C∞0 (Rd) we have |
∫
Rd (Dα fn − Dα f )hdd x| ≤

‖Dα fn − Dα f ‖p‖h‖q → 0 and |
∫
Rd ( fn − f )Dαhdd x| ≤ ‖ fn − f ‖p‖Dαh‖q → 0, so∫

Rd
(Dα f )hdd x = lim

n→∞

∫
Rd

(Dα fn)hdd x = (−1)|α| lim
n→∞

∫
Rd

fnDαhdd x = (−1)|α|
∫
Rd

f Dαhdd x.

To see that Dα f is the unique Lp function satisfying (5) for all h ∈ C∞0 (Rd), suppose that v ∈ Lp(Rd) is some
other such function, so for all h ∈ C∞0 (Rd) we have

∫
Rd vhdd x = (−1)|α|

∫
Rd f Dαhdd x. But then for all h ∈ C∞0 (Rd)

we have ∫
Rd

(Dα f − v)hdd x = 0.

Now since q < ∞ C∞0 (Rd) is dense in Lq(Rd), so if h ∈ Lq(Rd) we can find hn ∈ C∞0 (Rd) such that hn → h in Lq,
and then ∣∣∣∣∣∫

Rd
(Dα f − v)hdd x

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∫
Rd

(Dα f − v)(h − hn)dd x
∣∣∣∣∣ ≤ lim

n→∞
‖Dα f − v‖p‖h − hn‖q = 0.

But for
∫
Rd (Dα f − v)hdd x = 0 for all h ∈ Lq (given that Dα f − v ∈ Lp) it must be that Dα f = v a.e. (For instance,

set h = sgn(Dα f − v)|Dα f − v|p/q, which belongs to Lq because Dα f − v ∈ Lp.)
As for (iii), either fn or gn can be used to construct the function Dα f in (ii), and the uniqueness statement

shows that the same function will result from the use of either sequence. Thus Dα fn −Dαgn → 0. The discussion
in the paragraph before the statement of the lemma implies that (4) follows from this.

�

3up to almost-everywhere-equivalence
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In general, for any locally integrable function f , a function Dα f is called the weak derivative of f of order α
if it obeys relation (5) for every compactly supported smooth h. The preceding lemma shows that if f ∈ Wk,p(Rd)
then for all |α| ≤ k the weak derivative Dα f exists and belongs to Lp(Rd). We will presently show that the
converse holds.

Lemma 4.7. Suppose that f ∈ Lp(Rd) where 1 < p < ∞ and that the weak derivative Dα f exists and belongs to
Lp(Rd) for some multi-index α. Then the functions fn = βn ∗ f from the proof of Proposition 4.1 obey

Dα(βn ∗ f ) = βn ∗ Dα f .

Proof. Where βn are the functions described after Proposition 4.1 set fn = βn ∗ f ; recall in particular that
βn(−x) = βn(x) for all x and that fn ∈ C∞(Rd) (specifically we’ve seen that Dα fn = (Dαβn) ∗ f ). For h ∈ C∞0 (Rd)
we have∫

Rd
(βn ∗ Dα f )(x)h(x)dd x =

∫
Rd

∫
Rd
βn(x − y)Dα f (y)h(x)ddydd x

=

∫
Rd

Dα f (y)
∫
Rd
βn(y − x)h(x)dd xddy =

∫
Rd

Dα f (y)
∫
Rd

h(y − z)βn(z)ddzddy

= (−1)|α|
∫
Rd

f (y)Dα(h ∗ βn)(y)ddy = (−1)|α|
∫
Rd

f (y)
∫
Rd

Dαh(y − z)βn(z)ddzddy

= (−1)|α|
∫
Rd

∫
Rd

f (y)βn(y − x)Dαh(x)dd x

= (−1)α
∫
Rd

(βn ∗ f )(x)Dαh(x)dd x,

which proves that Dα(βn ∗ f ) = βn ∗ Dα f by the uniqueness statement in Lemma 4.6(ii). �

Corollary 4.8. Suppose that f ∈ Lp(Rd) where 1 < p < ∞ and that the weak derivative Dα f exists and belongs
to Lp(Rd) for all |α| ≤ k. Then f ∈ Wk,p(Rd), βn ∗ f ∈ Wk,p(Rd), and

‖βn ∗ f − f ‖k,p → 0.

Proof. First let us show that fn := βn ∗ f ∈ Wk,p(Rd). Using Theorem 4.2 and Lemma 4.7, we have

Dα fn = βn ∗ Dα f ∈ C∞(Rd) ∩ Lp(Rd)

for all n (note that the fn may not be compactly supported if f is not compactly supported). For each natural
number m let χm be a compactly supported smooth function equal to 1 on the ball Bm(0) and with all partial
derivatives obeying |Dαχm(x)| ≤ 1 for all x. Then the product rule and the dominated convergence theorem
readily show that, since fn ∈ C∞(Rd)∩ Lp(Rd), ‖Dα(χm fn)−Dα fn‖p → 0 as m→ ∞. Thus {χm fn}∞m=1 is a Cauchy
sequence in C∞0 (Rd) ∩Wk,p(Rd), with limit fn, proving that fn ∈ Wk,p(Rd).

Given this, the result follows immediately, since for all |α| ≤ k, {Dα fn}∞n=1 = {βn ∗ Dα f }∞n=1 is Cauchy in Lp

with limit Dα f . Thus { fn}∞n=1 forms a Cauchy sequence in Wk,p(Rd), whose Lp-limit, namely f , therefore belongs
to Wk,p(Rd) by Lemma 4.6 and the remarks preceding it. Moreover

‖ fn − f ‖k,p =
∑
|α|≤k

‖Dα fn − Dα f ‖p → 0

as n→ ∞. �

The space Wk,p(Rd) is sometimes (for instance in [Ev]) instead defined as the space of functions with the
property that the weak derivative Dα f exists and belongs to Lp for every multi-index α with |α| ≤ k, and Lemma
4.6 (ii) and the above corollary show that this is an equivalent definition.

While a function f ∈ Wk,p(Rd) has weak derivatives in the sense of (5), this does not imply that f is dif-
ferentiable in the usual sense of difference quotients. However, recalling that f is approximated in the Wk,p
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norm by C∞ functions, we note that, if this approximation property holds in a stronger sense, then we do get
differentiability:

Proposition 4.9. Suppose that { fn}∞n=1 is a sequence of continuously differentiable functions such that fn → f
uniformly and ∇ fn → G uniformly (where f : Rd → R and G : Rd → Rd), then f is differentiable and ∇ f = G.

(Recall the standard fact in undergraduate analysis that a the limit of a uniformly convergent sequence of
continuous functions is continuous; hence f and G are automatically continuous under the assumption of the
proposition).

Proof. For a general continuously differentiable function g : Rd → R, if x, h ∈ Rd applying the fundamental
theorem of calculus to the function r : [0, ‖h‖]→ R defined by r(t) = g (x + th/‖h‖) shows that

g(x + h) − g(x) =

∫ ‖h‖

0
∇g(x + th/‖h‖) · (h/‖h‖)dt.

So

f (x + h) − f (x) = lim
n→∞

( fn(x + h) − fn(x)) = lim
n→∞

∫ ‖h‖

0
(∇ fn(x + th/‖h‖) · (h/‖h‖)) dt.

Now if ε > 0 then once n is so large that sup ‖∇ fn −G‖ < ε
‖h‖ the integral on right hand side above differs from∫ ‖h‖

0 G(x + th/‖h‖) · (h/‖h‖)dt by at most ε. Hence

f (x + h) − f (x) =

∫ ‖h‖

0
G

(
x + t

h
‖h‖

)
·

h
‖h‖

dt = G(x) · h + o(‖h‖)

as h→ 0 by the continuity of G. Thus f is differentiable and ∇ f = G. �

The behavior of general elements the Sobolev spaces Wk,p(Rd) is qualitatively different depending on whether
p < d, p = d, or p > d. The nicest case, which is the one that we’ll need most often, is where p > d, so
we’ll largely restrict attention to this case (see [Ev, Chapter 5] for a much broader introduction to Sobolev spaces
which in particular covers the other cases). The role of the assumption p > d boils down to the following:

Proposition 4.10. Assume d < p < ∞. For x ∈ Rd, where Br(x) is the open ball of radius r around x, there is a
constant C depending only on d and p such that, where 1

p + 1
q = 1,(∫

Br(x)

(
1

‖y − x‖d−1

)q

ddy
)1/q

= Cr1−d/p.

A formula for C can be extracted from the proof below, but its precise form won’t be important for us. Note
that if p = d the integral on the left hand side isn’t even finite (despite what one might guess from the shape of
the right hand side), which is part of the reason why the case p = d differs in significant ways from p > d.

Proof. Where dS denotes the standard surface area measure on the unit sphere ∂B1(~0) (so for a function f we
have

∫
Br(~0) f (x)dnx =

∫
∂B1(~0)

∫ r
0 f (sw)sd−1dsdS (w)) and where αd =

∫
∂B1(~0) 1dS (w) is the “surface area” of ∂B1(~0),

we have ∫
Br(x)

(
1

‖y − x‖d−1

)q

ddy =

∫
∂B1(~0)

∫ r

0

sd−1

s(d−1)q dsdS (w)

= αd
rd−q(d−1)

d − q(d − 1)
.

The result will follow as soon as we show that (d − q(d − 1))/q = 1 − d/p. We compute:

(d − q(d − 1))/q = d
(
1 −

1
p

)
− (d − 1) =

(
d −

d
p

)
− (d − 1) = 1 −

d
p
,

as desired. �
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In general, if U ⊂ Rd is a bounded open subset and if f ∈ L1(U), write?
U

f (x)dd x =

∫
U f (x)dd x∫

U 1dd x
=

1
vol(U)

∫
U

f (x)dd x,

i.e.,
>

U f (x)dd x is the average value of f over U. Proposition 4.10 is relevant largely due to the following:

Lemma 4.11. There is a constant C, depending only on d, with the following property. Let f ∈ C∞0 (Rd), x ∈ Rd,
and write Br(x) for the ball of radius r around x. Then?

Br(x)
| f (x) − f (y)|ddy ≤ C

∫
Br(x)

‖∇ f (y)‖
‖y − x‖d−1 ddy.

Proof. Recall that the fundamental theorem of calculus gives, for w ∈ B1(~0) and s > 0,

f (x + sw) − f (x) =

∫ s

0
∇ f (x + tw) · wdt.

Hence, where we use the substitution y = x + tw and convert from spherical to Euclidean coordinates,∫
∂B1(~0)

| f (x + sw) − f (x)|dS (w) ≤
∫ s

0

∫
∂B1(~0)

‖∇ f (x + tw)‖dS (w)dt

=

∫
Bs(x)

‖∇ f (y)‖
‖y − x‖d−1 ddy.

Thus ∫
Br(x)
| f (x) − f (y)|ddy =

∫ r

0
sn−1

∫
∂B1(~0)

| f (x) − f (x + sw)|dS (w)ds

≤

∫ r

0
sd−1

∫
Bs(x)

‖∇ f (y)‖
‖y − x‖d−1 ddyds ≤

∫ r

0
sd−1

∫
Br(x)

‖∇ f (y)‖
‖y − x‖d−1 ddy

=
rd

d

∫
Br(x)

‖∇ f (y)‖
‖y − x‖d−1 ddy.

Since the volume of Br(x) is a dimensional constant times rd, dividing through by the volume of Br(x) then
proves the lemma. �

Theorem 4.12 (Morrey’s inequality). Let p > d. Then there are constants C1 and C2 such that for any f ∈
C∞0 (Rd) we have

| f (x)| ≤ C1‖ f ‖1,p and | f (x) − f (y)| ≤ C2‖ f ‖1,p‖x − y‖1−d/p

for every x, y ∈ Rd.

Proof. Let 1
p + 1

q = 1. If x ∈ Rd we have

| f (x)| =
?

B1(x)
| f (x)|ddy ≤

?
B1(x)

(| f (y)| + | f (y) − f (x)|)ddy

≤
1

vol(B1(x))

∫
B1(x)
| f (y)|ddy + C

∫
B1(x)

‖∇ f (y)‖
‖y − x‖d−1 ddy

≤
1

vol(B1(x))
‖ f ‖Lp(B1(x))‖1‖Lq(B1(x)) + C‖∇ f ‖Lp(B1(x))

∥∥∥∥∥∥ 1
‖y − x‖d−1

∥∥∥∥∥∥
Lq(B1(x))

≤ C‖ f ‖1,p

for an appropriate constant C, where we’ve used Hölder’s inequality and the fact that, by Proposition 4.10,∥∥∥∥ 1
‖y−x‖d−1

∥∥∥∥
Lq(B1(x))

is some (finite) constant depending only on d and p when p > d.
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For the second statement let r = ‖x − y‖ and let W = Br(x) ∩ Br(y). Since W contains the ball of radius r/2
around the midpoint of x and y, W has volume at least 2−d times the common volume of Br(x) and Br(y). Of
course,

| f (x) − f (y)| =
?

W
| f (x) − f (y)|ddz ≤

?
W
| f (z) − f (x)|ddz +

?
W
| f (z) − f (y)|ddz.

Now, where the M j below denote constants depending only on d and p, since W ⊂ Br(x)?
W
| f (z) − f (x)|ddz ≤

1
vol(W)

∫
Br(x)
| f (z) − f (x)|ddz ≤

vol(Br(x))
vol(W)

?
Br(x)
| f (z) − f (x)|ddz

≤ M1

?
Br(x)

‖∇ f (x)‖
‖y − x‖d−1 ddy ≤ M2‖∇ f ‖Lp(Br(x))r1−d/p ≤ M2‖∇ f ‖pr1−d/p.

By the same token ?
W
| f (z) − f (y)|dnz ≤ M2‖∇ f ‖pr1−d/p,

and so
| f (x) − f (y)| ≤ 2M2‖∇ f ‖pr1−d/p = 2M2‖ f ‖k,p‖x − y‖1−d/p.

�

Corollary 4.13. Let f ∈ Wk,p(Rd), with k ≥ 1 and p > d. Then (some function equal almost everywhere to) f
is (k − 1)-times continuously differentiable, and there is a constant C depending on k, p, d but not on f such that
for all x, y ∈ Rd and all β with 0 ≤ |β| ≤ k − 1 we have

|Dβ f (x)| ≤ C‖ f ‖k,p and |Dβ f (x) − Dβ f (y)| ≤ C‖ f ‖k,p‖x − y‖1−d/p.

Proof. Where χn : Rn → [0, 1] belongs to C∞0 (Rd) and is equal to 1 on Bn(~0), if f ∈ Wk,p(Rd) then χn f ∈
Wk,p(Rd), and f satisfies the conclusions of the corollary if and only if χn f does for every n (take n large enough
that ‖x‖, ‖y‖ ≤ n). So there is no loss of generality in assuming that f vanishes identically outside some compact
set.

Let fn ∈ C∞0 (Rd) be a Cauchy sequence with respect to the norm ‖ · ‖k,p which converges in Lp (hence also
in Wk,p by what we’ve previously shown) to f . Thus for |β| ≤ k − 1, writing l = k − |β|, we have l ≥ 1
and Dβ fn is Cauchy in W l,p and converges in Lp to Dβ f . Then for x ∈ Rd we have |Dβ fn(x) − Dβ fm(x)| ≤
C1‖Dβ fn − Dβ fm‖1,p → 0, so {Dβ fn}∞n=1 is uniformly Cauchy and therefore has a pointwise limit to which it
converges uniformly. But since Dβ fn → Dβ f in Lp this forces Dβ f to be equal to this uniform limit (modulo the
almost everywhere ambiguity in the definition of Dβ f ). In particular since uniform limits of continuous functions
are continuous this proves that Dβ f is continuous whenever |β| ≤ k − 1. Moreover, the fact that the covergence
of the Dβ fn to Dβ f is uniform shows, via Proposition 4.9 and induction on |β|, that Dβ f is in fact equal to the
order-β derivative of f (in the difference quotient sense, not just the weak sense (5)).

Since Dβ fn → Dβ f uniformly and since ‖Dβ fn‖1,p → ‖Dβ f ‖1,p ≤ ‖ f ‖k,p, the two inequalities in the statement
of the corollary follow directly from Theorem 4.12. �

In view of this, when k ≥ 1 and p > d, we can and hereinafter do identify Wk,p(Rd) with a subspace of the
space of continuous functions on Rd (in particular identifying elements of Wk,p(Rd), which we previously defined
as almost-everywhere-equivalence classes, with the unique continuous functions that represent them).

Corollary 4.14. Let k ≥ 1 and p > d. Then there is a constant C such that, if f , g ∈ Wk,p(Rd) then f g ∈ Wk,p(Rd)
and

‖ f g‖k,p ≤ C‖ f ‖k,p‖g‖k,p.

Proof. We have (as can easily be verified using approximating sequences of smooth functions), for |α| ≤ k,

Dα( f g) =
∑
β+γ=α

(Dβ f )Dγg.



18 MIKE USHER

Thus it suffices to show that whenever |β| + |γ| ≤ k there is a constant Cβγ such that

(6) ‖Dβ f Dγg‖p ≤ Cβγ‖ f ‖k,p‖g‖k,p.

Since k ≥ 1 if |β| + |γ| ≤ k then one or both of β and γ is strictly less than k; without loss of generality
assume |γ| < k. Then by Corollary 4.13 we have a uniform bound ‖Dγg‖C0 ≤ C′‖Dγg‖1,p ≤ C′‖g‖k,p (where
‖h‖C0 = supRd |h|), so we get ‖Dβ f Dγg‖p ≤ ‖Dγg‖C0‖Dβ f ‖p ≤ C′‖ f ‖k,p‖g‖k,p, confirming (6). �

The following is a standard definition in operator theory in Banach spaces:

Definition 4.15. A linear operator K : X → Y where (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are Banach spaces is called
compact if, whenever {xn}

∞
n=1 is a sequence in X with ‖xn‖X ≤ M for some fixed M ∈ R, the sequence {Kxn}

∞
n=1

has a convergent subsequence in Y.

If Ω ⊂ Rd is a bounded open subset, define Wk,p
0 (Ω) to be the completion of the space of smooth functions with

support compactly contained in Ω with respect to the norm ‖ · ‖k,p. Obviously we have an inclusion Wk,p
0 (Ω) ⊂

Wk,p(Rd).

Theorem 4.16. Let Ω ⊂ Rd be a bounded open subset, let k ≥ 1 and p > d. Then the inclusion Wk,p
0 (Ω) ↪→

Wk−1,p
0 (Ω) is a compact operator.

Proof. Let {un}
∞
n=1 be some sequence in Wk,p

0 (Ω) with ‖un‖k,p ≤ M for all n. Then whenever |β| ≤ k−1 each Dβun

is continuous and we have uniform estimates |Dβun(x)| ≤ CM and |Dβun(x) − Dβun(y)| ≤ CM‖x − y‖1−d/p. The
first of these statements shows that the Dβun are pointwise bounded, and the second shows that they are uniformly
equicontinuous (for any ε > 0 there is δ > 0 (independent of n) such that if |x−y| < δ then |Dβun(x)−Dβun(y)| < ε).
Since the Dβun all have support in the fixed compact set Ω̄, the Arzela-Ascoli theorem states that these two
properties imply that {Dβun}

∞
n=1 has a uniformly convergent subsequence, with limit some continuous function

Dβu. (By applying Arzela-Ascoli to the sequence of RN-valued functions whose coordinates are the various
derivatives Dβun we may arrange that the same subsequence works for each derivative.) Since Ω̄ has finite
volume and contains the supports of all functions involved, the uniform convergence to Dβu (for |β| ≤ k − 1)
implies Lp convergence, so our subsequence converges to u in Wk−1,p

0 (Ω). �

As mentioned earlier, the situation is different for p < d. Here, although a function in W1,p(Rd) is typically
not continuous, it is at least contained in Lp∗ (Rd) for a certain value p∗ > p. The general formula for p∗ works
out to be p∗ =

dp
d−p . We’ll prove this in the case d = 2 since the notation in this case is more easily digestible

and since it’s the only case that we’ll need. See [Ev] or [MS2, Appendix B] for the proof for general d (which is
conceptually very similar).

Theorem 4.17 (Gagliardo-Nirenberg-Sobolev inequality). Let 1 ≤ p < 2. There is a constant C, depending only
on p, such that if f ∈ C∞0 (R2) then

‖ f ‖p∗ ≤ C‖∇ f ‖p,

where p∗ =
2p

2−p Consequently there is a continuous inclusion map Wk+1,p(R2) ↪→ Wk,p∗ (R2) for any k ≥ 0.

Proof. Consider first the inequality for p = 1. If f : R2 → R is a compactly supported, continuously differen-
tiable function we have, by the Fundamental Theorem of Calculus,

| f (x, y)| ≤
∫ x

−∞

∣∣∣∣∣∂ f
∂x

(x′, y)
∣∣∣∣∣ dx′ ≤

∫ ∞

−∞

∣∣∣∣∣∂ f
∂x

(x′, y)
∣∣∣∣∣ dx′ =: v1(y)

and likewise

| f (x, y)| ≤
∫ ∞

−∞

∣∣∣∣∣∂ f
∂y

(x, y′)
∣∣∣∣∣ dy′ =: v2(x).
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Hence∫
R2
| f (x, y)|2dxdy ≤

∫ ∞

−∞

∫ ∞

−∞

v1(y)v2(x)dxdy

=

(∫ ∞

−∞

v1(y)dy
) (∫ ∞

−∞

v2(x)dx
)

=

(∫ ∞

−∞

∣∣∣∣∣∂ f
∂x

∣∣∣∣∣ dydx
) (∫ ∞

−∞

∣∣∣∣∣∂ f
∂y

∣∣∣∣∣ dxdy
)
≤

(∫
R2
‖∇ f ‖dxdy

)2

.

In other words, we have

(7) ‖ f ‖2 ≤ ‖∇ f ‖1
for f compactly supported and C1, proving the inequality for p = 1.

We now attempt to use (7) to prove an inequality of the shape ‖ f ‖2γ ≤ ‖∇ f ‖p for any given p < n, where γ > 1
is to be determined. In this direction, note first that, if f ∈ C∞0 (R2) and γ > 1, then | f |γ is compactly supported
and continuously differentiable with

‖∇(| f |γ)‖ = γ| f |γ−1‖∇ f ‖
(the only places where differentiability might be a problem are those where f = 0, but there the derivative is
easily seen to exist and be equal to zero because γ > 1). So we can apply (7) to | f |γ to obtain

(8)
(∫
R2
| f |2γd2x

)1/2

= ‖| f |2γ‖2 ≤ γ
∫
R2
| f |γ−1‖∇ f ‖ ≤ γ‖| f |γ−1‖q‖∇ f ‖p

where 1
p + 1

q = 1 (i.e., q =
p

p−1 ). Of course

‖| f |γ−1‖q =

(∫
R2
| f |

(γ−1)p
p−1 d2x

)1− 1
p

.

The appropriate choice of γ is then the one that causes (γ−1)p
p−1 = 2γ, i.e., γ =

p
2−p . Then where p∗ = 2γ =

2p
2−p (8)

becomes (∫
R2
| f |p

∗

dxdy
) 1

p−
1
2

≤ γ‖∇ f ‖p.

Clearly p∗ =
2p

2−p gives 1
p∗ = 1

p −
1
2 , so we have proven the inequality ‖ f ‖p∗ ≤ C‖∇ f ‖p.

The last sentence of the theorem is an immediate consequence, since the inequality shows that if { fn}∞n=1 is a
sequence of compactly supported smooth functions which is Cauchy with respect to the norm ‖ · ‖k+1,p, so that
whenever |α| ≤ k {Dα fn}∞n=1 is Cauchy with respect to ‖ · ‖1,p, then {Dα fn}∞n=1 is also Cauchy with respect to ‖ · ‖p∗
whenever |α| ≤ k, whence { fn}∞n=1 is Cauchy with respect to ‖ · ‖k,p∗ . �

Corollary 4.18. If 1 < p ≤ 2 and if f ∈ Wk+2,p(R2) then f is k-times continuously differentiable

Proof. If 1 < p < 2 we have an embedding Wk+2,p(R2) ↪→ Wk+1,p∗ where p∗ =
2p

2−p . In particular p∗ > 2. So
if f ∈ Wk+2,p(R2) then f ∈ Wk+1,p∗ (R2) and so f is k-times continuously differentiable by Corollary 4.13. If
p = 2, note that since differentiability is a local property f ∈ Wk+2,2(Rd) is k-times continuously differentiable if
and only if χ f is k-times continuously differentiable for every compactly supported smooth function χ. Now if
χ ∈ C∞0 (R2), then χ f ∈ Wk+2,2(R2) has support in a finite measure set, so χ f ∈ Wk+2,p(R2) for any p < 2. So χ f
is k-times continuously differentiable by what has already been shown. �

The correct generalization of this corollary to higher dimension is that (for 1 < p < ∞) f ∈ Wk+l,p(Rd) is
k-times continuously differentiable provided that lp > d.

In what follows we’ll really be interested in functions u : R2 → R2n. Such a function can equally well
be viewed as a 2n-tuple of functions R2 → R. As such, writing Wk,p(Rd;R2n) for the space of 2n-tuples of
functions in Wk,p(Rd;R), with norm ‖( f1, . . . , f2n)‖k,p =

(∑2n
i=1 ‖ fi‖

p
k,p

)1/p
, the above results (in particular Theorem

4.16, Corollary 4.13, and Theorem 4.17) extend trivially from Wk,p(Rd) to Wk,p(Rd;R2n) (though perhaps with
different constants).
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5. The linear Cauchy–Riemann operator

Let f : U → C be a (suitably-differentiable) complex-valued function on an open subset U ⊂ C. Where a
general element of C is written z = x + iy, recall the notation

∂z̄ f =
∂ f
∂z̄

=
1
2

(
∂ f
∂x

+ i
∂ f
∂y

)
, ∂z f =

∂ f
∂z

=
1
2

(
∂ f
∂x
− i

∂ f
∂y

)
.

∂z̄, ∂z are derivations on the space of complex-valued smooth functions and as such can be thought of as sections
of the complexified tangent bundle TU ⊗R C (i.e. as complexified vector fields). Where dz = dx + idy and
dz̄ = dx − idy form the standard basis of complexified 1-forms on U (i.e. sections of T ∗U ⊗R C), the definitions
have been chosen so that at each point p ∈ U {∂z, ∂z̄} ⊂ TpU ⊗RC is a dual basis to the basis {dz, dz̄} of T ∗pU ⊗RC.

Partly as a result of this, one has
d f = ∂z f dz + ∂z̄ f dz̄

if f is differentiable. Correspondingly, one has

f (z′) − f (z) = ∂z f (z)(z′ − z) + ∂z̄ f (z)(z̄′ − z̄) + o(|z′ − z|)

as z′ → z provided that f is C1, just as in the usual mutlivariable Taylor formula.
The Cauchy-Riemann equation (i.e. the equation that f must satisfy in order to be holomorphic with respect

to the standard complex structure on C) can then be written

∂z̄ f = 0.

This section is devoted to properties of solutions to the equation

∂z̄ f = g

which we will later leverage to learn more about solutions to the nonlinear Cauchy-Riemann equation that we
encounter in the theory of J-holomorphic curves.

First we provide the following generalization of the Cauchy integral formula:

Theorem 5.1. Let f : Ū → C be a continuous function which is continuously differentiable on the bounded open
set U ⊂ C with smooth boundary ∂U. Then, for z ∈ U,

f (z) =
1

2πi

(∫
∂U

f (w)
w − z

dw +

∫
U

∂z̄ f
w − z

dw ∧ dw̄
)
.

Note that dw ∧ dw̄ = −2idx ∧ dy is a constant multiple of the standard volume form. Obviously the above
reduces to the Cauchy integral formula when f is holomorphic.

Proof. Let ε > 0 be any number which is small enough that the disc Bε(z) of radius ε around z is contained in
U. Let us apply Stokes’ theorem to the 1-form α(w) =

f (w)
w−z dw on the region U \ Bε(z) (clearly α is continuously

differentiable on this region). We have

(9)
∫

U\Bε (z)
dα =

∫
∂(U\Bε (z))

α =

∫
∂U

f (w)
w − z

dw −
∫
∂Bε (z)

f (w)
w − z

dw.

We have (using the product rule and the fact that 1
w−z is holomorphic in w where it is defined) dα = −

∂z̄ f (w)
w−z dw∧

dw̄. Choosing M large enough that |∂z̄ f (w)| ≤ M for all w in some compact set with nonempty interior containing
z, for ε small enough we have∣∣∣∣∣∣

∫
Bε (z)

dα

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫

Bε (z)

∂z̄ f (w)
z − w

dw ∧ dw̄

∣∣∣∣∣∣
=

∣∣∣∣∣∣−2i
∫ 2π

0

∫ ε

0

∂z̄ f (z + reiθ)
reiθ rdrdθ

∣∣∣∣∣∣ ≤
∫ 2π

0

∫ ε

0
Mdrdθ → 0
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as ε → 0 (of course in the process of the above we’ve shown that dα is integrable over Bε(z), though a reader
who remembers the proof of Morrey’s inequality would not have found this surprising given the form of dα).
Consequently as ε → 0 the left hand side of (9) tends to −

∫
U

∂z̄ f (w)
z−w dw∧ dw̄ (which in particular is well-defined).

Meanwhile for small ε, ∫
∂Bε (z)

f (w)
w − z

dw =

∫ 2π

0

f (z + εeiθ)
εeiθ iεeiθdθ → 2πi f (z)

by the continuity of f . Thus sending ε → 0 in (9) gives

−

∫
U

∂z̄ f (w)
w − z

dw ∧ dw̄ =

∫
∂U

f (w)
z − w

dw − 2πi f (z),

which upon rearrangement gives the theorem.
�

Corollary 5.2. If f : C→ C is a compactly supported C1 function then

f (z) =
1

2πi

∫
C

∂z̄ f (w)
w − z

dw ∧ dw̄.

Proof. Apply the theorem above with U equal to a disc around the origin of sufficiently large radius that it
contains the support of f in its interior. �

Write C∞0 (C;C) for the space of compactly supported smooth functions from C to itself.

Theorem 5.3. If f ∈ C∞0 (C;C) define

P f (z) =

∫
C

f (w)
w − z

dw ∧ dw̄.

Then P f : C→ C is continuously differentiable, and we have

∂z̄(P f ) = P(∂z̄ f ) = f and ∂z(P f ) = P(∂z f ).

Note that this theorem does not guarantee that P f is compactly supported, and indeed one can check via
examples that it typically is not.

Proof. Write Φ(w) = − 1
2πiw , so that by definition

P f (z) =

∫
C

Φ(z − w) f (w)dw ∧ dw̄.

A change of variables to v = z − w shows that, similarly,

P f (z) =

∫
C

f (z − v)Φ(v)dv ∧ dv̄.

Hence

(10) P f (z + h) − P f (z) =

∫
C

( f (z − v + h) − f (z − v))Φ(v)dv ∧ dv̄.

Since f (and hence all of its derivatives) is compactly supported there is a number M such that, for any w ∈ C
and any h ∈ B1(0) we have

| f (w + h) − f (w) − ∂z f (w)h − ∂z̄ f (w)h̄| ≤ M|h|2.
Moreover, assuming the support of f to be contained in BR(0), when |h| ≤ 1 the integrand on the right hand side
of (10) is zero outside of {v : |v − z| ≤ R + 1}. Hence for |h| ≤ 1 the integral on the right hand side of (10) differs
from

(11)
∫
C

(∂z f (z − v)h + ∂z̄ f (z − v)h̄)Φ(v)dv ∧ dv̄
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by something of modulus at most ∫
|v−z|<R+1

M|h|2Φ(v)dw ∧ dw̄ ≤ M′|h|2

for a suitable ( f -dependent) constant M′. But (11) above is (using again the identity
∫

Φ(z − w)g(w) =
∫

g(z −
v)Φ(v)) just equal to

P∂z f (z)h + P∂z̄ f (z)h̄.
Thus we have, for |h| ≤ 1,

P f (z + h) − P f (z) = P∂z f (z)h + P∂z̄ f (z)h̄ + O(|h|2).

This in particular proves that P f is continuous; applying the same argument to the compactly supported smooth
functions ∂z f and ∂z̄ f shows that P∂z f and P∂z̄ f are also continuous. Thus P f is continuously differentiable
with derivatives ∂zP f = P∂z f and ∂z̄P f = P∂z̄ f . The fact that P∂z̄ f = f is Corollary 5.2. �

Proposition 5.4. Fix a bounded open set Ω ⊂ C. Then there is a constant MΩ such that if f ∈ Lp
0 (Ω;C) with

p > 1 then

‖P f ‖Lp(Ω;C) :=
(∫

Ω

|P f |p
)1/p

≤ MΩ‖ f ‖p.

This is nearly a special case of Young’s inequality, which states that ‖g ∗ f ‖p ≤ ‖g‖1‖ f ‖p for functions
f , g : Rd → R. Here we have P f = Φ ∗ f where Φ is integrable over Ω (whereas it’s not integrable over C, which
accounts for the need for an Ω-dependent constant).

Proof. Let 1
p + 1

q = 1. Note that if Ω is contained in a ball of radius R then for any x ∈ Ω we have∫
Ω

|Φ(x − y)|d2y ≤
∫

B2R(0)

|Φ(v)|d2v.

Write MΩ =
∫

B2R(0)
|Φ(v)|d2v.

We have

|P f (x)| ≤
∫

Ω

|Φ(x − y)|| f (y)|d2y =

∫
Ω

| f (y)||Φ(x − y)|1/p|Φ(x − y)|1/qd2y

≤

(∫
Ω

| f (y)|p|Φ(x − y)|d2y
)1/p (∫

Ω

|Φ(x − y)|d2y
)1/q

≤ M1/q
Ω

(∫
Ω

| f (y)|p|Φ(x − y)|d2y
)1/p

Hence∫
Ω

|P f (x)|pd2x ≤ Mp/q
Ω

∫
Ω

(∫
Ω

| f (y)|p|Φ(x − y)|d2y
)

d2x ≤ Mp/q
Ω

∫
Ω

∫
{z=x−y|x∈Ω}

| f (y)|p|Φ(z)|d2zd2y

= M1+p/q
Ω

∫
Ω

| f (y)|pd2y.

Raising both sides to the power 1
p then gives the proposition. �

Proposition 5.5. Define T : C∞0 (C;C)→ C(C;C) by

T = P ◦ ∂z.

Then, for f ∈ C∞0 (C;C) we have

(12) ∂z f = T∂z̄ f = ∂z̄T f and ∂zT f = T∂z f .

Furthermore,

(13) T f (z) =
1

2πi
lim
ε→0+

∫
|w−z|≥ε

f (w)
(w − z)2 dw ∧ dw̄
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for all z (in particular the limit on the right hand side exists everywhere4).

Proof. If f ∈ C∞0 (C;C), repeated application of Theorem 5.3 gives

∂z f = ∂z ◦ P ◦ ∂z̄ f = (P ◦ ∂z) ◦ ∂z̄ f = T∂z̄ f ,

where the first equation is justified since ∂z f ∈ C∞0 (C;C) and the second is justified since ∂z̄ f ∈ C∞0 (C;C). Also,

∂z̄T f = ∂z̄∂zP f = ∂z∂z̄P f = ∂z f ,

and

∂zT f = ∂zP∂z f = P∂z∂z f = T∂z f .

This proves (12).
As for the second, note first that∣∣∣∣∣∣

∫
Bε (z)

∂z f
w − z

dw ∧ dw̄

∣∣∣∣∣∣ ≤ 2‖∂z f ‖∞

∫ 2π

0

∫ ε

0

rdrdθ
reiθ → 0

as ε → 0. Consequently

(14) T f (z) =
1

2πi
lim
ε→0

∫
|w−z|≥ε

∂z f
w − z

dw ∧ dw̄ =
1

2πi
lim
ε→0

∫
|w−z|≥ε

1
w − z

d ( f (w)dw̄) .

Now ∫
|w−z|≥ε

1
w − z

d ( f (w)dw̄) =

∫
|w−z|≥ε

d
(

f (w)dw̄
w − z

)
−

∫
|w−z|≥ε

d
(

1
w − z

)
∧ f (w)dw̄

= −

∫
|w−z|=ε

f (w)dw̄
w − z

+

∫
|w−z|≥ε

1
(w − z)2 f (w)dw ∧ dw̄.

But the first term above tends to zero as ε → 0: indeed∫
|w−z|=ε

f (w)dw̄
w − z

=

∫ 2π

0

f (z + εeiθ)
εeiθ εe−iθdθ =

∫ 2π

0
f (z + εeiθ)e−2iθdθ → 0

by virtue of the continuity of f and the fact that
∫ 2π

0 e−2iθdθ = 0. Hence (14) together with the above calculation
imply the result. �

The operator T , with formula given by (13), is an example of a singular integral operator, i.e. an operator
on functions on Rd given by convolution with an appropriately balanced5 function which is singular at the origin
with absolute value asymptotic to |x|−d. Since |x|−d fails to be locally integrable on Rd the behavior of such
operators appears subtle; however in [CaZy] Calderón and Zygmund proved a general theorem that in our case
can be expressed as follows.

Theorem 5.6. Let 1 < p < ∞. Then there is a constant C > 0, depending only on p, such that the operator
T : C∞0 (C;C)→ C(C;C) defined by (13) obeys

‖T f ‖p ≤ C‖ f ‖p

for all f ∈ C∞0 (C;C). Consequently T extends to a bounded linear operator T : Lp(C;C)→ Lp(C;C).

4Since v 7→ v−2 is not locally integrable on C the integrand on the right hand side in (13) is not absolutely convergent over all of C, which
is why the limiting process is necessary

5in the sense that, in particular, the restriction of the function to an arbitrarily small sphere around the origin has mean value zero
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Proof of Theorem 5.6 for p = 2. When p = 2 the result follows from an application of Stokes’ theorem (an
alternate method for the p = 2 case, which more readily adapts to more general singular integral operators, is to
use the Fourier transform and Plancherel’s theorem). For p , 2 the proof is harder and is therefore consigned to
the next subsection (and won’t be covered in class unless there’s demand for it).

First observe that, given f ∈ C∞0 (C;C), if M,R ∈ R are chosen to have the property that | f (w)| ≤ M for all
w ∈ C and supp( f ) ⊂ BR(0), then if |z| > 2R we have, for all w ∈ supp( f ), |z − w| > |z|

2 and hence

|P f (z)| =

∣∣∣∣∣∣ 1
2π

∫
BR(0)

f (w)
w − z

dw ∧ dw̄

∣∣∣∣∣∣ ≤ 1
π

MπR2

|z|/2
=

2MR2

|z|
if |z| > 2R.

Thus for f ∈ C∞0 (C;C) there is N f ∈ R such that |P f (z)| ≤ N f /|z| if |z| is sufficiently large. Since T = P ◦ ∂z, by
replacing N f with max{N f ,N∂z f } we in fact obtain

(15) max{|P f (z)|, |T f (z)|} ≤
N f

|z|
for sufficiently large |z|.

Now observe that

|T f |2dz ∧ dz̄ = (∂zP f )T f dz ∧ dz̄ = d(P f T f dz̄) − P f∂zT f dz ∧ dz̄

= d(P f T f dz̄) − P f∂z̄T f dz ∧ dz̄ = d(P f T f dz̄) − P f∂z f dz ∧ dz̄ = d(P f T f dz̄) − P f∂z̄ f̄ dz ∧ dz̄

= d
(
P f T f dz̄ + (P f ) f̄ dz

)
+ (∂z̄P f ) f dz ∧ dz̄ = d

(
P f T f dz̄ + (P f ) f̄ dz

)
+ | f |2dz ∧ dz̄.

Hence for any R > 0 we have∫
BR(0)
|T f |2dz ∧ d̄z =

∫
∂BR(0)

(P f T f dz̄ + (P f ) f̄ dz) +

∫
BR(0)
| f |2dz ∧ dz̄.

For R large enough that the support of f is contained in BR(0) and that (15) applies, the integral over ∂BR(0)
above is bounded in absolute value by 2πN f /R. So sending R→ ∞ gives∫

C

|T f |2dz ∧ dz̄ =

∫
C

| f |2dz ∧ dz̄,

so the result follows (for p = 2) with constant C = 1. �

Theorem 5.6 is the driving force behind many of the properties that we’ll prove for pseudoholomorphic curves;
before giving its proof in the case p , 2 let us indicate some consequences.

Corollary 5.7. For k ∈ N and 1 < p < ∞:
(i) The operator T : C∞0 (C;C) extends to a bounded linear map T : Wk,p(C;C)→ Wk,p(C;C).

(ii) Fix a bounded open set Ω, and write C∞0 (Ω;C) for the space of smooth functions with support contained
in Ω, Wk,p

0 (Ω;C) for its completion with respect to the norm ‖ · ‖k,p, and Wk,p(Ω;C) for the completion
with respect to ‖ · ‖k,p of the space of restrictions to Ω of functions in C∞0 (C;C). Then there is CΩ > 1
such that, if f ∈ C∞0 (Ω;C) we have

‖P f ‖Wk+1,p(Ω) :=
∑
|α|≤k

(∫
Ω

|Dα f |p
)1/p

≤ CΩ‖ f ‖k,p.

Consequently P extends to a bounded operator

P : Wk,p
0 (Ω;C)→ Wk+1,p(Ω;C).

Proof. Note first that since T∂z = ∂zT and T∂z̄ = ∂z̄T we have T ◦ Dα = Dα ◦ T for every multi-index α. So for
u ∈ C∞0 (C;C), for any k ≥ 0 and 1 < p < ∞ we have, where C is the constant from Theorem 5.6,

‖Tu‖k,p =
∑
|α|≤k

‖DαTu‖p =
∑
|α|≤k

‖T (Dαu)‖p ≤ C
∑
|α|≤k

‖Dαu‖p = C‖u‖k,p.
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This proves (i).
As for (ii), since ∂

∂x = ∂z + ∂z̄ and ∂
∂y = i(∂z − ∂z̄), we have, for u ∈ C∞0 (Ω;C),

‖Pu‖k+1,p ≤ ‖Pu‖p + 2
(
‖∂z̄Pu‖k,p + ‖∂zPu‖k,p

)
≤ MΩ‖u‖p + 2

(
‖u‖k,p + ‖Tu‖k,p

)
≤ MΩ‖u‖p + 2(C + 1)‖u‖k,p ≤ (MΩ + 2(C + 1)) ‖u‖k,p.

�

Corollary 5.8. If k ≥ 0 and 1 < p < ∞ there is a constant C with the following property. For any u ∈
Wk+1,p(C;C) we have

(16) ‖u‖k+1,p ≤ C
(
‖∂z̄u‖k,p + ‖u‖p

)
.

Proof. We have, for u ∈ C∞0 (C;C)

‖u‖k+1,p ≤ ‖u‖p + 2
(
‖∂z̄u‖k,p + ‖∂zu‖k,p

)
= ‖u‖p + 2

(
‖∂z̄u‖k,p + ‖T∂z̄u‖k,p

)
≤ ‖u‖p + 2(C + 1)‖∂z̄u‖k,p,

which proves (16) when u ∈ C∞0 (C;C).
If we just assume u ∈ Wk+1,p(C;C), choose a sequence {un}

∞
n=1 such that un → u in Wk+1,p. We then also have

∂z̄un → ∂z̄u in Wk,p and un → u in Lp, so using (16) for un and sending n→ ∞ yields (16) for u.
�

Corollary 5.9. Let 1 < p < ∞, k ≥ 0 and fix two bounded open subsets Ω′,Ω ⊂ C such that Ω′ ⊂ Ω. Then there
is a constant C, depending on k, p,Ω′,Ω, such that for any u ∈ C∞(C;C) we have

‖u‖Wk+1,p(Ω′;C) ≤ C
(
‖∂z̄u‖Wk,p(Ω;C) + ‖u‖Lp(Ω;C)

)
.

Proof. We proceed by induction on k; assume that the corollary has been proven for all integers l with 0 ≤ l < k
(of course if k = 0 this isn’t assuming anything, so we don’t need to treat the base case separately). Choose a
smooth function χ : C → [0, 1] such that χ|Ω′ = 1 and supp(χ) is compact and contained in Ω. We can then
choose an open set Ω′′ so that supp(χ) ⊂ Ω′′ and Ω′′ ⊂ Ω.

If u ∈ C∞(C;C) then χu ∈ C∞0 (C;C), χu|Ω′ = u|Ω′ , and χu is supported in Ω′′. Clearly

‖u‖Wk+1,p(Ω′;C) = ‖χu‖Wk+1,p(Ω′;C) ≤ ‖χu‖k+1,p.

For some constant M depending on the sup norms of the derivatives of χ up to order k + 1 (and not on u), the
product rule ∂z̄(χu) = (∂z̄χ)u + χ(∂z̄u) and the fact that supp(χ) ⊂ Ω′′ give an estimate

‖∂z̄(χu)‖k,p ≤ M
(
‖u‖Wk,p(Ω′′;C) + ‖∂z̄u‖Wk,p(Ω′′;C)

)
.

By the inductive hypothesis (applied to the sets Ω′′ ⊂ Ω) we have a constant M′ with

‖u‖Wk,p(Ω′′;C) ≤ M′
(
‖∂z̄u‖Wk−1,p(Ω;C) + ‖u‖Lp(Ω;C)

)
.

Combining the above observations with Corollary 5.8 applied to χu yields (for various constants Ci):

‖u‖Wk+1,p(Ω′;C) ≤ ‖χu‖k+1,p ≤ C1

(
‖∂z̄(χu)‖k,p + ‖χu‖p

)
≤ C2

(
‖∂z̄u‖Wk,p(Ω′′;C) + ‖∂z̄u‖Wk−1,p(Ω;C) + ‖u‖Lp(Ω;C)

)
≤ C3

(
‖∂z̄u‖Wk,p(Ω;C) + ‖u‖Lp(Ω;C)

)
,

as desired. �

Theorem 5.10 (Fundamental elliptic estimate for ∂z̄). Let 1 < p < ∞ and k ≥ 0. Fix two bounded open subsets
Ω,Ω′ ⊂ C with Ω′ ⊂ Ω. Then there is a constant C, depending on Ω and Ω′, with the following property. If
u ∈ Lp(Ω;C) and if the weak derivative ∂z̄u exists and belongs to Wk,p(Ω;C), then u ∈ Wk+1,p(Ω′;C), and

‖u‖Wk+1,p(Ω′) ≤ C
(
‖∂z̄u‖Wk,p(Ω;C) + ‖u‖Lp(Ω;C)

)
.
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Proof. As in the previous corollary, we use induction on k. Assume the theorem proven for all integers l with
0 ≤ l < k, fix a smooth function χ : C→ [0, 1] with compact support in Ω such that χ|Ω′ = 1, and choose an open
subset Ω′′ containing supp(χ) but whose closure is contained in Ω. We assume inductively that u ∈ Wk,p(Ω′′′;C)
(possibly k = 0) whenever Ω′′′ has closure contained in Ω. Since by assumption ∂z̄u ∈ Wk,p(Ω;C) we then have
χu ∈ Wk,p(C;C), with ∂z̄(χu) = χ∂z̄u+(∂z̄χ)u (to see this, set un = βn∗u and use the fact that βn∗Dαu = Dα(βn∗u)
(resp. βn ∗ ∂z̄u = ∂z̄(βn ∗ u)) when Dαu (resp. ∂z̄u) exists to deduce the appropriate weak derivative relationships
for u by taking limits of the corresponding relationships for un; details are left to the reader). Thus

(17) ‖∂z̄(χu)‖k,p ≤ A
(
‖∂z̄u‖Wk,p(Ω′′;C) + ‖u‖Wk,p(Ω′′;C)

)
,

where the constant A depends on χ (and thus on Ω,Ω′).
By the choice of Ω′′, the support of βn ∗ (χu) is supported in Ω′′ for all sufficiently large n. Furthermore

the same argument as that given in the proof of Lemma 4.7 shows that βn ∗ (∂z̄(χu)) = ∂z̄(βn ∗ (χu)). Write
gn = βn ∗ (χu). Since ∂z̄(χu) ∈ Wk,p(C;C) and ∂z̄gn = βn ∗ (∂z̄(χu)) Corollary 4.8 shows that ∂z̄gn → ∂z̄(χu) in
Wk,p. Also, gn → χu in Lp. So since the gn are smooth functions with (for n sufficiently large) support in Ω′′

and with ∂z̄gn Cauchy in Wk,p and gn Cauchy in Lp, Corollary 5.9 shows that {gn}
∞
n=1 is Cauchy in Wk+1,p(Ω′′;C).

Hence the Lp-limit of gn, namely χu, belongs to Wk+1,p(Ω′′;C). Hence since χ|Ω′ = 1 we have u ∈ Wk+1,p(Ω′;C).
Furthermore, the estimate in Corollary 5.9 for the gn is easily seen to imply the desired estimate for u by sending
n→ ∞ to deduce the result for χu and then appealing to (17) and to the inductive hypothesis.

�

Corollary 5.11. Suppose that u ∈ Lp(C;C) for some 1 < p < ∞ and that the weak derivative ∂z̄u exists and
belongs to C∞(C;C) ∩ Lp(C;C). Then u ∈ C∞(C;C).

Proof. The preceding theorem shows that, given any bounded open set Ω, u ∈ Wk+1,p(Ω;C) for every integer
k. Since functions in Wk+1,p(Ω;C) are k-times differentiable on Ω if p > 2 and (k − 1)-times differentiable if
1 < p ≤ 2 the result is immediate.

�

5.1. Proof of the Calderón–Zygmund Theorem for p , 2.

Exercise 5.12. Assuming that Theorem 5.6 holds for p > 2, prove it for 1 < p < 2 by using the duality between
Lq and Lp where 1

p + 1
q = 1.

Since we’ve proven Theorem 5.6 for p = 2 (in fact we’ve proven the equality ‖Tg‖2 = ‖g‖2), the preceding
exercise shows that its proof will be complete once we handle the case p > 2. We’ll follow a recent paper of F.
Yao [Y]; Calderón and Zygmund’s original proof, by contrast, went by proving the case 1 < p < 2 first and then
using duality as in the exercise to deduce the result for p > 2. In all proofs that I know of, the case p = 2 (already
proven) is itself directly used in the proof for p , 2.

If B ⊂ C is a measurable subset (with respect to the usual 2-dimensional Lebesgue measure on C = R2)
denote by |B| the Lebesgue measure of B. Also, if g : C → C is a function and t ∈ R we use the shorthand
{|g| > t} = {z ∈ C||g(z)| > t}. Notation for the Lebesgue measure on C will typically be omitted from the various
integrals that appear below. Here is the main lemma:

Lemma 5.13 ([Y]). There are constants C,K > 0 such that, for any f ∈ C∞0 (C,C) and any numbers µ, δ > 0
with δ < 1, we have

|{|T f | > µ}| ≤
C
µ2

(
δ2

∫
{|T f |>µ/K}

|T f |2 +

∫
{| f |≥δµ/K}

| f |2
)
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Proof of Theorem 5.6 (p > 2), assuming Lemma 5.13. The proof uses the following general formulas, for a mea-
surable function g : C→ C and p > 2:∫

C

|g|p = p
∫ ∞

0
νp−1|{|g| > ν}|dν

= (p − 2)
∫ ∞

0
νp−3

(∫
{|g|>ν}

|g|2
)

dν.

If these formulas are unfamiliar, it’s easy to prove them: first prove them for g equal to a simple function∑m
i=1 aiχAi , and then use the fact that an arbitrary measurable function has a sequence of simple functions con-

verging monotonically to it and appeal to the monotone convergence theorem.
Given this and Lemma 5.13, we have∫

C

|T f |p = p
∫ ∞

0
µp−1|{|T f | > µ}|dµ

≤ Cp
∫ ∞

0
µp−3

(
δ2

∫
{|T f |>µ/K}

|T f |2 +

∫
{| f |≥δµ/K}

| f |2
)

dµ

= CpK p−2
(
δ2

∫ ∞

0
νp−3

∫
{|T f |>ν}

|T f |2dν + δ2−p
∫ ∞

0
νp−3

∫
{| f |>ν}

| f |2dν
)

= C′δ2
∫
C

|T f |p + C′δ2−p
∫
C

| f |p,

where the constant C′ > 1 depends on p but not on δ. Now choose for δ the value that causes C′δ2 = 1/2.
Rearranging the above equation then gives

1
2

∫
C

|T f |p ≤ C′δ2−p
∫
C

| f |p;

thus for a suitable constant C′′ depending only on p we have

‖T f ‖p ≤ C′′‖ f ‖p.

�

The rest of this subsection will be devoted to the proof of Lemma 5.13. Choose positive numbers δ, λ > 0
with δ < 1. (λ will be a certain constant times the number µ in the hypothesis of the lemma.) Define

Eλ = {|T f | > λ}.

If B is any bounded open set, define

J[B] =

?
B

(
|T f |2 + δ−2| f |2

)
.

Lemma 5.14. Given λ, δ, there is a family {Bρi (xi)}i∈S (where S ⊂ N) of pairwise disjoint balls such that

Eλ ⊂ ∪i∈S B5ρi (xi), J[Bρi (xi)] = λ2, (∀ρ > ρi)(J[Bρ(xi)] < λ2),

and, for any θ > 1,

(18)
∑
i∈S

∫
Bθρi (xi)

| f |2 ≤ 2θ2
(
δ2

∫
{|T f |>λ/2}

|T f |2 +

∫
{| f |>δλ/2}

| f |2
)
.

Proof. For any x ∈ Eλ, since |T f (x)| > λ (and since we assume f ∈ C∞0 (C;C) so that T f is continuous6) we
will have J[Br(x)] > λ2 when r is sufficiently small (depending on x). On the other hand since by the p = 2
case of the theorem T f ∈ L2 we will have J[B] < λ2 whenever B is any ball of radius larger than some number

6For more general f , we could apply the Lebesgue differentiation theorem and arrive at the same conclusion up to the removal of a
measure-zero set from Eλ
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R > 0. Hence for every x ∈ Eλ, the number rx = sup{r|J[Br(x)] ≥ λ2} will be finite and positive and will obey
J[Brx (x)] = λ2. Further we have rx ≤ R for all x. Define

B = {Brx (x)|x ∈ Eλ}.

Now recall the following standard lemma (whose proof is a good exercise):

Lemma 5.15 (Vitali Covering Lemma). Let B be any collection of balls of positive radius in a metric space, with
the property that for some R ∈ R each ball in B has radius at most R. Then B has a subcollection {Bρi (xi)|i ∈ S }
where S ⊂ N whose members are pairwise disjoint and such that

∪B∈BB ⊂ ∪i∈S B5ρi (xi).

Accordingly let {Bρi (xi)}i∈S be the subcollection of B supplied by the Vitali Covering Lemma. Since Eλ is
contained in the union of the balls inB, these balls clearly satisfy all the conclusions of the lemma except possibly
(18), and we now show that (18) holds as well.

In this direction, for any i we have∫
Bθρi (xi)

| f |2 ≤ |Bθρi (xi)|
?

Bθρi (xi)
| f |2 ≤ δ2|Bθρi (xi)|J[Bθρi (xi)]

< δ2|Bθρi (xi)|J[Bρi (xi)] = δ2θ2|Bρi (xi)|J[Bρi (xi)].(19)

Now

|Bρi (xi)|J[Bρi (xi)] =

∫
Bρi (xi)

(
|T f |2 + δ−2| f |2

)
≤

∫
Bρi (xi)

(
max{λ/2, |T f |}2 + δ−2 max{δλ/2, | f |}2

)
≤
λ2

4
|Bρi (xi)| +

∫
Bρi (xi)∩{|T f |>λ/2}

|T f |2 +
λ2

4
|Bρi (xi)| + δ−2

∫
Bρi (xi)∩{| f |>δλ/2}

| f |2

=
1
2
|Bρi (xi)|J[Bρi (xi)] +

∫
Bρi (xi)∩{|T f |>λ/2}

|T f |2 + δ−2
∫

Bρi (xi)∩{| f |>δλ/2}
| f |2

(where the last line follows from the fact that J[Bρi (xi)] = λ2). Rearranging and substituting into (19) then gives∫
Bθρi (xi)

| f |2 ≤ 2δ2θ2
∫

Bρi (xi)∩{|T f |>λ/2}
|T f |2 + δ−2

∫
Bρi (xi)∩{| f |>δλ/2}

| f |2
 .

Summing over i and using the fact that the various Bρi (xi) are pairwise disjoint then proves (18). �

Now, for each i ∈ S write

f = gλ,i + hλ,i with gλ,i(x) =

{
f (x) x ∈ B25ρi (xi)
0 otherwise

In particular gλ,i, hλ,i ∈ L2(C;C), so Tgλ,i and Thλ,i are well-defined as L2 functions. Also, as one can see
by approximating hλ,i by smooth functions and using the L2-boundedness of T , Thλ,i can and will be chosen
within its almost-everywhere-equivalence class so that the following holds: if x ∈ B25ρi (xi) (so in particular
x < supp(hλ,i)), then the integral

∫
C

hλ,i(w)
2πi(x−w)2 dw ∧ dw̄ exists and is equal to Thλ,i(x).

Lemma 5.16. There is a constant M > 1, independent of f , λ, and i, such that if x ∈ B5ρi (xi) then |Thλ,i(x)| ≤ Mλ.

Proof. First we will bound |Thλ,i(z) − Thλ,i(x)| for x, z ∈ B5ρi (xi). Suppose w ∈ C with hλ,i(w) , 0. By definition
w < B25ρi (xi), so

w ∈ B5m+1ρi (xi) \ B5mρi (xi) for some m ≥ 2.
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Then |x − z| < 10ρi and (5m − 5)ρi ≤ |w − x|, |w − z| ≤ (5m+1 + 5)ρi, so∣∣∣∣∣ 1
(x − w)2 −

1
(z − w)2

∣∣∣∣∣ =

∣∣∣∣∣ (x − z)(2w − x − z)
(x − w)2(z − w)2

∣∣∣∣∣ ≤ 20(5m+1 + 5)ρ2
i

(5m − 5)4ρ4
i

≤
300

53mρ2
i

.

So, for some constant C,

|Thλ,i(z) − Thλ,i(x)| =

∣∣∣∣∣∣ 1
2πi

∫
C

hλ,i(w)
(

1
(x − w)2 −

1
(z − w)2

)
dw ∧ dw̄

∣∣∣∣∣∣ ≤ ∞∑
m=2

C
53mρ2

i

∫
B5m+1ρi

(xi)\B5mρi (xi)
| f |

≤

∞∑
m=2

C
53mρ2

i

∫
B5m+1ρi

(xi)
| f | ≤

∞∑
m=2

C
53mρ2

i

|B5m+1ρi (xi)|

?
B5m+1ρi

(xi)
| f |2

1/2

=

∞∑
m=2

25πC
5m

?
B5m+1ρi

(xi)
| f |2

1/2

≤

∞∑
m=2

25πC
5m δλ

≤ C′δλ

where we’ve used the Schwarz inequality and (in the penultimate inequality) the fact that
>

B5m+1ρi
(xi)
| f |2 ≤

δ2J[B5m+1ρi (xi)] ≤ δ2λ2.
To use this to get the desired pointwise bound, note that

|Thλ,i(x)| ≤
?

B5ρi (xi)
|Thλ,i(z)|d2z +

?
B5ρi (xi)

|Thλ,i(z) − Thλ,i(x)|d2z.

We have |Thλ,i(z)− Thλ,i(x)| ≤ C′δλ < C′λ since δ < 1, giving a bound of C′λ for the second term. So it remains
only to bound

>
B5ρi (xi)

|Thλ,i(z)|d2z.
For this, we note ?

B5ρi (xi)
|Thλ,i(z)|d2z ≤

?
B5ρi (xi)

|T f (z)|d2z +

?
B5ρi (xi)

|Tgλ,i(z)|d2z,

and we have ?
B5ρi (xi)

|T f | ≤
?

B5ρi (xi)
|T f |2

1/2

≤ J[B5ρi (xi)]1/2 < λ,

while?
B5ρi (xi)

|Tgλ,i| ≤ |B5ρi (xi)|−1/2
∫

B5ρi (xi)
|Tgλ,i|2

1/2

= |B5ρi (xi)|−1/2
(∫
C

|gλ,i|2
)1/2

= |B5ρi (xi)|−1/2
∫

B25ρi (xi)
| f |2

1/2

= 5
?

B25ρi (xi)
| f |2

1/2

≤ 5λδ.

(Here we’ve used the fact that by the proof of the p = 2 case ‖Tgλ,i‖2 = ‖gλ,i‖2.)
We have now bounded all three terms on the right in the inequality

|Thλ,i(x)| ≤
?

B5ρi (xi)
|Thλ,i(z) − Thλ,i(x)|d2z +

?
B5ρi (xi)

|Tgλ,i(z)|d2z +

?
B5ρi (xi)

|T f (z)|d2z

by constants times λ, from which the lemma follows. �

We can now complete the proof of Lemma 5.13 and hence of Theorem 5.6. Given µ and δ as in Lemma
5.13, choose λ so that 2Mλ = µ, where M > 1 is as in Lemma 5.16. We are attempting to bound the measure
|{|T f | > µ}|. Since µ > λ, we have

{|T f | > µ} ⊂ Eλ ⊂ ∪i∈S B5ρi (xi).
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Now if x ∈ B5ρi (xi) ∩ {|T f | > µ}, then since Thλ,i|B5ρi (xi) ≤ Mλ = µ/2 we have |Tgλ,i(x)| > µ/2. Thus,∣∣∣B5ρi (xi) ∩ {|T f | > µ}
∣∣∣ ≤ ∣∣∣B5ρi (xi) ∩ {|Tgλ,i| > µ/2}

∣∣∣ ≤ 4
µ2

∫
C

|Tgλ,i|2 =
4
µ2

∫
C

|gλ,i|2 =
4
µ2

∫
B25ρi (xi)

| f |2

where again we’ve used the p = 2 case of the theorem.
Hence, using (18), we get

|{|T f | > µ}| ≤
∑
i∈S

∣∣∣B5ρi (xi) ∩ {|T f | > µ}
∣∣∣

≤
4
µ2

∑
i∈S

∫
B25ρi (xi)

| f |2 ≤
8 · 252

µ2

(
δ2

∫
{|T f |>λ/2}

|T f |2 +

∫
{| f |>δλ/2}

| f |2
)
.

Writing K = 4M (since 2Mλ = µ), this precisely recovers the statement of Lemma 5.13.

6. Local properties of J-holomorphic curves

Our preparation concerning the linear Cauchy–Riemann operator puts us in position to begin to study local
properties of pseudoholomorphic curves, which, we recall, are solutions to a nonlinear analogue of the Cauchy–
Riemann equation. We assume given a 2n-dimensional symplectic manifold (M, ω) with an ω-tame almost
complex structure J, and we consider maps u : Σ → M obeying (at least in a weak sense) u∗ ◦ j = J ◦ u∗ where
Σ is a surface and j is an almost complex structure on it. For convenience (and for simplicity of the statements
of some theorems) we will always assume that the almost complex structure J is C∞, though methods similar to
those below still give results when much less regularity is assumed on J (see [AL, Chapter V] for instance). At
least assuming that u is continuous (as we shall), for any given point z0 ∈ int(Σ) we can study the map locally
near z0 by choosing a complex coordinate z = s + it around z0 and a coordinate chart around u(z0) in M; in terms
of these coordinates the equation for u to be pseudoholomorphic becomes

(20)
∂u
∂s

+ J(u(z))
∂u
∂t

= 0

where u is now viewed as a map from a disc around the origin in C to Cn = R2n with u(0) = ~0, and J is an almost
complex structure on R2n. If the matrix-valued function J were identically equal to multiplication by i, i.e. to

J0 :=
(

0 −Id
Id 0

)
, then this would just be the classical Cauchy–Riemann equation for a vector-valued function

u. While J will not be identically equal to J0 (indeed, as mentioned at the start of the course, the Nijenhuis tensor
gives an obstruction to choosing coordinates in such a way that J = J0), there is no loss of generality in assuming
that J coincides with J0 at the origin ~0 of R2n with J0: indeed, an exercise from last semester shows that, because
J(~0) is a linear map of T~0R

2n = R2n with J(~0)2 = −Id, there is A ∈ GL(2n,R) such that AJ(~0)A−1 = J0, and then
composing our initial coordinate chart on M around u(z0) with the matrix A reduces us to the case where

J(~0) = J0.

We now rewrite the equation (20) in terms of the operators ∂z̄ and ∂z from the previous section. By definition
we have

∂z̄ =
1
2

(
∂

∂s
+ J0

∂

∂t

)
, ∂z =

1
2

(
∂

∂s
− J0

∂

∂t

)
,

so
∂

∂s
= ∂z + ∂z̄,

∂

∂t
= J0(∂z − ∂z̄).

So (20) becomes
(Id − J(u(z))J0)∂z̄u + (Id + J(u(z))J0)∂zu = 0.

Recall that we’re assuming that u is continuous and that J(~0) = J(u(0)) = J0, so at z = 0 we have Id + J(u(z))J0 =

0 and Id − J(u(z))J0 = 2Id. So after possibly replacing the domain with a smaller disc D around the origin, we
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may assume that Id − J(u(z))J0 is invertible for all z ∈ D. Then for a suitable open set V ⊂ R2n containing u(D),
we may define a map q : V → R2n×2n by

q(~v) = (Id − J(~v)J0)−1(Id + J(~v)J0).

We then have

(21) q(u(0)) = 0 and ∂z̄u + q(u(z))∂zu = 0.

We’ve thus shown that, for a J-holomorphic curve u : Σ→ M, near any point z0 ∈ int(Σ) there are coordinate
neighborhoods in terms of which u appears as a map to R2n obeying (21)7. Since q(u(0)) = 0 and q ◦ u is
continuous it is reasonable to view (21), at least on a small enough neighborhood of 0 as to ensure that q ◦ u is
small, as a small perturbation of the linear Cauchy–Riemann equation. We will see that a variety of the notable
local properties of holomorphic functions (i.e. of solutions to the linear Cauchy–Riemann equation) extend to
J-holomorphic curves (i.e. solutions to these perturbed Cauchy–Riemann equations).

6.1. Smoothness. One of the more striking results that one encounters in a basic complex analysis course is the
fact that any function which is holomorphic (initially a condition just on certain of its first partial derivatives) is
in fact C∞. In this section we will prove that the same holds for J-holomorphic curves:

Theorem 6.1. Let J be a C∞ almost complex structure on a smooth manifold M, and let u : Σ → M be a map
from a surface Σ with complex structure j to M which is continuous and belongs to W1,p

loc (Σ,M) for some p > 1.
Assume that u obeys the Cauchy–Riemann equation u∗ ◦ j = J ◦ u∗. Then u is C∞ on the interior of Σ.

We clarify what it means for a continuous function u to belong to W1,p
loc (Σ,M): namely, for any z0 ∈ Σ there

should be coordinate neighborhoods D ⊂ R2 of z0 and V ⊂ R2n of u(z0) such that, in terms of these coordinate
neighborhoods, u|D belongs to W1,p(D,R2n), which in turn is defined as the completion of the space of restrictions
to D of compactly supported smooth functions R2 → R2n with respect to the (1,p)-Sobolev norm. (It’s a bit
trickier, though possible, to make sense of this when u isn’t assumed continuous, but we won’t need to do this).
Assuming that u ∈ W1,p

loc (Σ,M), in any sufficiently small coordinate chart it has weak derivatives of order 1, and
the Cauchy–Riemann equation u∗ ◦ j = J ◦ u∗ may be understood as a condition on these weak derivatives. Of
course, once we prove the theorem, we will know that these weak derivatives are genuine derivatives and so the
equation will hold in the traditional sense.

Proving the theorem is equivalent to showing that, for any z0 in the interior of Σ and any k, there is a coordinate
neighborhood of z0 in which u is Ck; if it helps to do so, we may choose this neighborhood to be very small and
dependent on k. Thus we can focus in on the small neighborhoods D discussed earlier, in which u solves the
equation (21)

∂z̄u + (q ◦ u)(z)∂zu = 0,

where u(0) = ~0 and q(~0) = 0. Here q is a 2n × 2n-matrix-valued smooth function on an open subset of R2n that
contains u(D); we then can and do extend q to a compactly supported smooth matrix-valued function on all of
R2n which doesn’t affect the validity of (21) for z ∈ D.

Our approach will be an example of what is called “bootstrapping;” the point, roughly, is that we can increase
the regularity u by appealing to the results of the last section, and then, once we know that u is slightly more
regular than it was before, we can repeat the process by appealing to those results again. First we note the
following, which is relevant due to the appearance of the term q ◦ u in (21):

7To be clear about the necessary regularity assumptions here, we require that u be continuous, and in order to make sense of (20) and
therefore of (21) we assume that the first-order weak derivatives of u exist (when it’s written out in local coordinates—one can verify as in
Proposition 6.2 below that this notion is independent of the choice of coordinates). Thus it would certainly be enough to assume u ∈ C0∩W1,p

for some p > 1, where again membership in W1,p is tested by local coordinate charts.
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Proposition 6.2. Let q ∈ C∞0 (RD;RN) with q(~0) = 0, and let k ≥ 1 and 1 < p < ∞. Then there is a constant
C (depending on q) such that if u : Rd → RD is a compactly supported function and u ∈ Wk,p(Rd;RD) ∩
Ck−1(Rd;RD) then q ◦ u is continuous and belongs to Wk,p(Rd;RN), with

‖q ◦ u‖k,p ≤ C(1 + ‖u‖C0 )
k∑

l=0

(‖u‖k,p + ‖u‖Ck−1 )l+1.

Of course, Corollary 4.13 shows that if p > d (where d = 2 in the case of interest) then any function in Wk,p

automatically belongs to Ck−1, with Ck−1 norm bounded by a constant times the Wk,p norm, so the estimate above
simplifies to ‖q ◦ u‖k,p ≤ C

∑k+1
l=1 ‖u‖

l
k,p. The important feature of the right hand side above is that it tends to zero

as ‖u‖k,p, ‖u‖Ck−1 tend to zero.
The proof relies on the following easy result:

Lemma 6.3. If p ∈ C∞0 (RD,RN) and if {um}
∞
m=1 is a sequence of Ck functions which converges in Ck to u : Rd →

RD, then q ◦ um → q ◦ u in Ck.

(Here “convergence in Ck” means that all partial derivatives of order up to and including k converge uni-
formly.)

Proof of Lemma 6.3. We proceed by induction on k. For k = 0, note that p has bounded first-order derivatives
and hence is Lipschitz, so we have a constant M with |p(um(x))−p(u(x))| ≤ M|um(x)−u(x)|. Thus since um−u→ 0
uniformly it follows that p ◦ um − p ◦ u→ 0 uniformly.

Now let k ≥ 1 and assume the lemma for all integers l with 0 ≤ l < k. Let um → u in Ck. Since um → u in
Ck−1, by the assumed l = k − 1 case of the lemma to prove that p ◦ um → p ◦ u in Ck it’s enough to show that,
whenever |α| = k − 1, we have Dα

(
∂
∂xi

(p ◦ um)
)
→ Dα

(
∂
∂xi

(p ◦ u)
)

uniformly for each i. Now where ul
m denotes

the lth component of um

Dα

(
∂

∂xi
(p ◦ um)

)
= Dα

∑
l

(
∂p
∂yl
◦ u

)
∂ul

m

∂xi


=

∑
l

∑
β+γ=α

Dβ

(
∂p
∂yl
◦ um

)
Dγ ∂ul

m

∂xi
.

Recalling that |α| = k−1 the inductive hypothesis (applied with p replaced by ∂p
∂yl

) shows that in each of the above

terms we have Dβ
(
∂p
∂yl
◦ um

)
→ Dβ

(
∂p
∂yl
◦ u

)
uniformly, while Dγ ∂ul

m
∂xi
→ Dγ ∂ul

∂xi
uniformly by the assumption that

um → u in Ck. So since sums and products of uniformly convergent sequences of bounded functions converge
uniformly, it follows that Dα

(
∂
∂xi

(p ◦ um)
)
→ Dα

(
∂
∂xi

(p ◦ u)
)

uniformly, completing the proof. �

Proof of Proposition 6.2. Of course q ◦ u is continuous since it is the composition of two continuous functions.
For any multi-index α, since the order-(|α| + 1) derivatives of q are bounded, we have a constant Mα such that

(22) |Dαq(~v1) − Dαq(~v2)| ≤ Mα‖~v1 − ~v2‖

for ~vi ∈ R
D. Applying (22) with α equal to the zero multi-index, ~v1 = u(z), and ~v2 = 0 shows that (since we

assume q(~0) = 0) |q ◦ u(z)| ≤ M|u(z)| for all z, and therefore that

(23) ‖q ◦ u‖C0 ≤ M‖u‖C0 and ‖q ◦ u‖p ≤ M‖u‖p.

Now the mollifications um = βm∗u converge in Wk,p to u by Corollary 4.8, and in Ck−1 by Lemma 4.3 (together
with the fact that βm ∗Dαu = Dα(βm ∗u)). Consequently by Lemma 6.3 q◦um → q◦u in Ck−1, and therefore also
in Wk−1,p (in particular in Lp) since q ◦ um, q ◦ u are compactly supported. We will show that {q ◦ um} is Cauchy



MATH 8230, SPRING 2010 LECTURE NOTES 33

in Wk,p and that

(24) ‖q ◦ um‖k,p ≤ C(1 + ‖um‖C0 )
k∑

l=0

(‖um‖k,p + ‖um‖Ck−1 )l+1;

from this it would immediately follow that the Lp limit q ◦ u belongs to Wk,p and obeys the same bound. Note
that the first paragraph of the proof shows that (24) holds when k = 0 (with ‖ · ‖Ck−1 interpreted as 0), while we’ve
already noted that um is Cauchy in W0,p = Lp, so assume inductively that these assertions hold for all integers l
with 0 ≤ l < k.

By this inductive hypothesis, it’s enough to show that, if |α| = k−1, the order k derivatives Dα( ∂um
∂xi

) are Cauchy
in Lp and have their Lp norms bounded by the right hand side of (24). As in the proof of Lemma 6.3 we have

(25) Dα

(
∂

∂xi
(q ◦ um)

)
=

∑
l

∑
β+γ=α

Dβ

(
∂q
∂yl
◦ um

)
Dγ ∂ul

m

∂xi
.

Since um → u in Wk,p the term Dγ ∂ul
m

∂xi
is Cauchy in Lp for each γ appearing above, while since all β appearing

above have order at most k − 1 Lemma 6.3 shows that Dβ
(
∂p
∂yl
◦ um

)
is Cauchy in L∞. Since the product of

a sequence which is Cauchy in L∞ with one which is Cauchy in Lp is always Cauchy in Lp, this proves that
Dα

(
∂
∂xi

(q ◦ um)
)

is Cauchy in Lp when |α| = k − 1 completing the proof that q ◦ um is Cauchy in Wk,p and hence
that q ◦ u ∈ Wk,p.

It remains to prove the bound (24) for ‖q ◦ um‖k,p. By the inductive hypothesis the bound already holds for
‖q ◦ um‖k−1,p, so we need only bound the ‖Dα( ∂(q◦u)

∂xi
)‖p for |α| = k − 1. Consider the various terms in (25). When

β = 0, the term arising from β is bounded in C0 norm by M(1 + ‖um‖C0 ) (here M is a constant, depending among
other things on ∂q

∂yl
(~0)) while the term arising from γ is bounded in Lp norm by ‖um‖k,p. When β , 0, we have

Dβ

(
∂q
∂yl
◦ um

)
= Dβ

((
∂q
∂yl
−
∂q
∂yl

(~0)
)
◦ um

)
,

so since |β| ≤ k − 1 we may apply the inductive hypothesis with q replaced by ∂q
∂yl
−

∂q
∂yl

(~0) (since this vanishes at
~0) to get a bound ∥∥∥∥∥∥Dβ

(
∂q
∂yl
◦ um

)∥∥∥∥∥∥
p
≤ C(1 + ‖um‖C0 )

k−1∑
l=0

(‖um‖k−1,p + ‖um‖Ck−2 )l+1.

Meanwhile when β , 0 the corresponding γ has |γ| < k−1, so we have a bound
∥∥∥∥Dγ ∂ul

m
∂xi

∥∥∥∥
C0
≤ ‖u‖Ck−1 . Combining

all of these bounds does indeed give∥∥∥∥∥∥Dα

(
∂(q ◦ u)
∂xi

)∥∥∥∥∥∥
p
≤ C(1 + ‖u‖C0 )

k∑
l=0

(‖u‖Wk,p + ‖u‖Ck−1 )l+1,

completing the induction. �

Proposition 6.2 puts us in position to prove the following, which by induction on k and Corollary 4.13 proves
Theorem 6.1 in the case that p > 2.

Proposition 6.4. Let k ≥ 1, p > 2, and suppose that D is a disc around the origin in C such that u : D → R2n

belongs to Wk,p(D,R2n) and obeys

∂z̄u + (q ◦ u)(z)∂zu = 0, u(0) = ~0

where q ∈ C∞(V,R2n×2n) is a matrix-valued function on an open subset of R2n containing u(D) with q(~0) = 0.
Then there is a disc D′ ⊂ D such that D′ contains 0 and u ∈ Wk+1,p(D′,R2n).

Proof. The proof is significantly simplified by the following observation (the “renormalization trick”):
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Claim 6.5. Given any ε > 0, it suffices to prove the proposition in the case that ‖u‖k,p < ε.

To justify this, if 0 < δ < 1 denote by uδ : D → R2n the function uδ(z) = u(z). (Note that since we are taking
the domain of uδ to be just D, uδ only takes into account the behavior of u on a disc of radius δ times the radius
of the original disc D). Obviously there is a disc D′ around 0 on which u belongs to Wk+1,p(D′;R2n) if and only
if the same statement holds (perhaps with a different disc) for uδ. Our claim will thus follow if we show that
‖uδ‖Wk,p(D;C) → 0 as δ > 0. Now since k ≥ 1 and p > 2 and since u(0) = 0 we have by Corollary 4.13 an estimate
|u(z)| ≤ C‖u‖k,p|z|1−2/p, so for some u-dependent constant M the supremum of uδ over D will be at most M′δ1−2/p.
This implies that ‖uδ‖Lp(D;R2n) → 0 as δ > 0. Meanwhile for 1 ≤ |α| ≤ k we have (Dαuδ)(z) = δ|α|(Dαu)(δz), and
so ∫

D
|(Dαuδ)(z)|pd2z = δp|α|−2

∫
δD
|Dαu(w)|pd2w ≤ δp|α|−2‖Dαu‖pLp(D;R2n) → 0

as δ→ 0. This confirms that ‖uδ‖Wk,p(D;R2n) → 0 as δ→ 0, proving Claim 6.5.
We now proceed with the proof of Proposition 6.4. Choose a pair of concentric discs D0,D1 around the origin,

with
D0 ⊂ D̄0 ⊂ D1 ⊂ D̄1 ⊂ D.

Moreover let α, χ : C→ [0, 1] be two smooth cutoff functions, with

χ|D0 = 1, supp(χ) ⊂ D1, α|D1 = 1, supp(α) ⊂ D.

Also extend q to a compactly supported function (still denoted q) from R2n to R2n×2n, coinciding with q on a
neighborhood of u(D1) (for instance we could multiply q by a smooth cutoff function). The function χu is then
supported in the disc D1 (so extends by zero to a compactly supported continuous function on C), and by the
product rule and the assumed PDE for u obeys

(26) ∂z̄(χu) + (q ◦ u)(z)∂z(χu) = (∂z̄χ)u + (q ◦ u)(z)(∂zχ)u.

(While we’ve potentially changed q on u(D\D1), the equation still holds for z ∈ D\D1 bacause all terms involved
are zero there.) Writing u′ = αu (and extending this by zero outside the support of α), since all terms are zero in
(26) except where αu = u, u′ : C→ R2n is a compactly supported smooth function with

(27) ∂z̄(χu) + (q ◦ u′)(z)∂z(χu) = (∂z̄χ)u + (q ◦ u′)(z)(∂zχ)u.

The product rule gives a bound ‖u′‖k,p ≤ C‖u‖Wk,p(D;R2n). By Corollary 4.13 we also have an estimate ‖u′‖Ck−1 ≤

C′‖u′‖k,p. Hence by Proposition 6.2 for any η > 0 there is ε > 0 such that if ‖u‖Wk,p(D;R2n) < ε then q ◦ u′ ∈
Wk,p(C;R2n) with ‖q ◦ u′‖k,p < η. Hence by Claim 6.5, given any η > 0 we may (and do) assume that u obeys
(27) where the function q ◦ u′ : C→ R2n×2n belongs to Wk,p with ‖q ◦ u′‖k,p < η.

Write
h(z) = (∂z̄χ)(z)u(z) + (q ◦ u′)(z)(∂zχ)(z)u(z)

for the right hand side of (27). By Corollary 4.14 we have h ∈ Wk,p(C;R2n) (using that k ≥ 1 and p > 2).
Now where T is the Calderon–Zygmund operator of the previous section, so that in particular T ◦ ∂z̄ = ∂z on
Wk,p(C,R2n), (27) can be written

(Id + (q ◦ u′) · T )∂z̄(χu) = h.
The Calderón–Zygmund Theorem 5.6, together with Corollary 4.14, shows that we have a bound

‖(q ◦ u′) · Tg‖k,p ≤ C‖q ◦ u′‖k,p‖g‖k,p ≤ Cη‖g‖k,p

by our assumption on q ◦ u′. For η choose the value 1
2C , so that (q ◦ u′) · T has operator norm at most 1

2 as a
linear endomorphism of Wk,p. Since Wk,p is a Banach space, Id + (q ◦ u′) · T is then invertible, with inverse
B :=

∑∞
m=0(−(q ◦ u′) · T )m. Thus we have

∂z̄(χu) = Bh ∈ Wk,p(C,R2n).

Hence by Theorem 5.10 χu ∈ Wk+1,p(D;R2n), so since u coincides with χu on D0 we obtain u ∈ Wk+1,p(D0;R2n),
completing the proof. �
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Proposition 6.4 proves that a map u : Σ → M satisfying the nonlinear Cauchy-Riemann equation which
belongs (locally) to W1,p for some p > 2 is smooth on the interior of the domain: if z0 ∈ int(Σ), repeated
application of Proposition 6.4 shows that for every k ≥ 1 there is a neighborhood of z0 on which u ∈ Wk,p, so
Corollary 4.13 (applied to the product of u and a cutoff function) shows that u is Ck−1 on a smaller neighborhood
of z0. Thus for each k ≥ 1 u is Ck−1 on neighborhoods of every point in int(Σ), which is to say that u is Ck−1 on
int(Σ).

It remains to prove Theorem 6.1 when 1 < p ≤ 2. Evidently by what we have already done it is enough to
prove that if u : D→ R2n obeys ∂z̄u + (q ◦ u)∂zu = 0 and u(0) = ~0 and if u is continuous and W1,p, then for some
p∗ > 2 and some disc D′ around 0 we have u ∈ W1,p∗ (D′;R2n). The proof of this is structurally similar to that
of Proposition 6.4. Since we assume u is continuous and since u(0) = ~0, given ε > 0 there is δ > 0 such that
whenever z ∈ D we have |u(δz)| < ε. So since the conclusion holds for u if and only if it holds for uδ (possibly
with a different disc D′, where again uδ(z) = u(δz)), for any given ε > 0 it suffices to consider the case that
‖u‖C0 < ε. Letting χ and the C∞0 extension of q be as in the proof of Proposition 6.4 we have an equation

∂z̄(χu) + (q ◦ u)∂z(χu) = (∂z̄χ)u + (q ◦ u)(∂zχu)u =: h.

Now where p∗ =
2p

2−p if p < 2 and p∗ is any number larger than 2 if p = 2, Theorem 4.17 gives an embedding
W1,p(D,R2n) → Lp∗ (D,R2n) (for p = 2 this uses that, since D has finite measure, we have W1,2(D,R2n) ⊂
W1,p′ (D,R2n) for any p′ < 2). Note that p∗ > 2. So u ∈ Lp∗ , and then since q ◦ u is bounded on the support of
χ it follows that h ∈ Lp∗ . Also, since q is compactly supported and smooth it is Lipschitz, so (since u(0) = ~0)
‖q ◦ u‖C0 ≤ M‖u‖C0 .

We thus have
(Id + (q ◦ u) · T )∂z̄(χu) ∈ Lp∗ .

By the Calderón–Zygmund theorem T is a bounded linear operator on Lp∗ , and then multiplication by q ◦ u gives
an operator on Lp∗ of norm at most ‖q ◦ u‖C0 ≤ M‖u‖C0 . So by assuming ‖u‖C0 < ε for sufficiently small ε we
guarantee that (q ◦ u) · T has norm at most 1/2 on Lp∗ and hence that Id + (q ◦ u)T is invertible on Lp∗ . Hence we
obtain ∂z̄(χu) ∈ Lp∗ , which by Theorem 5.10 proves that χu ∈ W1,p∗ . So since u agrees with χu on a disc around
0 we have proven that there is a disc around zero on which u belongs to W1,p∗ . Since p∗ > 2 this completes the
proof of Theorem 6.1, as we may inductively apply Proposition 6.4.

6.2. The Carleman Similarity Principle and its applications. For an open subset D containing 0 ∈ C, call
two functions u, v : D → R2n similar near 0 if the following holds: there is an open D′ with 0 ∈ D′ ⊂ D and a
function Φ : D′ → GL(2n,R) such that v(z) = Φ(z)u(z) for each z ∈ D′. Consistently with our earlier assertion
that pseudoholomorphic curves are locally very much like holomorphic functions to Cn, we will see that any
pseudoholomorphic curve with domain containing 0 ∈ C is similar to a holomorphic function, with the caveat
that we will only be able to get fairly limited regularity on the “similarity” Φ.

In fact we will consider a bit more generally solutions u : D→ R2n to equations of form

(28)
∂u
∂s

+ J(z)
∂u
∂t

+ C(z)u(z) = 0,

where as usual we write z = s + it, and where for each z ∈ D the terms J(z) and C(z) are 2n × 2n-matrices, with
J(z) an almost complex structure and J and C varying smoothly with z (actually significantly weaker regularity
assumptions can be made on J and C if you prefer; see [MS2, Section 2.3] for precise statements). By what
we have already done, any J-holomorphic curve u (for J a smooth almost complex structure) solves such an
equation; just set C = 0 and J = J ◦ u—the latter is smooth since we now know that u is smooth. What follows
will show, essentially, that the “similarity class” of solutions to (28) is independent of the choice of J and C, at
least if we are willing to settle for non-smooth “similarities” Φ. First we remove the dependence on J.

Lemma 6.6. If D is a disc around 0 ∈ C and u : D → R2n is a solution of (28), then there is an open set D′

with 0 ⊂ D′ ⊂ D and smooth functions Φ : D′ → GL(2n,R), B : D′ → R2n×2n, and v : D′ → R2n such that, for
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z ∈ D′,

v(z) = Φ(z)u(z)
∂v
∂s

+ J0
∂v
∂t

+ B(z)v(z) = 0.

Proof. For Φ, set Φ(z) = Ψ(z)−1 where Ψ : D′ → GL(2n,R) such that Ψ(z)−1J(z)Ψ(z) = J0. This function Ψ can
be constructed using the implicit function theorem applied to the map F : GL(2n,R)→ {J ∈ GL(2n,R)|J2 = −1}
defined by Ψ 7→ ΨJ0Ψ−1, the point being that, choosing Ψ(0) such that F (Ψ(0)) = J(0), the linearization of F is
surjective at Ψ(0), so the the implicit function theorem solves the equation F (Ψ(z)) = J(z) for z sufficiently close
to zero. Another way of expressing the existence of Ψ is to say that the almost complex structure on the trivial
bundle R2n × D → D given by acting by J(z) on the fiber over z has a trivialization as a complex vector bundle
on a neighborhood D′ of the origin. This is a special case of the fact that if a vector bundle carries an almost
complex structure then the transition functions defining the vector bundle can be taken to live in GL(n,C) (in fact
they can even be taken in U(n)).

Since u = Ψv and JΨ = ΨJ0, we then have

0 =
∂u
∂s

+ J
∂u
∂t

+ Cu =
∂

∂s
(Ψv) + J

∂

∂t
(Ψv) + CΨv

= Ψ

(
∂v
∂s

+ J0
∂v
∂t

)
+

(
∂Ψ

∂s
+ J

∂Ψ

∂t
+ CΨ

)
v.

Thus the lemma holds with

B(z) = Ψ(z)−1
(
∂Ψ

∂s
(z) + J(z)

∂Ψ

∂t
(z) + CΨ(z)

)
.

�

The ring R2n×2n of 2n×2n square matrices (i.e. of R-linear transformations of R2n) contains as a subring a copy
of the complex-linear transformations Cn×n of Cn, where we identify the standard almost complex structure J0
on R2n with multiplication by i. A real-linear transformation of R2n is complex linear if and only if it commutes
with multiplication by i; thus

Cn×n = {B ∈ R2n×2n|BJ0 = J0B}.

Lemma 6.7. Lemma 6.6 continues to hold with B : D′ → R2n×2n replaced by a bounded (but not necessarily
continuous) function B′ : D′ → Cn×n.

Proof. We just need to find, for each z, a matrix B′(z) ∈ Cn×n such that B′(z)v(z) = B(z)v(z). If v(z) = 0 we’ll just
set B′(z) = 0. For v(z) , 0, B′(z) will be the matrix representing the following complex-linear transformation:
first project Cn onto the complex line through v(z) (using the orthogonal projection induced by the standard
inner product), and then compose this with the linear transformation Cv(z) → Cn which sends (a + ib)v(z) to
(a + ib)B(z)v(z). Thus in formulas:

B′(z)w =

 0 v(z) = 0
v(z)

T
w

v(z)
T

v(z)
B(z)v(z) v(z) , 0.

Clearly B′(z) ∈ Cn×n and B′(z)v(z) = B(z)v(z) for each z, and the entries of the matrix B′(z) are uniformly bounded
by a constant times ‖B‖C0 , so B′ ∈ L∞(D′;Cn×n. �

Now suppose u : D→ R2n and B′ ∈ L∞(D;Cn×n) with

(29)
∂u
∂s

+ J0
∂u
∂t

+ B′(z)u(z) = 0
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We attempt to find a subdisk D′ containing 0 and a map Φ : D′ → Cn×n ⊂ R2n×2n so that v := Φu is holomorphic.
Since ΦJ0 = J0Φ, we see that

∂v
∂s

+ J0
∂v
∂t

=

(
∂Φ

∂s
+ J0

∂Φ

∂t

)
u + Φ

(
∂u
∂s

+ J0
∂u
∂t

)
=

(
∂Φ

∂s
+ J0

∂Φ

∂t

)
u − Φ(z)B′(z)u(z).

From this it immediately follows that (recalling ∂z̄ = 1
2 (∂s + J0∂t)):

Proposition 6.8. If u satisfies (29) and if Φ : D′ → Cn×n obeys

∂z̄Φ = 2ΦB′

then v = Φu : D′ → R2n is holomorphic with respect to the standard complex structure J0.

The above equation can indeed be solved for Φ:

Theorem 6.9. Let D be a disc containing 0 ∈ C, and let A ∈ L∞(D;Cn×n). Then there is a disc D′ with
0 ∈ D′ ⊂ D and a map Φ : D′ → Cn×n such that

∂z̄Φ = Φ(z)A(z) for z ∈ D′.

Moreover for every p < ∞ we have Φ ∈ W1,p(D′;Cn×n), and Φ(z) is invertible for each z ∈ D′.

Corollary 6.10. If u : D → R2n satisfies (28) where D is a disk around the origin in C, there is a disc D′ such
that 0 ∈ D′ ⊂ D and a map Φ : D′ → GL(2n,R) of class W1,p for all p < ∞ such that z 7→ Φ(z)u(z) is a
holomorphic map.

Proof of Corollary 6.10. Indeed, this follows directly (after appropriate renamings) by combining Theorem 6.9
with Lemmas 6.6 and 6.7 and Proposition 6.8. �

Proof of Theorem 6.9. Similarly to the proof of Proposition 6.4 we can employ a renormalization trick:

Claim 6.11. For any ε > 0 it suffices to prove the theorem when ‖A‖∞ < ε

Indeed, if 0 < δ < 1 the function Φδ : D → Cn×n defined by Φδ(z) = Φ(δz) has the property that, for any
subdisc D0 ⊂ D, ∂z̄Φ = ΦA on {δz|z ∈ D0} if and only if ∂z̄Φδ = (Φ)(δA) on D0, and of course ‖δA‖∞ → 0 as
δ→ 0. So by choosing δ with ‖δA‖∞ < ε and finding a solution Φ′ : D0 → C

n×n on a disk D0 containing zero to
∂z̄Φ

′ = A(δΦ′) we may recover a solution to the original equation (having the same regularity as Φ′, and defined
on a smaller disc δD0) by setting Φ(z) = Φ′(δ−1z).

Accordingly assume ‖A‖∞ < ε where ε is a small number to be specified later. Choose a subdisk D′ ⊂
D containing 0 and a smooth cutoff function χ : C → [0, 1] supported in D and with χ|D′ = 1; we will cut
our functions off using χ in order to work with compactly supported functions. Specifically, we search for a
compactly supported function Ψ : C→ Cn×n with

Ψ(z) = χ(z) (P(χ(1 + Ψ)A)) (z).

If Ψ solves this, then setting Φ = Id + Ψ we would have

∂z̄Φ = ∂z̄Ψ = ∂z̄P(χΦA) = χΦA = ΦA on D′,

at least assuming that χΦA is within the class of functions on which P is well-defined with ∂z̄P equal to the
identity (recall that we’ve only established this for compactly supported smooth functions). Indeed, we have the
following:
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Proposition 6.12. Fix functions f1, f2 ∈ C∞0 (C;C) and define a linear map R f1, f2 : C∞0 (C;C)→ C∞0 (C;C) by

(R f1 f2 u)(z) = f1(z)(P( f2u))(z).

Then for any 1 < p < ∞ there is a constant C such that we have

‖R f1 f2 u‖1,p ≤ C‖u‖p.

Hence R f1 f2 extends to a bounded linear operator R f1 f2 : Lp(C;C)→ W1,p(C;C)

Proof. Recall that for g ∈ C∞0 (C;C) we have

Pg(z) =

∫
C

1
π(z − w)

g(w)d2w

(since d2w = −2idw ∧ dw̄), i.e., where K(z) = 1
πz , Pg = K ∗ g.

Let Ω be a compact set containing the supports of f1 and f2. Let M = max{‖ f1‖∞, ‖ f2‖∞, and let Ω̃ = {z ∈
C|(∃x, y ∈ Ω)(z = x − y)}. Note that Ω̃ is compact and so has finite measure. For u ∈ C∞0 (C;C) we have

(30) ‖R f1 f2 u‖pp =

∫
C

| f1(z)|p
∣∣∣∣∣∫
C

K(z − w)( f2(w)u(w))d2w
∣∣∣∣∣p d2z ≤ Mp

∫
Ω

∣∣∣∣∣∫
Ω

K(z − w)( f2(w)u(w))d2w
∣∣∣∣∣p d2z.

If K belonged to L1, we could have used Young’s inequality to estimate ‖K ∗ ( f2u)‖p ≤ ‖K‖1‖ f2u‖p. Now K does
not belong to L1; however letting

K̃(z) =

{
K(z) z ∈ Ω̃

0 z < Ω̃

the last formula in (30) is unchanged if K is replaced by K̃ and is bounded above by ‖K̃ ∗ ( f2u)‖pp. But since Ω̃ is
a bounded subset of C one readily checks that K̃ is integrable, and so Young’s inequality gives

‖K̃ ∗ ( f2u)‖p ≤ ‖K̃‖1‖ f2u‖p ≤ M‖K̃‖1‖u‖p,

and hence
‖R f1 f2 u‖p ≤ M2‖K̃‖1‖u‖p.

Meanwhile we have

∂z̄(R f1 f2 u) = (∂z̄ f1)P( f2u) + f1∂z̄P( f2u) = (∂z̄ f1)P( f2u) + f1 f2u

and
∂z(R f1 f2 u) = (∂z f1)P( f2u) + f1(∂zP( f2u)) = (∂z f1)P( f2u) + f1T ( f2u).

If M′ = max{‖∂z̄ f1‖∞, ‖∂z f1‖∞, ‖ f2‖∞} the above shows that

‖(∂z̄ f1)P( f2u)‖p, ‖(∂z f1)P( f2u)‖p ≤ M′2‖K̃‖1‖u‖p,

while ‖ f1 f2u‖p ≤ M2‖u‖p and by the Calderón-Zygmund theorem there is a universal constant C such that
‖ f1T ( f2u)‖p ≤ MC‖ f2u‖p ≤ M2C‖u‖p.

Thus R f1 f2 u, ∂z̄(R f1 f2 u) and ∂z(R f1 f2 u) all have Lp norms bounded by a universal constant times ‖u‖p, so the
proposition follows. �

Given this proposition, choose an arbitrary p > 2. Then the map Rχ,χ : C∞0 (C;Cn×n) → C∞0 (C;Cn×n) defined
by Rχ,χ(X) = χP(χX) extends to a linear map Lp → W1,p, with a bound ‖Rχ,χX‖1,p ≤ Cχ‖X‖p for some constant
Cχ. By Claim 6.11 we may assume ‖A‖∞ < 1

3CχM where M > 1 is a constant as in Morrey’s inequality: ‖u‖C0 ≤

C‖u‖W1,p . Extend A from its initial domain D to all of C by setting it equal to zero on C \ D. Thus A ∈
L∞(C;Cn×n) ∩ Lp(C;Cn×n) since D is bounded. For Ψ ∈ Lp(C;Cn×n) we hence have (1 + Ψ)A ∈ Lp(C;Cn) (for
ΨA ∈ Lp because Ψ ∈ Lp and A ∈ L∞). So we may define a map G : Lp(C;Cn×n)→ W1,p(C;Cn×n by

G(Ψ) = Rχ,χ((1 + Ψ)A) = χP(χ(1 + Ψ)A).
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Observe that, for Ψ,Ψ′ ∈ Lp(C;Cn×n),

‖G(Ψ)−G(Ψ′)‖p = ‖χP(χ(Ψ−Ψ′)A)‖p = ‖R f ((Ψ−Ψ′)A)‖p ≤ Cχ‖(Ψ−Ψ′)A‖p ≤ Cχ‖A‖∞‖Ψ−Ψ′‖p <
1

3M
‖Ψ−Ψ′‖p

by our assumption on ‖A‖∞. Thus G is a contractive mapping, so it has a unique fixed point Ψ (which may be
obtained as the limit of the sequence ψn defined by ψ0 = 0 and ψn+1 = G(ψn)). This map Ψ belongs to Lp and
obeys

Ψ = R f ((1 + Ψ)A).
But since R f maps Lp to W1,p and (1 + Ψ)A ∈ Lp when Ψ ∈ Lp it follows that in fact Ψ ∈ W1,p. In particular ∂z̄Ψ

is a well-defined element of Lp and

∂z̄Ψ = ∂z̄

(
R f ((1 + Ψ)A)

)
= (∂z̄χ)P(χ(1 + Ψ)A) + χ∂z̄P(χ(1 + Ψ)A).

Now the equation ∂z̄P = Identity on C∞0 extends by continuity to Lp, so the second term above is χ · (χ(1 + Ψ)A).
In particular, on D′ (where χ is identically 1 and so ∂z̄χ = 0) we obtain

∂z̄Ψ = (1 + Ψ)A on D′.

Moreover, since we chose our p > 2 and since Ψ ∈ W1,p, Ψ is in fact continuous. Hence (1 + Ψ)A ∈
L∞(D′;Cn×n). Since D′ is bounded it follows that (1 + Ψ)A ∈ Lq for every q < ∞. So since ∂z̄Ψ = (1 + Ψ)A it
follows from Theorem 5.10 that Ψ ∈ W1,q(D′′;Cn×n) for any open subset D′′ of D′ with closure contained in D′.

Finally, note that if X ∈ W1,p with ‖X‖1,p ≤ 1/2M, then

‖G(X)‖W1,p ≤ Cχ‖A‖∞‖1 + X‖p ≤
1

3M
‖1 + X‖p ≤

1
3M
·

3
2

=
1

2M
.

So by the construction of Ψ (obtained as the limit of a sequence constructed iteratively applying G to zero) it
follows that ‖Ψ‖W1,p < 1/2M, and so (by the choice of M) ‖Ψ‖C0 ≤ 1/2. Hence the matrix Φ(z) = 1 + Ψ(z) is
invertible for every z ∈ D, defines a map D′′ → Cn×n which belongs to W1,p for every p < ∞, and at all points in
D′′ we have ∂z̄Φ = ΦA. �

Recall that a holomorphic function u : D→ Cn is determined as soon as we specify the values of u and of all
of its derivatives at a single point. Thus if u, v : D → Cn are two different holomorphic functions such that the
function w = u− v has the property that, for every k ∈ N, lim|z|→0

|w(z)|
|z|k = 0 (which evidently forces the derivatives

of order k of w to vanish at 0), then w = 0 and so u = v. The Carleman similarity principle allows us to carry this
over to J-holomorphic curves (and indeed even a bit more generally):

Proposition 6.13. Let D be a disc in C, J an almost complex structure on Cn, and C : D → R2n×2n a smooth
function, and suppose that u0, u1 : D→ Cn each satisfy

∂ui

∂s
+ J(ui(z))

∂ui

∂t
+ C(z)ui(z) = 0.

If z0 ∈ D and for all k ∈ N we have

lim
z→z0

u1(z) − u0(z)
|z − z0|

k = 0,

then there is a neighborhood D′ of z0 such that u0 = u1 throughout D′.

Proof. Let w = u1 − u0. Subtracting the respective equations satisfied by u1 and u0 gives

0 =
∂w
∂s

+

(
J(u1(z))

∂u1

∂t
− J(u0(z))

∂u0

∂t

)
+ C(z)w(z)

=
∂w
∂s

+ J(u1(z))
∂w
∂t

+ C(z)w(z) + (J(u1(z)) − J(u0(z)))
∂u0

∂t
.

Now

(J(u1(z)) − J(u0(z)))
∂u0

∂t
=

∫ 1

0

d
dτ

(J(u0(z) + tw(z)))
∂u0

∂t
dτ = B(z)w(z)
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by the chain rule, where B is a certain matrix valued function which depends on the derivative of J and on ∂u0
∂t .

So w solves an equation of the form

∂w
∂s

+ J(u1(z))
∂w
∂t

+ (B(z) + C(z))w(z) = 0

for z ∈ D, whence Theorem 6.9 gives a disc D′ containing z0 and map Φ : D′ → GL(2n,R) such that w′ :=
z 7→ Φ(z)w(z) is a holomorphic function on D′, and Φ ∈ W1,p for every p < ∞. So by Corollary 4.13, there is a
constant C such that |Φ(z)| < C for all z ∈ D′. Then for every k ∈ N

|w′(z)|
|z − z0|

k ≤
|Φ(z0)w(z)|
|z − z0|

k ≤ C
|w(z)|
|z − z0|

k → 0

as z 7→ z0. Since w′ is holomorphic this forces w′ to be identically zero on D′, and therefore u1−u0 = w = Φ−1w′

is identically zero on D′. �

Corollary 6.14. (Unique continuation) Let Σ be a connected Riemann surface, M a smooth manifold with almost
complex structure J, and u0, u1 : Σ → M to J-holomorphic curves which agree to infinite order at some point
z0 ∈ Σ. Then u0 = u1 throughout Σ.

Of course, by definition, two functions agree to infinite order at a point if their derivatives of all orders coincide
there.

Proof. The set S = {z ∈ Σ|u0 and u1 agree to infinite order at z} is the intersection of closed sets and therefore is
closed, and S is nonempty since it contains z0. In local coordinates around any point z ∈ S , u0 and u1 satisfy the
hypotheses of Proposition 6.13, and so Proposition 6.13 shows that S contains a neighborhood of z, proving that
S is open. Since S is a nonempty, open, and closed subset of the connected surface Σ it follows that S = Σ. �

Corollary 6.15. Let u : Σ → M be a J-holomorphic map from a connected Riemann surface Σ. If u is not
constant, then the set of critical points of u is discrete.

Proof. We must show that any critical point z0 of u has a neighborhood in which z0 is the only critical point;
thus it suffices to work in a coordinate neighborhood of z0, in which u appears as a map D → Cn obeying
∂u
∂s + J(z)) ∂u

∂t = 0. Differentiating this equation with respect to s gives, where v = ∂u
∂s ,

0 =
∂2u
∂s

+
∂J
∂s
∂u
∂t

+ J
∂2u
∂s∂t

=
∂v
∂s

+ J(z)
∂v
∂t

+
∂J
∂s

J(z)v(z).

There is then a disc D′ around z0 and a map Φ : D′ → GL(2n,R) such that Φv is holomorphic, and hence either
has only isolated, finite order zeros or vanishes identically on D′. So since each Φ(z) is invertible v either has
isolated, finite order zeroes or vanishes identically on D′. The equation ∂u

∂s + J ∂u
∂t shows that v = ∂u

∂s vanishes at
a point if and only if the derivative du vanishes there (this latter being a coordinate indepenent notion). It hence
follows that the set on which du vanishes to infinite order is open and closed in Σ. So since Σ is connected either
du vanishes identically (so u is constant) or else there is no point at which du vanishes to infinite order, which
in particular implies that there is no open subset on which du vanishes identically. So since the above discussion
shows that if du had a non-isolated zero it would vanish on a neighborhood of that zero, this proves that if u is
nonconstant then all of its zeros are isolated. �

6.3. Isolation of intersection points and somewhere injectivity. We now consider intersection points between
(local) pseudoholomorphic curves. Let D be a small disc in C around 0, let J be an almost complex structure on
a smooth manifold M, and let u, v : D → M be two J-holomorphic curves such that u(0) = v(0). The results of
the previous subsection show that the set of points z ∈ D at which u(z) = v(z) is either discrete or equal to all of
D; however a this does not address the question of how the images of u and v intersect each other, since of course
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we might have u(z) = v(w) for some z , w. Nonetheless, the Carleman similarity principle can again be used to
prove a similar dichotomy for intersection points, at least away from critical points:

Theorem 6.16. Let u, v : D→ M be two J-holomorphic maps where D ⊂ C is a disc containing 0, and suppose
that u(0) = v(0) and that du(0) , 0. Then one of the following holds:

• There are neighborhoods U,V ⊂ D of 0 such that v(V) ⊂ u(U). In this case, there is a holomorphic map
φ : V → U such that

v|V = u ◦ φ.
• There are neighborhoods U,V ⊂ D of 0 such that

u(U) ∩ v(V) = {u(0)}.

Proof. Since du(0) , 0 and u is J-holomorphic, the map du(0) : T0D → Tu(z0)M is injective; by continuity
the same is true for du(z) for all z sufficiently close to 0. Thus (at least on a smaller disc around 0) u is an
immersion, and so it restricts to a (possibly still smaller) neighborhood D′ of 0 as an embedding. Consequently
coordinates may be chosen on a neighborhood of u(0) ∈ M in such a way that, with respect to these coordinates,
u|D′ appears as an embedding with image contained in R2 × {0}; write the image of u|D′ as W × {0} where W is
an open neighborhood of the origin in R2. Note that the fact that u is J-holomorphic implies that the tangent
space to u(D′) is preserved by J, so in these coordinates the restriction of J to W × {0} preserves the factor
TW. Furthermore, by possibly changing our initial choice of coordinates and shrinking D′, we may arrange that,
additionally, the restriction of J to W×{0} preserves the factor T0R

2n−2. (To carefully construct these coordinates,
proceed as follows: choose a Riemannian metric g on M which is invariant under J, and in a neighborhood D′ of
zero choose a frame {X3, X4, . . . , X2n} for the g-orthogonal complement of T (u(D′)) such that, for each w ∈ u(D′),
J(X2 j−1(w)) = X2 j(w). Then the coordinates (x1, x2, . . . , x2n) will correspond to the point expu(x1+ix2)

(∑2n
j=3 x jX j

)
.)

In terms of the coordinates of the previous paragraph, we may thus view u|D′ and v|D′ as maps D′ → C×Cn−1.
Express them accordingly as (u1, ũ) and (v1, ṽ) where u1, v1 : D′ → C and ũ, ṽ : D′ → Cn−1; we have arranged
that ũ = ~0 and that u1 is a diffeomorphism onto an open subset of C. With respect to the splitting, J has the

block form
(

A B
C D

)
where we have arranged that B(w, ~0) = C(w, ~0) for each w, and therefore that A(w, ~0) and

D(w, ~0) are almost complex structures on their respective domains C and Cn−1. Let π̃ : C × Cn−1 → Cn−1 be the
projection onto the second factor. Note in particular that we then have, for a general vector (x1, x̃) ∈ Cn,

π̃
(
J(w, ~0)(x1, x̃)

)
= D(w, ~0)x̃.

We have

0 = π̃∗

(
∂v
∂s

+ J(v1(z), ṽ(z))
∂v
∂t

)
=
∂ṽ
∂s

+ π̃∗

(
J(v1(z), ~0)

∂v
∂t

+ (J(v1(z), ṽ(z)) − J(v1(z), ~0))
∂v
∂t

)
=
∂ṽ
∂s

+ D(v1(z), ~0)
∂ṽ
∂t

+

∫ 1

0

d
dσ

(
J(v1(z), σṽ(z))

∂v
∂t

)
dσ.

But recall that D(v1(z), ~0) is an almost complex structure on Cn−1, and note that the integral above can, by the
chain rule, be expressed as B(z)ṽ(z) for some (complicated) function B : D′ → R(2n−2)×(2n−2). Hence the function
ṽ : D′ → Cn−1 obeys the hypothesis of Corollary 6.10. Consequently, on a smaller disc D′′ around the origin,
ṽ : D′′ → Cn−1 either vanishes identically or vanishes only at 0. Recalling that v = (v1, ṽ) and u = (u1, ~0), in the
case that ṽ|D′′ vanishes only at 0 we clearly have v(D′′) ∩ u(D′) = {u(0)}. On the other hand if ṽ is identically
zero on D′′, then since u1 : D′′ → C is an embedding (in particular its image contains a neighborhood of u1(0))
and since v1(0) = u1(0), for a suitably small neighborhood V of 0 we will have v1(V) ⊂ u1(D′) and so (since
ṽ = ũ = 0 in this case) v(V) ⊂ u(D′). Also, since u1 is an embedding and v1(V) ⊂ u1(D′), the restriction of u1
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to u−1
1 (v1(V)) has an inverse u−1

1 , and setting φ = u−1
1 ◦ v1 we obviously have v1 = u1 ◦ φ, from which it follows

that v = u ◦ φ since the Cn−1-components of u and v are both 0. To see that φ is holomorphic, note that, where
as above A is the almost complex structure on u1(D′) ⊂ C × {0} obtained by restricting J, the maps u1 and v1 are
both A-holomorphic, from which it immediately follows that φ = u−1

1 ◦ v is holomorphic.
�

Corollary 6.17. Let (M, J) be an almost complex manifold, let u : Σ → M be a J-holomorphic curve, where
the surface Σ may not be connected, and let Σ′ ⊂ Σ be any compact subset of the interior of Σ. Assume that
the restriction of u to each connected component of Σ is nonconstant. Then C := {z ∈ Σ′|du(z) = 0} is finite.
Furthermore, the set

A = {z ∈ M|(∃w ∈ Σ′)(w , z, u(w) = u(z) and u(D)∩u(D′) = {u(z)} for some open sets D,D′ with w ∈ D, z ∈ D′)}

is at most countable, and can have accumulation points only at points of C.

In fact, it turns out that points of A also can’t accumulate at C, but this is a harder result and we omit the
proof (it follows from a result of Micallef and White [MW] which is also proved in [MS2, Appendix E], and
Sikorav [Sik] gave a proof which may be a bit more easily digestible based on what we’ve already done). From
this deeper theorem it follows that A is actually finite.

Proof. Since any discrete subset of a compact topological space is finite, the first statement follows directly from
Corollary 6.15. For the second statement, suppose that a sequence {zm}

∞
m=1 in A had a limit z ∈ Σ′ \ (A ∪ C).

These zm would have corresponding points wm, which (since they belong to the compact set Σ′) would have a
subsequence converging to some w ∈ Σ′. We would have u(zm) = u(wm), so by continuity u(z) = u(w). Since we
assume that z < C, u restricts to a neighborhood of z as an embedding. Consequently it must be that w , z, since
if w = z the fact that u(zm) = u(wm) would force wm = zm once m is large enough for the sequences to enter the
neighborhood of z on which u is an embedding. Since w , z, Theorem 6.16 applies and we find that either z ∈ A
(a contradiction) or that the first alternative in Theorem 6.16 holds for w and z (with what is called u in Theorem
6.16 being the restriction of our given u to a coordinate neighborhood of z, and what is called v in Theorem 6.16
being the restriction of u to a coordinate neighborhood of w). But since wm → w and zm → z, the first alternative
of 6.16 for w and z implies the first alternative for wm and zm once m is large enough. But the assumption on the
zm shows that instead the second alternative holds for them. Thus any convergent sequence in A has limit either
in A or in C; since C is finite this proves that A ∪ C is closed. By continuity, the last clause of the corollary
follows immediately.

To see that A is countable, note that if Σ′′ is any compact subset of Σ′ \ C then A ∩ Σ′′ is closed by what
we have shown above, and so A ∩ Σ′′ is compact. But it follows immediately from the definition of A that A is
discrete, so since A ∩ Σ′′ is compact it is finite. So since Σ′ \ C can be written as a countable union of compact
sets it follows that A ∩ (Σ′ \C) is countable, and hence that A is countable since A ⊂ Σ′ and C is finite. �

For a J-holomorphic map u : Σ→ M where Σ is a closed surface, introduce the following terminology:
• A point z ∈ Σ is called an injective point if u−1{u(z)} = {z} and du(z) , 0.
• u is called somewhere injective if there exists an injective point z ∈ Σ.
• u is called a multiple cover if there exists a holomorphic map φ : Σ → Σ̄ of degree greater than one and

a J-holomorphic map v : Σ̄→ M such that u = v ◦ φ.
• u is called simple if it is not a multiple cover.

Clearly if u is somewhere injective it must be simple, since if it were a multiple cover then any point z ∈ Σ

would either be a critical point of φ and hence of u or else would have #u−1{u(z)} equal to at least the degree of
the (branched) covering map φ. More interestingly, the converse holds.

Theorem 6.18. Let u : Σ → M be a nonconstant J-holomorphic curve from a closed connected surface Σ to an
almost complex manifold (M, J). Then there is a closed surface Σ̄, a J-holomorphic map v : Σ̄→ M such that all
but countably many points of Σ̄ are injective points, and a holomorphic map φ : Σ→ Σ̄ such that u = v ◦ φ.
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Corollary 6.19. Any simple J-holomorphic map u : Σ→ M is somewhere injective, and indeed all but countably
many points of Σ are injective points.

Indeed, if we assume the theorem, φ would need to have degree 1 and hence would be invertible, so the
asserted property for u would follow from that for v.

Sketch of the proof of Theorem 6.18. Where A,C ⊂ Σ are the sets of Corollary 6.17 (with Σ′ = Σ), let Σ0 =

u(Σ) \ u(A ∪ C)). If z,w ∈ u−1(Σ0) with u(z) = u(w) then Theorem 6.16 and the fact that neither z nor w lies in
A∪C show that there are neighborhoods U of z and V of w and a holomorphic map φ : V → U with holomorphic
inverse such that v|V = u ◦ φ, and such that u|U and v|V are diffeomorphisms onto their images. Consequently
u|u−1(Σ0) : u−1(Σ0)→ Σ0 is a (unbranched) covering map.

Define an equivalence relation ∼ on Σ by declaring that z ∼ w if and only if, given neighborhoods U0 of z and
V0 of w, there are open sets U,V with z ∈ U ⊂ U0, w ⊂ V ⊂ V0 such that u(V) = u(W). The surface Σ̄ is by
definition the quotient Σ̄ = Σ/ ∼ by this equivalence relation. Where φ : Σ → Σ̄ is the quotient map, it’s clear
from the definition that there is a function v : Σ̄ → M uniquely defined by the property that u = v ◦ φ (set v(z)
equal to u(z′) for any z′ with φ(z′) = z, which is independent of the choice of z′ by the definition of ∼. Note that
for z,w ∈ u−1(Σ0), z ∼ w if and only if u(z) = u(w), so Σ̄ contains Σ0 as a subset with countable (in fact finite,
using the Micallef–White theorem) complement; further by Theorem 6.16 it holds that any point of Σ0 ⊂ Σ̄ is an
injective point for v.

It remains to show that Σ̄ carries the structure of an almost complex 2-manifold and that v is J-holomorphic
with respect to the (almost) complex structure on Σ̄; we will only outline this. The coordinate charts and almost
complex structure on Σ̄ \ φ(C) are directly induced from those on Σ: if x ∈ Σ̄ \ φ(C) then for any z,w ∈ Σ with
φ(z) = φ(w) = x there are neighborhoods U,V of z and w to which u restricts to an embedding and such that, for
some holomorphic diffeomorphism φ : V → U, u|V = u|U ◦ φ, and we may use a coordinate chart defined on U
(or on V) as a coordinate chart on φ(z) = φ(w) = x, with the almost complex structure on this coordinate chart in
Σ̄ the same as that from Σ.

The situation is more subtle near φ(C) and here (at least it seems to me8) one needs to appeal to the Micallef–
White theorem or something similar ([MW],[Sik]). For z ∈ φ−1(φ(C)) we will sketch the construction of a
holomorphic coordinate chart near φ(z) ∈ Σ (of course it will need to be true that the transition functions between
the charts for different z mapped to the same point by φ are holomorphic). Using the Micallef–White theorem,
for a sufficiently small neighborhood of z there will be no points of A; thus on a punctured disc neighborhood
D∗ of z the restriction u : D∗ → M will be a finite covering map onto its image u(D∗). Let mz be the degree
of this covering map. The image of this covering map will be another punctured disc, and so the covering
transformation group is Γz := Z/mzZ. Since no point of D∗ belongs to A ∪C, all of the covering transformations
in Γz are holomorphic diffeomorphisms of D∗, and they extend continuously to maps of D = D∗ ∪ {z} sending z
to itself. Hence by the removable singularities theorem in complex analysis it follows that each ψ ∈ Γz extends
to a holomorphic map ψ : D → D Identifying D with a subset of C by a coordinate chart around z, the map
w 7→

∏
ψ∈Γz

ψ(w) descends to a map φ(D) → C. One can show that this map is a homeomorphism to its image,
and (using removable singularities again) that transition maps between two such maps are holomorphic.

Note that φ is an immersion on Σ \ φ−1(φ(C)), so at points of Σ̄ \ φ(C) it’s easy to see that the fact that u is
J-holomorphic implies that v is J-holomorphic. To argue that v is J-holomorphic on all of Σ̄, one can appeal
to a removable singularities theorem for J-holomorphic curves (which we haven’t yet proven) stating that a
continuous map which is J-holomorphic except at finitely many points is in fact J-holomorphic everywhere. Or
one can (perhaps with help from the Micallef–White theorem which gives a normal form for u near the critical
points z as above) show that v at least belongs to W1,p for some p > 1 and solves the Cauchy–Riemann equation

8McDuff and Salamon seem to imply that their version of this result, [MS2, Proposition 2.5.1], doesn’t require one to know that A cannot
accumulate at C, but it appears to me that without this fact one wouldn’t be able to draw some conclusions that they draw in the course of
their proof. In particular, if any neighborhood of a critical point z potentially contained infinitely many points of A, then in place of a mz-fold
cover of a once-punctured disc near z we’d have a mz-fold cover of an infinitely-punctured disc, and the covering transformation group for
this cover might have more than mz elements, which would pose problems for defining the coordinate chart near φ(z).
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weakly, so (since v is also continuous) our smoothness Theorem 6.1 shows that v is a genuine J-holomorphic
curve.

�

7. Manifold structures on spaces of J-holomorphic curves

The goal for this section is to prove (at least part of) the following theorem.

Theorem 7.1. Let (Σ, j) be a closed almost complex 2-manifold of genus g, let (M, ω) be a symplectic manifold,
let A ∈ H2(M;Z), and let k be a sufficiently large integer. In the space Jk

τ (M, ω) of ω-tame almost complex
structures of class Ck, there is a subset J reg,k

τ (M, ω) which contains a countable intersection of open and dense
sets with the property that, if J ∈ J reg,k

τ (M, ω), then

M∗(Σ, J, A) = {u : Σ→ M|u∗[Σ] = A, u is J-holomorphic and simple}

is a canonically oriented Ck−1 manifold of dimension 2(1 − g) + 2〈c1(T M), A〉.

Specifically, I will prove here (modulo some background from infinite dimensional differential topology) that
M(Σ, J, A) is a manifold of some finite dimension; I won’t say much if anything about how to orient it or to
compute its dimension.

Recall that u : Σ→ M is J-holomorphic if and only if

∂̄Ju :=
1
2

(du + J(u) ◦ du ◦ j) = 0.

We will take the view, roughly, that ∂̄J is a map between (infinite-dimensional) manifolds,9 will show that, for
suitable J, the zero locusM∗(Σ, J, A) is a manifold by virtue of 0 being a regular value of ∂̄J .

This requires first some background about infinite-dimensional manifolds.

7.1. Banach manifolds. We record here some facts about Banach manifolds; I don’t intend to give proofs, but
encourage you to fill in the details of the proofs yourself if you are curious, or to consult some reference on
the subject ([MS2, Appendix A] contains some of the relevant details; there are various books (for instance
[Lan]) on differential topology that give a comprehensive introduction to smooth manifolds without assuming
finite-dimensionality, so that their treatment applies to Banach manifolds as well).

Given two normed vector spaces V and W let B(V,W) be the vector space of bounded linear maps from V to
W. Recall that B(V,W) carries the “operator norm” defined by, for A ∈ B(V,W),

‖A‖ = sup
v∈V:‖v‖=1

‖Av‖W .

If W is a Banach space (i.e. is complete with respect to its norm), then B(V,W) is a Banach space with respect to
the operator norm.

Suppose that F : U → Y is some function, where U is an open set in a Banach space X and where Y is also a
Banach space. Of course the norms on X and Y induce metrics, and so it makes sense to ask whether the function
F is continuous. Likewise, we shall now observe that it makes sense to ask if F is differentiable, or indeed C∞.
Indeed, for x ∈ X, we say that F is differentiable at x if there exists a bounded linear map (DF )x : X → Y such
that

lim
h→0

‖F (x + h) − F (x) − (DF )xh‖Y
‖h‖X

= 0.

Assuming that F is differentiable at every x ∈ U, we then have a map DF : U → B(X,Y) from an open set in
one Banach space to another Banach space. Accordingly we say that F : U → Y is C1 if DF : U → B(X,Y)
is C0 (i.e., if it is continuous). Now that we know what it means for a map from one Banach space to another to
be C1, we can say that F : U → Y is C2 if the map DF : U → B(X,Y) is C1, and then, inductively, we say that

9or rather, this is true locally; to formulate this globally we will have a vector bundle E → B∗ and a section u 7→ (u, ∂̄Ju) of this vector
bundle
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F : U → Y is Cr+1 if DF : U → B(X,Y) is Cr. Unsurprisingly, F : U → Y is called C∞ (or smooth) if F is Cr

for every natural number r.
Most of the standard results of multivariable differential calculus (for instance the chain rule) continue to hold

in this possibly-infinite-dimensional setting.
A Cr Banach manifold B (for some 1 ≤ r ≤ ∞) is then defined to be a second countable Hausdorff space

equipped with an atlas {(Uα, Eα, φα)}α∈A, where the Uα form an open cover of B; the Eα are Banach spaces, and
the φα : Uα → Eα are embeddings of open subsets such that the transition functions φβ ◦ φ−1

α : φα(Uα ∩ Uβ) →
φβ(Uα∩Uβ) are Cr-diffeomorphisms of open subsets of the Banach spaces Eα, Eβ (i.e. they are bijective Cr maps
with Cr inverses). Note that the convention here is that the Eα are not (necessarily) all the same Banach space;
it’s not difficult to show (consider the derivatives of the transition functions) that if B is connected then the Eα

are isomorphic as Banach spaces.10

For an example of a Banach manifold, let Σ,M be two finite-dimensional smooth manifolds with Σ compact,
choose p > dim Σ, and let B = W1,p(Σ,M) (i.e. B consists of continuous maps which in local coordinates in
source and target belong to the Sobolev class W1,p; as we’ve noted before the chain rule implies that this notion
doesn’t depend on the choice of local coordinate charts). A topology is induced on this space by prescribing a
neighborhood base around any given u ∈ B by the requirement that un → u if and only if, with respect to all
sufficiently small coordinate charts V ⊂ Σ such that u(V) is contained in a coordinate chart W in M, the restriction
un|V also has image contained in W for sufficiently large n and (in terms of these coordinates) un|V → u|V in W1,p.

To actually construct an atlas on B, one can proceed as follows. We will construct data (Uu, Eu, φu) as in
the definition of a Banach manifold for any smooth u : Σ → M. Choose and fix a Riemannian metric on M.
Given u ∈ C∞(Σ,M), let Eu = W1,p(Σ, u∗T M) be the space of W1,p sections of the bundle u∗T M → Σ. (Recall
that u∗T M is the bundle whose fiber over z ∈ Σ is the tangent space Tu(z)M; the implied norm on sections
of this bundle may be taken with respect to our chosen Riemannian metric.) Where Vu is a sufficiently small
W1,p-neighborhood of the zero section of u∗T M, Corollary 4.13 implies that any ξ ∈ Vu will, for every z, have
|ξ(z)| bounded above by the injectivity radius of our fixed Riemannian metric on M. We can then define a map
ψ : Vu → B by, for ξ ∈ Vu, letting ψ(ξ) be the map in W1,p(Σ,M) defined by

(ψ(ξ))(z) = expu(z)(ξ(z))

where exp is the exponential map of the Riemannian metric (i.e. (ψ(ξ))(z) is obtained by starting at u(z) and then
going out along a geodesic in the direction ξ(z) ∈ Tu(z)M). The neighborhood Uu of u is then ψ(Vu), and the chart
φu : Uu → Eu is given by ψ−1

u . It’s left to the reader to convince him/herself that the resulting transition maps
φv ◦ φ

−1
u are smooth maps between open subsets of the Banach spaces W1,p(Σ, u∗T M) and W1,p(Σ, v∗T M).

Just as in the finite-dimensional context, the implicit function theorem holds in Banach manifolds. Note that
the statement below contains references to the tangent space at a point to a Banach manifold (which is always a
Banach space), to Cr maps between Banach manifolds, and to the linearization11 of a Cr map as being a linear
map on tangent spaces. I have not formally given definitions of these notions, but leave it to the reader to fill
them in—all of this is just a straightforward generalization of the finite-dimensional case.

Theorem 7.2 (Implicit function theorem). Let F : B → B′ be a Cr map from one Banach manifold to another
and suppose p ∈ B′ has the property that, for every x ∈ B with F (x) = b, the linearization (F∗)x : TxB → TpB

′

has a bounded right inverse. Then F −1({p}) is a Cr Banach manifold, and TxF
−1({p}) = ker((F∗)x).

You can find a proof of the implicit function theorem for Banach manifolds in [MS2, Section A.3]; the
approach of the proof is sufficiently similar to that used in finite dimensions that it might be more instructive

10As is customary, the convention is that an isomorphism of Banach spaces need not be an isometry—just a bounded linear bijection
(which will necessarily have a bounded inverse)

11I’ll tend to use the word “linearization” where customary usage might call for “derivative” when discussing maps between Banach
manifolds, simply because finite-dimensional derivatives will often simultaneously be appearing in their own right and I want to keep the
two separate.
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to review the proof of the implicit function theorem in your favorite differential topology or analysis book and
persuade yourself that that proof generalizes to Banach manifolds.

By definition, p ∈ B′ is called a regular value of F if it satisfies the hypothesis of the implicit function
theorem above.

Remark 7.3. Of course, if (F∗)x has a bounded linear right inverse then it is surjective. Conversely, a surjective
linear map between vector spaces always has a linear right inverse (this is an exercise in the use of the axiom of
choice), but when there are norms present it’s not always possible to arrange for this right inverse to be bounded. I
don’t know any examples where this is obvious; however this sort of question has been studied for approximately
as long as people have been thinking about Banach spaces and so there are many examples that can be found
in the literature. In this direction, note that the question, “Is there a bounded surjection D : A → B from one
Banach space to another without a bounded right inverse” is essentially equivalent to the question, “Is there a
closed subspace V ≤ A of a Banach space which does not have a closed complement, i.e. such that there is no
closed W ≤ A such that A = V ⊕W.” (For one direction, given V ≤ A, let B = A/V (this carries a complete norm
given by assigning to a coset in A/V the minimal distance between any of its representatives and the subspace
V), and let D : A → A/V be the projection; if D had a bounded right inverse Q (so DQ = I) then Im(Q) would
be a complement to V , and would be closed since Im(Q) = ker(QD − I).) One relatively simple example (found
by Phillips in 1940) of a closed subspace V of a Banach space A without a closed complement is given by letting
A = l∞ be the space of bounded sequences of real numbers with the sup norm and letting V = c0 be the subspace
consisting of sequences which converge to 0. There is a proof that these have the claimed property in [Meg,
Theorem 3.2.20].

All that said, in practice, for the particular maps that we will encounter the hard part will be showing surjec-
tivity and then the existence of a bounded right inverse will quickly follow; this is basically because a bounded
linear surjection with a finite dimensional kernel automatically has a bounded right inverse (exercise; use the
Hahn-Banach theorem).

7.2. The linearization of the Cauchy–Riemann equation. We now fix a closed almost complex 2-manifold
(Σ, j), a 2n-dimensional symplectic manifold (M, ω), and a real number p > 2. As above let B = W1,p(Σ,M),
and let B∗ be the open subset of B consisting of maps u : Σ → M which are simple (i.e., such that there do not
exist maps φ : Σ→ Σ′ and v : Σ′ → M where φ is a holomorphic map of degree larger than 1 and u = v ◦ φ).

Given J ∈ Jk
τ (M, ω), we intend to introduce a vector bundle E → B∗ such that the Cauchy–Riemann operator

∂̄J (or, more correctly, the map u 7→ (u, ∂̄Ju)) can be interpreted as a section of the bundle E, which moreover has
a chance of having a surjective linearization so that the implicit function theorem will apply. To do this it is of
course necessary to decide what the fibers of the bundle will be—the fiber Eu over u ∈ B∗ should be a space in
which ∂̄Ju lives.

Now
∂̄Ju =

1
2

(du + J ◦ du ◦ j)

is, at any point z ∈ Σ, a R-linear map (∂̄Ju)(z) : TzΣ → Tu(z)M. Recalling the pullback bundle u∗T M → Σ with
fibers (u∗T M)z = Tu(z)M, ∂̄Ju can thus be viewed as a bundle map TΣ → u∗T M of bundles over Σ (i.e. as a
map between the total spaces which restricts to each fiber TzΣ as a homomorphism to (u∗T M)z). However ∂̄Ju
satisfies a constraint beyond this, namely for v ∈ TzΣ

∂̄Ju( jv) =
1
2

(du ◦ j − J ◦ du)(v) = −J
(

1
2

(du + J ◦ du ◦ j)
)

(v) = −J(∂̄Ju)(v).

We thus have
∂̄Ju ∈ HomJ(TΣ, u∗T M)

for any u, where the right hand side denotes bundle maps from TΣ → u∗T M which are complex antilinear with
respect to the almost complex structures j on TΣ and J on u∗T M. If u is assumed to be of class W1,p, then ∂̄Ju
will be of class Lp.

http://en.wikipedia.org/wiki/Hahn-Banach_theorem
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Accordingly we form a bundle E → B∗ whose fiber over u ∈ B∗ is the space Eu = Lp(HomJ(TΣ, u∗T M))
of Lp, complex antilinear bundle maps TΣ → u∗T M. I won’t go into the details of showing that this is gen-
uinely a (appropriately defined) Banach vector bundle beyond noting that to form the appropriate local trivial-
izations one needs to, for v ∈ B∗ sufficiently close to u ∈ B∗, identify the space Lp(HomJ(TΣ, v∗T M)) with
Lp(HomJ(TΣ, u∗T M)), and that this can be done by composing a bundle map TΣ → v∗T M (i.e. a collection of
maps TzΣ→ Tv(z)M) with parallel translation along shortest geodesics from v(z) to u(z) for all z in order to get a
bundle map TΣ→ u∗T M. Here we use the Riemannian metric gJ associated in the usual way to J ∈ Jk

τ (M, ω).
With the bundle E → B∗ constructed (set-theoretically, E = {(u, η)|η ∈ Lp(HomJ(TΣ, u∗T M))}), we have a

section s : B∗ → E sending u to (u, ∂̄Ju). The moduli spaceM∗(Σ, J, A) which we wish to be a manifold consists
of those u ∈ B∗ such that u∗[Σ] = A and ∂̄Ju = 0. M∗(Σ, J, A) will be a submanifold of B∗ provided that, for
every u ∈ M∗(Σ, J, A) there is a neighborhoodU of u such thatM∗(Σ, J, A) ∩U is a submanifold of B∗. Taking
U equal to the one of the trivializing neighborhoods for E as in the previous paragraph (so for v ∈ U we have a
linear identification Ev � Eu given by parallel translation), in terms of the trivialization ∂̄J restricts toU as a map

∂̄J : U → Eu = Lp(HomJ(TΣ, u∗T M)).

Of course, parallel translation can also be used to show that all of the maps inU are homotopic (so represent the
same homology class A). Together with the implicit function theorem, this establishes that:

Proposition 7.4. M∗(Σ, J, A) will be a Cr manifold provided that the following holds: for every u ∈ M∗(Σ, J, A)
and for sufficiently small trivializing neighborhoods U of u for the bundle E → B∗, the map ∂̄J : U → Eu is of
class Cr and its linearization at u has a bounded right inverse.

Accordingly we should fix a J-holomorphic map u : Σ → M with a trivializing neighborhood U ⊂ B∗ and
consider the linearization DJ

u of the Eu-valued map v 7→ ∂̄Jv. Now the tangent space to U at u is equal to the
space W1,p(Σ, u∗T M) of sections of the pullback bundle u∗T M; namely, to obtain a path t 7→ ut inU with u0 = u
and d

dt ut

∣∣∣
t=0 = ξ ∈ W1,p(Σ, u∗T M) we can set

ut(z) = expu(z)(tξ(z)).

The linearization DJ
u : W1,p(Σ, u∗T M)→ Eu of ∂̄J at u is then given by

DJ
uξ =

d
dt
∂̄Jut

∣∣∣∣∣
t=0

=
d
dt

(d(expu(tξ)) + J(expu(tξ))d(expu(tξ)) ◦ j)
∣∣∣∣∣
t=0

= ∇ξ + J(u)∇ξ ◦ j + (∇ξJ) ◦ du ◦ j.

(Here, for instance, ∇ξ ◦ j should be interpreted as the map TΣ → u∗T M defined by (∇ξ ◦ j)(v) = ∇u∗ jvξ. Also,
the path ∂̄Jut is regarded as living in the fixed vector space Eu via the parallel translation that identifies each Eut

with Eu.)
Now the bundle u∗T M → Σ carries an almost complex structure J(u), and so it admits local trivializations

u∗T M|U � U × R2n in terms of which the almost complex structure J(u) appears as the standard almost complex
structure J0 on R2n In terms of such a local trivialization (along with a local complex trivialization for TΣ) the
above formula for DJ

u reduces to something with the form

DJ
u |U : W1,p(U;C)→ Lp(U; HomJ0 (C;Cn)

ξ 7→ (∂z̄ξ + A(z)ξ(z)) dz̄

for some matrix-valued function A which incorporates the partial derivatives of J (contributed by the term ∇ξJ in
the formula for DJ

u) as well as some terms involving the Christoffel symbols of the metric arising from switching
from covariant derivatives of ξ to derivatives with respect to coordinates in local trivializations. Note that A is a
smooth function if J is; a bit more generally if J is Cr for some r ≥ 1 (which implies that u is as well, as you
can check by reexamining the proofs in Section 6) then A is Cr−1, which in turn implies that DJ

u is a Cr−1 map of
Banach spaces.
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Choose a finite cover U1, . . . ,Uk of Σ by trivializing charts in which the above local form holds, i.e. so that
upon restriction to the various Ui we have DJ

uξ = (∂z̄ξ + Ai(z)ξ) dz̄ for some matrix-valued function Ai on Ui

(which may be assumed to be bounded and C0 if J is C1). Choose ε > 0 such that (with respect to some fixed
metric on Σ) such that for any z ∈ Σ we have Bε(z) ⊂ Ui for some i, and for each i let Vi = {z ∈ Σ|Bε(z) ⊂ Ui}.
The Vi continue to cover Σ, with V̄i ⊂ Ui. Hence Theorem 5.10 gives constants Ci with

‖ξ‖W1,p(Vi) ≤ Ci
(
‖∂z̄ξ‖Lp(Ui) + ‖ξ‖Lp(Vi)

)
≤ Ci

(
‖DJ

uξ‖Lp(Ui) + (1 + ‖Ai‖C0 )‖ξ‖Lp(Ui)

)
.

The ‖Ai‖C0 are constants, and we have ‖ξ‖W1,p(Σ) ≤
∑k

i=1 ‖ξ‖W1,p(Vi), so this proves:

Proposition 7.5. Assuming that J is C1, for u ∈ M∗(Σ, J, A) the linearization DJ
u : W1,p(Σ, u∗T M)→ Eu of ∂̄J at

u obeys, for some constant C depending on u but not on ξ,

‖ξ‖W1,p ≤ C
(
‖DJ

uξ‖Lp + ‖ξ‖Lp

)
.

We wish for DJ
u to be surjective; ultimately we will show this (when it in fact holds) by proving that its range

is closed on the one hand and dense on the other. As is probably not obvious, Proposition 7.5 implies that,
regardless of J, DJ

u alway has closed range, as will follow from the functional analytic lemma below. To prepare
for it, recall that a linear operator K : X → Z from one Banach space to another is called compact if whenever
{xi}

∞
i=1 is a bounded sequence in X it holds that the sequence {Kxi}

∞
i=1 in Z has a ocnvergent subsequence. Recall

also that Theorem 4.16 (or rather a straightforward generalization of it which has essentially the same proof)
shows that the inclusion W1,p(Σ; u∗T M) ↪→ Lp(Σ; u∗T M) is a compact operator; in view of this Proposition 7.5
shows that the following lemma applies to the operator D = DJ

u .

Lemma 7.6. Suppose that X,Y,Z are Banach spaces, and that D : X → Y is a bounded linear operator such
that there exists a constant C and a compact operator K : X → Z such that, for all x ∈ X,

(31) ‖x‖X ≤ C (‖Dx‖Y + ‖Kx‖Z) .

Then ker D is finite dimensional and Im(D) ≤ Y is closed.

Proof. Let {xm}
∞
m=1 be a sequence in ker D such that ‖xm‖X ≤ 1 for all m. Then the fact that K is compact shows

that for some subsequence {xmi }
∞
i=1 the sequence {Kxmi }

∞
i=1 is Cauchy in Z. But since Dxmi = 0 for all i, (31)

shows that
‖xmi − xmk‖X ≤ C‖Kxmi − Kxmk‖Z ,

and so {xmi }
∞
i=1 is a Cauchy sequence in X, and therefore has a convergent subsequence. ker D is thus a closed

subspace of X (hence a Banach space with respect to the subspace norm) with the property that its closed unit
ball is compact; this implies that ker D is finite-dimensional.12

Now that we know that ker D is finite-dimensional, as noted at the end of Remark 7.3 it follows from the
Hahn-Banach theorem that ker D has a closed complement, i.e. that there is a closed subspace X′ ≤ X such that
X = X′ ⊕ ker D. Then X′ is a Banach space with respect to the subspace norm, and where D′ = D|X′ the operator
D′ : X′ → Y is an injective bounded linear operator with Im(D′) = Im(D). Obviously (31) continues to hold
with X,D replaced by X′,D′.

So we now show that Im(D′) (which as noted earlier is equal to Im(D)) is closed. We thus need to show that
if we have a sequence {xm}

∞
m=1 of elements of X′ such that D′xm → y ∈ Y , then y ∈ Im(D′). Suppose first that

some subsequence {xmi }
∞
i=1 of {xm}

∞
m=1 has ‖xmi‖X bounded. The compactness of K shows that {Kxmi }

∞
m=1 has a

convergent subsequence {Kxmi j
}, and by assumption we have D′xmi j

→ y. Hence (31) implies that {xmi j
} is a

Cauchy sequence in X′, whose limit x obeys D′x = y by the boundedness of D′.
There remains the case where no subsequence of the {xm}

∞
m=1 is bounded; however we shall derive a contradic-

tion in this case. Thus we are assuming that ‖xm‖X → ∞, with xm ∈ X′. Let am = xm
‖xm‖X

, so ‖am‖X = 1 and since
D′xm → y we have D′am → 0. The compactness of K shows that the Kam have a convergent subsequence, and

12See this Wikipedia page on Riesz’s Lemma for two proofs of the fact that a normed vector space whose closed unit ball is compact
must be finite-dimensional.

http://en.wikipedia.org/wiki/Riesz's_lemma
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then since D′am also converges it follows from (31) that {am}
∞
m=1 has a convergent subsequence, say converging

to a. Since am ∈ X′ and X′ is closed we have a ∈ X′, while since ‖am‖X = 1 we have ‖a‖X = 1. But since
D′am → 0 we would have D′a = 0, and this contradicts the injectivity of D′.

So in fact if xm ∈ X′ with D′xm → y the xm have a bounded subsequence, and so the paragraph before last
shows that y ∈ Im(D′) = Im(D). This completes the proof that Im(D) is closed.

�

Our goal is to show that, for generic J ∈ Jk
τ (M, ω), the operator DJ

u : W1,p(Σ; u∗T M) → Eu is surjective for
every u ∈ M∗(Σ, J, A). Proposition 7.5 and Lemma 7.6 establish that Im(DJ

u) ≤ Eu is always closed. It then
follows from the Hahn-Banach theorem that DJ

u is surjective provided that

Ann(Im(DJ
u)) := {η ∈ E∗u|η|Im(DJ

u ) = 0} = {0}.

(Here E∗u denotes as usual the space of bounded linear functionals on Eu. To deduce this from the Hahn-Banach
theorem, note that if Im(DJ

u) were a proper closed subspace of Eu we could choose x ∈ Eu \ Im(DJ
u); define a

bounded linear functional ` on V := Im(DJ
u) ⊕ 〈x〉 by `(tx + z) = t for t ∈ R, z ∈ Im(DJ

u); and then use the
Hahn-Banach theorem to extend the domain of ` from V to all of Eu.)

Recall that Eu = Lp(HomJ(TΣ, u∗T M)); thus in appropriate trivializations an element x ∈ Eu has the form
x|U = f (z)dz̄ where f ∈ Lp(U;Cn) for some coordinate chart U ⊂ Σ. Thus an element η ∈ E∗u can be locally
represented as η|U = g(z)dz̄ where g ∈ Lq(U;Cn) and 1

p + 1
q = 1; where 〈·, ·〉 is the standard (C-valued) inner

product on Cn, the pairing between Eu and E∗u is given by (for at least for x ∈ Eu supported in one of these open
sets U),

η(x) = Re
(

i
2

∫
U

g(z) f (z)dz ∧ dz̄
)
.

Suppose that η|Im(DJ
u ) = 0 and fix a trivializing neighborhood U as in the previous paragraph. For any ξ ∈

W1,p(Σ, u∗T M) such that supp(ξ) ⊂ U (so ξ can be viewed as a W1,p function U → Cn, recall that DJ
uξ =

(∂z̄ξ+A(z)ξ(z))dz̄ for a bounded continuous matrix-valued function A. So for any such ξ we have (again assuming
that η is represented within U as g(z)dz̄)

0 = η(DJ
uξ) = Re

(
i
2

∫
U

ḡ(z)(∂z̄ξ + Aξ)dz ∧ dz̄
)
.

It follows that ḡ ∈ Lq(U;Cn) is a weak solution to the equation −∂z̄ḡ + A(z)T ḡ(z) = 0. It then follows that
∂z̄ḡ ∈ Lq(U;Cn), so by Theorem 5.10 ḡ ∈ W1,q(U′;Cn) for any open set U′ compactly contained in U. Assuming
that J is C2, so that A is C1, we then have Aḡ ∈ W1,q(U′;Cn), so ∂z̄ḡ ∈ W1,q(U′;Cn), and then Theorem 5.10
shows that ḡ ∈ W2,q(U′′;Cn) for any open U′′ compactly contained in U′. Hence Theorem 4.17 shows that,
where p∗ =

2q
2−q > 2, we have ḡ ∈ W1,p∗ (U′′;Cn).

Since there is a finite cover of Σ by sets U as above, this implies the following:

Proposition 7.7. Assuming that J is C2, any η ∈ Ann(Im(DJ
u)) ⊂ E∗u belongs to W1,p∗

(
Σ;

(
HomJ(TΣ; u∗T M)

)∗)
,

and obeys (DJ
u)∗η = 0 where (DJ

u)∗ : W1,p∗
(
Σ;

(
HomJ(TΣ; u∗T M)

)∗)
→ Lp∗

(
Σ;

(
HomJ(TΣ; u∗T M)

)∗)
is an op-

erator whose which in suitable local trivializations (in which η(z) = g(z)dz̄) has the coordinate expression
(DJ

u)∗(g(z)dz̄) = ∂zg + B(z)g(z) for a continuous matrix-valued function B.

(Indeed, this follows from the discussion above the proposition since ∂z̄ḡ = ∂zg).
Now the same discussion that led to the conclusion (via Theorem 5.10 and Lemma 7.6) that DJ

u has closed
range and finite dimensional kernel also shows that (DJ

u)∗ has closed range and finite-dimensional kernel, since its
local coordinate expressions have the same basic form (modulo complex conjugation). Thus since Ann(Im(DJ

u)) ≤
ker(DJ

u)∗, this proves that Ann(Im(DJ
u)) is finite-dimensional. If η1, . . . , ηk is a basis for Ann(Im(DJ

u)), then we
may find x1, . . . , xk ∈ Eu such that ηi(x j) = δi j. Then Im(DJ

u) ⊕ span{x1, . . . , xk} is a closed subspace of Eu with
trivial annihilator, and so is all of Eu by the Hahn-Banach theorem. This proves that the cokernel of DJ

u , i.e.
Eu

Im(DJ
u ) , has finite dimension k. We have now proven:
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Theorem 7.8. If J is C2 and if u ∈ M∗(Σ, J, A), then the linearization DJ
u : W1,p(Σ; u∗T M)→ Eu is a Fredholm

operator, i.e. it is a bounded linear operator with closed range, finite-dimensional kernel, and finite-dimensional
cokernel.

By definition the index of a Fredholm operator D : X → Y is the difference ind(D) = dim(ker D)−dim(coker D).
Notice that if X and Y are finite-dimensional, any linear operator D from X to Y is Fredholm, and that the rank-
plus-nullity theorem shows that ind(D) = dim X − dim Y , independently of D. In the infinite-dimensional situa-
tion, of course not every operator is Fredholm, and it’s not true that all Fredholm operators have the same index;
however it is true that the Fredholm index is constant on any given connected component of the space of Fred-
holm operators. In particular, if we consider a path of Fredholm operators Dt : X → Y , although the individual
terms dim(ker(Dt)) and dim(coker (Dt)) will likely change as t varies, the difference ind(Dt) will remain constant.
See [Mr] for a concise treatment of these and other facts about Fredholm operators.

The Atiyah-Singer index theorem gives a formula for the indices of many naturally-occurring differential
Fredholm operators in geometry in terms of topological data; in our case it can be read as asserting that:

Theorem 7.9. If u∗[Σ] = A, dim M = 2n, and if Σ has genus g, then the Fredholm operator DJ
u : W1,p(Σ; u∗T M)→

Eu has index
ind(DJ

u) = 2n(1 − g) + 2〈c1(T M), A〉.

One essentially self-contained proof of this is given in [MS2, Appendix C]; in light of the stability properties
of the indices of Fredholm operators mentioned earlier this can also be seen as a special case of extensions
of the Riemann-Roch theorem in algebraic geometry due to Weil or to Hirzebruch (in particular we’re using
significantly less than the full strength of the Atiyah-Singer theorem here).

7.3. Generic surjectivity. Having shown that DJ
u is always Fredholm when J is Ck with k ≥ 2 and u ∈

M∗(Σ, J, A), we will now show that (if k is large enough) for generic J it holds that DJ
u is surjective for all

u ∈ M∗(Σ, J, A). We will first show that (for k ≥ 2) the “universal moduli space”

M̃∗,k(Σ, A) = {(u, J) ∈ B∗ × Jk
τ (M, ω)|∂̄Ju = 0}

is a manifold. In this direction, we form a bundle Ẽ → B∗ × Jk
τ (M, ω) whose fiber over (u, J) is, as before, the

space Eu,J = Lp(HomJ(TΣ, u∗T M)). We have a section (u, J) 7→ ∂̄Ju of this bundle, which works out (see [MS2,
p. 48]) to be of class Ck−1.

Proposition 7.10. If (u, J) ∈ M̃∗,k(Σ, A), then the linearization

Du,J : T(u,J)(B∗ × Jk
τ (M, ω))→ Eu,J

of the map (u′J′) 7→ ∂̄J′u′ at (u, J) is surjective, and in fact has a bounded right inverse.

Proof. Note that

T(u,J)(B∗ × Jk
τ (M, ω)) = TuB

∗ ⊕ TJJ
k
τ (M, ω)

= W1,p(Σ; u∗T M) ⊕ {Y ∈ Ck(T M,T M)|JY + Y J = 0}

(the equation JY +Y J = 0 arises from the fact that J +εY will continue to be an ω-tame almost complex structure
to leading order in ε provided that JY + Y J = 0). Since ∂̄J′u′ = 1

2 (du + J(u) ◦ du ◦ j), the linearization Du,J is
given by the formulas

Du,J(ξ, 0) = DJ
uξ

Du,J(0,Y) =
1
2

Y(u) ◦ du ◦ j

In particular the image of Du,J contains the finite codimension, closed subspace Im(DJ
u); hence Im(Du,J) is

also closed in Eu,J with finite codimension (for instance because, where π : Eu,J → Eu,J/Im(DJ
u) is the projection,

we have Im(Du,J) = π−1(π(Im(Du,J))) and π(Im(Du,J)) is a subspace of a finite-dimensional space and so is closed
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with finite codimension). So by the Hahn-Banach theorem, in order to show that Du,J is surjective it is enough
to show that Ann(Im(Du,J)) = {0}.

Since Im(Du
J) ≤ Im(Du,J), any element η of Ann(Im(Du,J)) belongs to Ann(Im(DJ

u)). In particular Proposition
7.7 implies that any such η is continuous. Suppose then that η is a not-identically-zero element of Ann(Im(Du,J)).
Now u : Σ → M is simple and J-holomorphic, so Corollary 6.17 shows that there is an open, dense set V ⊂ Σ

such that for all z ∈ V the map du(z) : TzΣ → Tu(z)M is injective and u−1({u(z)}) = {z}. Choose a small open
subset U ⊂ V to which η restricts (with respect to appropriate trivializations) as η|U = g(z)dz̄ with g : U → Cn

nonvanishing on U. Let W ⊂ M be an open subset such that W ∩ u(Σ) = u(U). Then since u|U is injective, since
du(z) is injective at each z ∈ U, and since our only constraint on Y is that it should anti-commute with J, we can
choose Y to be supported in W and to have the property that Y(u) ◦ du ◦ j = β(z)η(z0) where β a nonnegative
function supported in a small neighborhood of some z0 ∈ W. Since (because all points of U are injective points
for u) u−1(W) = U, we will have

η(Du,J(0,Y)) =
1
2

Re
(∫

U
β(z)g(z)g(z0)

)
> 0

as long as the support of β is chosen to be a small enough neighborhood of z0 that Re(g(z)g(z0)) does not change
sign on this neighborhood; this is possible by the continuity of η. But this contradicts the assumption that
η ∈ Ann(Im(Du,J)). Since the only assumption on η was that it was nonzero, this completes the proof that Du,J

is surjective at every (u, J) ∈ M̃∗(Σ, A).
To show that Du,J has a bounded right inverse, note that since ker DJ

u is finite-dimensional kernel it has a
closed complement A ≤ W1,p(Σ; u∗T M). Choose y1, . . . , ym ∈ Eu,J to be a linearly independent set such that
Im(DJ

u) ⊕ span{yi} = Eu,J , and choose Y1, . . . ,Ym ∈ TJJ
k
τ (M, ω) such thatDu,J(0,Yi) = yi. Then

Ã =


a, m∑

i=1

tiYi

 |a ∈ A, ti ∈ R


is a closed subspace of T(u,J)B

∗ × Jk
τ (M, ω) to which Du,J restricts as a bounded linear isomorphism onto Eu,J .

The map Eu,J → T(u,J)B
∗ × Jk

τ (M, ω) which sends η to the unique element x of Ã having the property that
Du,J x = η will then be the desired right inverse; that this map is bounded follows immediately upon applying the
open mapping theorem toDu,J |Ã.

�

In particular it follows immediately from the implicit function theorem that M̃∗,k(Σ, A) is a Ck−1 Banach
manifold (for any choice of the integer k ≥ 2).

Definition 7.11. A C1 map F : B → B′ from one Banach manifold to another is called Fredholm if, for every
x ∈ B, the linearization (F∗)x : TxB → T f (x)B

′ is a Fredholm operator.

We have shown that M̃∗,k(Σ, A) is a Ck−1-Banach manifold (for k ≥ 2 at least). Also, the space Jk
τ (M, ω)

of ω-tame almost complex structures of class Ck is a Banach manifold, essentially because the Ck norm on
endomorphisms of T M is complete13 Consider the map

π : M̃∗,k(Σ, A)→ Jk
τ (M, ω)

(u, J) 7→ J,

which is of class Ck−1.

13Note by contrast that the space of C∞ endomorphisms of T M, or more generally the space of C∞ sections of any vector bundle, is
not a Banach space with respect to any standard norm; this technical point is why we’ve switched from considering smooth almost complex
structures as we did earlier in the course to considering Ck almost complex structures. Note that although the results from Section 6.1 were
formulated under the assumption that J was C∞ in order to make their statements concise, their proofs generally extend to the case where J
is just Ck for some finite positive k, and show for instance that a J-holomorphic curve for a Ck almost complex structure J will be of class
Wk+1,p for all p < ∞ and so in particular will be Ck .
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Proposition 7.12. The projection map π : M̃∗,k(Σ, A) → Jk
τ (M, ω) is Fredholm, and at any (u, J) ∈ M̃∗,k(Σ, A)

we have dim ker(π∗)(u,J) = dim ker DJ
u and dim coker (π∗)(u,J) = dim coker DJ

u . Consequently whenever J ∈
Jk
τ (M, ω) is a regular value for π the linearization DJ

u : W1,p(Σ; u∗T M) → Eu is surjective and has a bounded
right inverse for every u ∈ π−1(J).

Proof. We are to consider the linearizations

(π∗)(u,J) : T(u,J)M̃
∗,k(Σ, A)→ TJJ

k
τ (M, ω).

Now
T(u,J)M̃

∗,k(Σ, A) = kerDu,J = {(ξ,Y)|DJ
uξ + LY = 0}

where the map L : TJJ
k
τ (M, ω) → Eu,J is defined by LY = 1

2 Y(u) ◦ du ◦ j. Of course (π∗)(u,J) acts by
(π∗)(u,J)(ξ,Y) = Y . Thus

ker(π∗)(u,J) = {(ξ, 0)|DJ
uξ = 0}

is finite-dimensional by Theorem 7.8. So to show that π is a Fredholm map it remains to show that Im(π∗)(u,J) is
closed and of finite codimension. Now

Im(π∗)(u,J) = {Y ∈ TJJ
k
τ (M, ω)|(∃ξ ∈ W1,p(Σ; u∗T M))(DJ

u + LY = 0)}

= L−1(Im(DJ
u)).

By Theorem 7.8 Im(DJ
u) is closed and of finite codimension, so since L is a bounded operator it immediately

follows that Im(π∗)(u,J) = L−1(Im(DJ
u)) is closed and of finite codimension at most equal to dim coker DJ

u . This
completes the proof that π is a Fredholm map. To complete the proof of the first sentence of the proposition
we need to show that dim coker Im(π∗)(u,J) ≥ dim coker DJ

u . Now recalling that LY = Du,J(0,Y), the proof of
Proposition 7.10 shows that a complement to Im(DJ

u) is spanned by elements of the form LY1, . . . , LYm for suitable
Yi ∈ TJJ

k
τ (M, ω). Assuming the LYi to be linearly independent (by decreasing m if necessary), the Yi will be

linearly independent elements of TJJ
k
τ (M, ω) whose span has trivial intersection with Im(π∗)(u,J) = L−1(Im(DJ

u)),
proving that dim coker (π∗)(u,J) ≥ dim coker DJ

u . Since, as noted earlier, the reverse inequality follows directly
from Im(π∗)(u,J) = L−1(Im(DJ

u)), this completes the proof of the first sentence of the proposition.
In particular, it follows that if J is a regular value of π, so that for every u ∈ π−1(J) the linearization (π∗)(u,J) is

surjective, then for every u ∈ π−1(J) the linearization DJ
u is surjective. As has essentially been discussed earlier,

this fact, combined with the fact that its kernel is finite-dimensional by Theorem 7.8, implies that it has a bounded
right inverse. Indeed, the Hahn-Banach theorem can be used to construct a closed subspace V ≤ W1,p(Σ; u∗T M)
such that ker DJ

u ⊕ V = W1,p(Σ; u∗T M). The restriction to V of DJ
u is a bounded linear bijection whose inverse

Q : Eu → V is bounded by the open mapping theorem, and then if we think of Q as a map to all of W1,p(Σ; u∗T M)
it will be a bounded right inverse to DJ

u .
�

Corollary 7.13. If J is a regular value of the map π : M̃∗,k(Σ, A)→ Jk
τ (M, ω) thenM∗(Σ, J, A) is a Ck−1 manifold

of dimension 2n(1 − g) + 2〈c1(T M), A〉.

Proof. Indeed, M∗(Σ, J, A) = π−1(J), so if J is a regular value of π then Proposition 7.12 shows that DJ
u has a

bounded right inverse (and in particular is surjective) for each u ∈ M∗(Σ, J, A). So by Proposition 7.4M∗(Σ, J, A)
is a manifold, whose dimension on a neighborhood of any given element u will be the dimension of the kernel of
the linearization Du

J . But since the cokernel of this operator is trivial, this dimension will be equal to the index of
DJ

u , which is equal to the value given in the statement of the corollary (independently of u) by Theorem 7.9. �

Regular values of π do indeed exist in abundance, as follows from the following infinite-dimensional version
of Sard’s theorem:

Theorem 7.14 (Sard-Smale Theorem). Let F : B → B′ be a Cl Fredholm map between two (second-countable)
Banach manifolds where l ≥ 1, and assume that for all x ∈ B ind((dF )x) ≤ l − 1. Then the set of regular values
of F is a countable intersection of open and dense subsets of B′.
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See [MS2, Section A.5] for a proof. Of course, the Baire category theorem then implies that the set of regular
values is dense in B′.

Since Proposition 7.12 shows that the index of each (dπ)(u,J) is equal to ind(DJ
u) = 2n(1 − g) + 2〈c1(T M), A〉,

if we take k ≥ max{2, 2 + 2n(1 − g) + 2〈c1(T M), A〉} and set J reg,k
τ (M, ω) equal to the set of regular values of

π, this completes the proof of Theorem 7.1 (with the exception of the orientation issue, which we won’t discuss
(see [MS2, pp. 50–51 and Section A.2])).

Recall that the reason for working with Ck almost complex structures rather than C∞ ones was mainly that
doing so allowed us to stay within the category of Banach manifolds, the issue being that while the space of
C∞ sections of a vector bundle admits a complete metric (so that Jτ(M, ω) is what would be called a Fréchet
manifold) it does not admit a complete norm. It is however true that Theorem 7.1 can be leveraged to show that
for J in a countable intersection of open dense sets within the spaceJτ(M, ω) of C∞ almost complex structures it
holds thatM∗(Σ, J, A) is a manifold of the expected dimension (with DJ

u surjective at each point ofM∗(Σ, J, A));
see [MS2, pp. 52-53] for the argument.

7.4. Variations on Theorem 7.1. Let us briefly outline the argument that we used in proving Theorem 7.1,
which asserts that for suitable generic J the spaceM∗(Σ, J, A) of J-holomorphic curves Σ→ M representing the
homology class A is a manifold:

(1) Theorem 7.8 showed that, for any J and any J-holomorphic map u, the linearization DJ
u of the Cauchy-

Riemann operator at u is a Fredholm operator.
(2) Proposition 7.10 showed that the “universal moduli space”

M̃∗,k(Σ, A) = {(u, J) ∈ B∗ × Jk
τ (M, ω)|∂̄Ju = 0, u∗[Σ] = A}

is a Banach manifold.
(3) Given this, Proposition 7.12 and the Sard-Smale theorem showed that the projection π : M̃∗,k(Σ, A) →
Jk
τ (M, ω) has many regular values J, for any of which the moduli spaceM∗(Σ, J, A) will be a manifold

of the expected dimension.
This basic outline can be used to prove many similar statements, as we now briefly sketch.

7.4.1. Compatible almost complex structures. If instead of ω-tame almost complex structures of class Ck we
were to restrict to the space Jk(M, ω) of ω-compatible almost complex structures of class Ck, the argument
would go through verbatim, except that because the tangent space to Jk(M, ω) is smaller than that to Jk

τ (M, ω)
(due to the additional condition ω(Jv, Jw) = ω(v,w)) the allowed perturbations Y that are used in the proof
of Proposition 7.10 would be subject to an additional constraint. However, one can still show that for any
η ∈ Ann(Im(DJ

u)) there is Y ∈ TJJ
k(M, ω) such that η(Du,J(0,Y)) > 0; the main relevant lemma here is [MS2,

Lemma 3.2.2]. Once this is established the proofs go through without change to establish a version of Theorem
7.1 with Jk

τ (M, ω) replaced by Jk(M, ω).

7.4.2. Parametrized moduli spaces. Assume that J0, J1 belong to the space Jk,reg
τ (M, ω) produced by Theorem

7.1. Now the space Jk
τ (M, ω) is contractible and in particular connected, so there are (many) paths {Jt}t∈[0,1]

connecting J0 to J1. We can’t expect to arrange that Jt ∈ J
k,reg
τ (M, ω) for every t. However, it is true that, for

generic paths {Jt}t∈[0,1] from J0 to J1, the space

M∗(Σ, {Jt}, A) = {(t, u) ∈ [0, 1] × B∗|∂̄Jt u = 0}

is a manifold of dimension 1 + 2n(1 − g) + 2〈c1(T M), A〉.
Indeed, this will hold provided that the path {Jt}t∈[0,1] has the property that that map (t′, u′) 7→ ∂̄Jt′ u

′ has
surjective linearization at every (t, u) such that ∂̄Jt u = 0. That the linearization is Fredholm follows quickly from
Theorem 7.8. One then shows that, where P(J0, J1) denotes the space of Ck paths from J0 to J1, the map with
domain [0, 1]×B∗×P(J0, J1) given by (t, u, {Jt}) 7→ ∂̄Jt u has surjective linearization at any of its zeros, and hence
that the universal moduli space {t, u, {Jt}|∂̄Jt u = 0} is a Banach manifold. Then apply the Sard-Smale theorem to
the projection of this Banach manifold onto P(J0, J1) to infer that generic paths from J0 to J1 are regular values
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for the projection, and that for any such path {Jt} the parametrized moduli spaceM∗(Σ, {Jt}, A) is a manifold of
the expected dimension.

7.4.3. Multiply covered curves. Throughout this section we have restricted attention to simple curves, insisting
that the map u belong to the open subset B∗ of B = W1,p(Σ,M) of maps which are not multiple covers. It’s not
difficult to see that this is required to get a statement like Theorem 7.1: after all, if φ : Σ̃ → Σ is a holomorphic
map of degree 2, then for any J-holomorphic map v : Σ → M representing the class A the map v ◦ φ : Σ̃ → M
is also J-holomorphic and represents the class 2A, so the space of J-holomorphic maps Σ̃ → M representing 2A
(without assuming that the map is simple) would need to have dimension at least that of M∗(Σ, J, A). But the
“expected dimension” 2n(1 − g(Σ′)) + 2〈c1(T M), 2A〉 might well be smaller than the dimension ofM∗(Σ, J, A),
which would pose problems for incorporating multiple covers into Theorem 7.1. This suggests that if one does
want a version of Theorem 7.1 which doesn’t assume that the maps involved are simple, one needs to somehow
evade the issue that a multiple cover of a J-holomorphic map is also J-holomorphic.

The only place where the assumption that the maps u that we consider are simple is in the proof of Proposition
7.10, where we identify an small open subset U ⊂ Σ for which the J-holomorphic map u obeys u−1(u(U)) = U.
The point here was that a perturbation Y of J that is supported in an open set W ⊂ M with W ∩ u(Σ) = u(U)
will have the property that η(Du,J(0,Y)) is equal to a certain integral over U ⊂ Σ. If instead u were a multiple
cover there would be disjoint open subsets U1, . . . ,Um with u(Ui) = u(U), and to find η(Du,J(0,Y) we would
need to sum the integrals over the various Ui. Cancellation between these integrals might prevent Y from being
constructed in such a way as to ensure that η(Du,J(0,Y)) , 0.

If the perturbations Y were allowed to vary with z ∈ Σ, then the issue described above would not arise, since
we could just have Y be nonzero on the single small open set U. Perturbing J by such a Y would result not in an
almost complex structure on M, but rather in an almost complex structure on M which depends on a point in Σ.
Thus we could instead consider, for a map J ∈ Ck(Σ,Jk

τ (M, ω)), solutions u : Σ→ M to the equation

(32) du +
1
2

J(z, u(z)) ◦ du ◦ j = 0.

An exact analogue of the proof of Theorem 7.1 shows that, for generic J ∈ Ck(Σ,Jk
τ (M, ω)), the spaceM(Σ, J, A)

of solutions to (32) which represent the homology class A (without any assumption that the map is simple) is
a manifold of the expected dimension. Solutions to (32) are not pseudoholomorphic curves (in particular it’s
not true that a multiple cover of a solution to (32) solves (32)); however it’s straightforward to construct an
almost complex structure J̃ on the product Σ × M such that u solves (32) if and only if the map z 7→ (z, u(z)) is
J̃-holomorphic. In particular this allows the regularity results from Section 6 to be brought to bear on solutions
of (32).

7.4.4. Curves with point constraints. Choose submanifolds N1, . . . ,Nl of M and, with notation as in Theorem
7.1, consider the set

M∗,k(Σ, J, A,N1, . . . ,Nl) = {(u,~z) ∈ B∗ × Σl|u∗[Σ] = A, ∂̄Ju = 0, u(zi) ∈ Ni for each i = 1, . . . , l}.

The arguments in the proof of Theorem 7.1 can be used to show that for generic J ∈ Jk
τ (M, ω) (with k large

enough) this set is a manifold of dimension 2n(1− g) + 2〈c1(T M), A〉+
∑l

i=1(2− codim(Ni)). (The 2− codim(Ni)
comes from the fact that the choice of zi gives us two degrees of freedom, while once zi is chosen requiring that
u(zi) ∈ Ni cuts down the dimension by the codimension of Ni.) To show this, one first shows that the map

ev : M̃∗,k(Σ, A) × Σl → Ml

(u, J,~z) 7→ (u(z1), . . . u(zl))

is a submersion. This implies that the “universal moduli space”

M̃∗,k(Σ, A,N1, . . . ,Nl) = ev−1(N1 × · · · × Nl) = {(u, J,~z)|(u, J) ∈ M̃∗,k(Σ, A), u(zi) ∈ Ni for each i = 1, . . . , l}
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is a Banach manifold. Just as in the proof of Theorem 7.1 the Sard-Smale theorem can be applied to the projection
M̃∗,k(Σ, A,N1, . . . ,Nl) → Jk

τ (M, ω) to obtain regular values J, for any of which M∗,k(Σ, J, A,N1, . . . ,Nl) will
indeed be a manifold of the expected dimension.

By the same token, if we fix a tuple ~z ∈ Σl, the space

M∗,k(Σ, J, A,N1, . . . ,Nl,~z) = {u ∈ B∗|u∗[Σ] = A, ∂̄Ju = 0, u(zi) ∈ Ni}

will, for generic J, be a manifold of dimension 2n(1−g)+2〈c1(T M), A〉−
∑l

i=1 codim(Ni). The argument for this is
the same as in the previous paragraph, except that now the key point is that the evaluation map M̃∗,k(Σ, A)→ Ml

given by (u, J) 7→ (u(z1), . . . , u(zl)) (with ~z fixed, unlike in the last paragraph) is a submersion. The proof that the
evaluation maps of this paragraph and the last are submersions may be an interesting exercise using the methods
of this section and the last, or you can consult [MS2, Proposition 3.4.2].

As should be apparent, the arguments of the various parts of this subsection can be combined with each other
to yield additional extensions of Theorem 7.1; details are left to the reader.

8. Compactness

The final ingredient needed before we can seriously begin applying the theory of pseudoholomorphic curves
is a statement that spaces of such curves (now known to be manifolds in favorable cases) are compact, at least
after we include some additional limit points. The key point will be (roughly speaking) that if a sequence of
curves un : Σ → M representing the same homology class (or more generally satisfying an energy bound) has
‖dun(p)‖ → ∞ at some point p, then arbitrarily small neighborhoods Un of p will, for n large, have E(un|Un ) > ~
for some universal positive constant ~. Consequently (as the total energy is bounded) there can only be finitely
many such small neighborhoods, and we will then focus in on these neighborhoods to understand the possible
limiting behavior.

Throughout this section we will consider a connected symplectic manifold (M, ω) with an almost complex
structure J ∈ Jτ(M, ω), which induces a Riemannian metric gJ(v,w) = 1

2 (ω(v, Jw)+ω(w, Jv)).14 We won’t insist
that M be closed, but will assume that the behavior “at infinity” of the Riemannian manifold (M, gJ) is somewhat
controlled. Specifically, we require (where for v ∈ T M we write |v| = gJ(v, v)1/2):

(1) (M, gJ) is complete (as a metric space with distance given by minimal lengths of paths, which is equiva-
lent to various other kinds of completeness by the Hopf-Rinow theorem).

(2) There are constants r0,C0 > 0 such that for every x ∈ M the exponential map expx : {v ∈ TxM||v| ≤ r0} →

B(x, r0) is a diffeomorphism, with ‖(d expx)v‖ ≤ C0 and ‖(d exp−1
x )y‖ ≤ C0 for each v ∈ {v ∈ TxM||v| ≤ r0}

and y ∈ B(x, r0).
(3) There is a constant C1 such that for all x ∈ M and v,w ∈ TxM we have |ω(v,w)| ≤ C1|v||w|.

The second and third conditions above always hold on any Riemannian manifold with some constants r0, C0,
C1 depending on x, and we are thus requiring that it be possible to choose these constants independently of x.
Easy covering arguments show that this can be done if M is closed (in which case the first condition of course
also holds). We will be proving a number of estimates about J-holomorphic curves which will involve some
constants; these constants will generally depend only on r0 and C0 above. If we are considering a sequence of
almost complex structures {Jn}

∞
n=1 which is Cauchy in (say) the C2 norm, then the constants r0 and C0 associated

to the Jn can be taken independent of n, in light of which the constants in our lemmas below can too.
If J is ω-compatible rather than just ω-tame then we have |ω(v,w)| = |gJ(Jv,w)| ≤ |Jv||w| = |v||w| and so we

can just take C1 = 1.

14J and hence gJ should probably be at least C2-smooth in order to allow customary Riemannian geometry constructions such as the
exponential map to be made and to enjoy the usual properties; there are however ways of getting around this requirement on J if one really
needs to—for instance in [AL, Chapter V] Sikorav only requires J to be Hölder continuous—essentially by using in place of gJ a smooth
Riemannian metric g on M which is C0-close to gJ .
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Recall that Proposition 2.1 and Remark 2.5 show that, if u : Σ→ M is J-holomorphic, then

E(u) = Area(u) =

∫
Σ

u∗ω (if u is J-holomorphic)

If J is ω-compatible, then Proposition 2.4 shows that any C1 map u : Σ→ M obeys Area(u) ≥
∫

Σ
u∗ω. In our

case, where J may just be tame but obeys (1)-(3) above, integrating (3) (applied to orthogonal vectors u∗e1, u∗e2)
over Σ shows that

(33)
∫

Σ

u∗ω ≤ C1Area(u) (for any u).

8.1. The isoperimetric inequality and the monotonicity formula. A number of important relationships exist
between the area of a J-holomorphic curve; the length of its boundary (if there is one); and the diameter of its
image. First, though, we prove a simple fact (a very weak analogue of the isoperimetric inequality) whose proof
has nothing to do with J-holomorphicity. Throughout we continue assume that (M, ω, J) obey (1)-(3) above, so
in particular we have the constants r0,C0.

Proposition 8.1. There is a constant C such that if γ : S 1 → M is a C1 curve having image contained in a ball
B(x0, r0/3) of radius r0/3, then there is a C1 map v : D2 → B(x0, r0) such that v|∂D2 = γ and

Area(u) ≤ CL(γ)2

where L(γ) =
∫ 2π

0

∣∣∣∣ dγ
dθ

∣∣∣∣ dθ is the length of γ.

Proof. We have Im(γ) ⊂ B(x0, r0/3) ⊂ B(γ(1), 2r0/3), so there is a map ξ : S 1 → {v ∈ Tγ(1)M||v| < 2r0/3}
defined by the property that

γ(eiθ) = expγ(1) ξ(θ).

Define v : D2 → M by
v(seiθ) = expγ(1)(sξ(eiθ)).

Evidently for all v ∈ D2 we have v(z) ∈ B(γ(1), 2r0/3) ⊂ B(x0, r0).
Now ∣∣∣∣∣∂v

∂s

∣∣∣∣∣ =
∣∣∣(d expγ(1))sξ(eiθ)ξ(eiθ)

∣∣∣ = |ξ(eiθ)|

(the last equality follows from Gauss’ lemma) while∣∣∣∣∣∂v
∂θ

∣∣∣∣∣ =

∣∣∣∣∣∣(d expγ(1))sξ(eiθ)

(
s

dξ
dθ

)∣∣∣∣∣∣ ≤ C0

∣∣∣∣∣dξdθ

∣∣∣∣∣ = C0

∣∣∣∣∣(d exp−1
γ(1))γ(eiθ)

dγ
dθ

∣∣∣∣∣ ≤ C2
0

∣∣∣∣∣dγdθ

∣∣∣∣∣ .
Hence

Area(v) ≤
∫ 2π

0

∫ 1

0

∣∣∣∣∣∂v
∂s

∣∣∣∣∣ ∣∣∣∣∣∂v
∂θ

∣∣∣∣∣ dsdθ ≤ C2
0

∫ 2π

0
|ξ(eiθ)|

∣∣∣∣∣dγdθ

∣∣∣∣∣ dθ ≤ C2
0L(γ)

∫ 2π

0

∣∣∣∣∣dγdθ

∣∣∣∣∣ dθ = C2
0L(γ)2,

where we’ve used the observation that |ξ(eiθ)| = dist(γ(1), γ(eiθ)) is no larger than the length of γ. �

Remark 8.2. In the special case that (M, ω, J) = (R2n, ω0, J0) (where the constant r0 can be taken to be ∞) the
classical isoperimetric inequality asserts that the constant C can be taken equal to 1

4π ; note that this constant is
achieved by any circle that is contained in a 2-plane in R2n. (Usually the isoperimetric inequality is expressed for
curves in R2 rather than R2n, but the standard proof using Fourier series extends to higher dimensions without
difficulty.)

Corollary 8.3. If S is a possibly disconnected closed 1-manifold (i.e. a union of finitely many circles) and
γ : S → M is a C1 map with image contained in a ball B(x0, r0/3), then there is a C1 map v : Σ′ → B(x0, r0)
from a (possibly disconnected) 2-manifold with boundary such that v|∂Σ′ = γ and Area(v) ≤ CL(γ)2, where C is
the constant of Proposition 8.1.

http://en.wikipedia.org/wiki/Gauss's_lemma_(Riemannian_geometry)
http://en.wikipedia.org/wiki/Isoperimetric
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Proof. γ is the union of finitely many curves γ1, . . . , γk : S 1 → B(x0, r0/3), so Proposition 8.1 gives maps
v1, . . . , vk : D2 → B(x0, r0) with vi|∂D2 = γi and Area(vi) ≤ CL(γi)2. Take for Σ′ a disjoint union of k copies of
D2 and for v the map whose restriction to the ith copy of D2 is vi. This satisfies our requirements, as

Area(v) =

k∑
i=1

Area(vi) ≤ C
k∑

i=1

L(γi)2 ≤ C

 k∑
i=1

L(γi)


2

= CL(γ)2.

�

Corollary 8.4. Let u : Σ → M be a C1 J-holomorphic map from a compact surface Σ with boundary whose
image is contained in a ball B(x0, r0/3). Then Area(u) ≤ CC1L(u|∂Σ)2, where C is the constant of Proposition
8.1.

Proof. u|∂Σ : ∂Σ → B(x0, r0/3) is a C1 map from a closed 1-manifold, so find v : Σ′ → B(x0, r0) so that v|∂Σ′ =

u|∂Σ and Area(v) ≤ CL(u|∂Σ)2. Now since u and v both have image in the B(x0, r0), which is a diffeomorphic copy
of a ball and therefore to which ω restricts as an exact 2-form, the fact that u and v agree on their boundaries
implies via Stokes’ theorem that

∫
Σ

u∗ω =
∫

Σ′
v∗ω. Hence

Area(u) =

∫
Σ

u∗ω =

∫
Σ′

v∗ω ≤ C1Area(v) ≤ CC1L(u|∂Σ)2,

where we’ve used (33). �

Now let u : Σ → M be a J-holomorphic map where Σ is compact, and let p0 ∈ Σ be a point with the property
that

r1 := dist(u(p0), u(∂Σ)) > 0.
Define

µ : Σ→ R

p 7→ dist(u(p), u(p0))

Then if
r < min{r0/3, r1}

the maps
µ|µ−1(0,r] and µ2|µ−1[0,r]

are smooth maps whose domains are contained in the interior of Σ. Of course, if s ∈ (0, r] is a critical value of µ,
then s2 is a critical value of µ2. Since µ−1[0, r] is compact, the critical points of µ2|µ−1[0,r] form a compact set, and
so their image (i.e. the set of critical values of µ2|µ−1[0,r]) is a compact subset of [0, r2]; moreover this subset has
measure zero by Sard’s theorem. Consequently the regular values of µ|µ−1(0,r] form an open, full-measure subset
of [0, r].

Proposition 8.5. With notation as above, suppose that 0 < a < b ≤ r and that each point of [a, b] is a regular
value for µ. Then there is a diffeomorphism

Φ : µ−1({a}) × [a, b]→ µ−1[a, b]

such that, for s ∈ [a, b], Φ
(
µ−1({a}) × {s}

)
= µ−1({s}).

Proof. (Sketch) Choose an auxiliary Riemannian metric on Σ, which (at least on the region where µ is differen-
tiable, which includes µ−1[a, b]) produces a gradient vector field ∇µ. Since µ has no critical points in µ−1[a, b]
and since µ−1[a, b] is compact, there is δ > 0 such that ‖∇µ‖h ≥ δ everywhere on µ−1[a, b]. Suppose that
γ : [t1, t2]→ µ−1[a, b] is an integral curve of the vector field ∇µ. Then

d
dt

(µ(γ(t))) = dµ(γ̇(t)) = dµ(∇µ) ≥ δ2 > 0.
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Consequently an integral curve for ∇µ which begins at p ∈ µ−1({a}) will, for a ≤ s ≤ b, pass through µ−1({s})
in time at most s−a

δ2 , and moreover will pass through µ−1({s}) only once since µ strictly increases along the curve
as long as it remains in µ−1[a, b]. With this said, the diffeomorphism Φ : µ−1({a}) × [a, b] → µ−1[a, b] can be
defined by setting Φ(p, s) equal to the unique point of µ−1({s}) that lies on the integral curve of ∇µ that passes
through p. Verification that this is indeed a diffeomorphism is left to the interested reader. �

Proposition 8.6. Suppose that each point of [a, b] ⊂ (0, r) is a regular value for µ, and for any t ∈ [a, b] define

A(t) = Area(u(Σ) ∩ B(p0, t)) L(t) = Length(u(Σ) ∩ ∂B(p0, t)).

Then
A(b) − A(a) ≥ (b − a) min

a≤t≤b
L(t).

Proof. Note that
A(b) − A(a) = Area(v) where v = u ◦ Φ

and Φ : µ−1({a})× [a, b]→ µ−1[a, b] is the diffeomorphism of the previous paragraph. (Since µ−1({a}) is a closed
one-dimensional submanifold of Σ it is a union of circles). Let θ be a local (angular) coordinate on µ−1({a}) and
let s be the coordinate on [a, b]. Thus

(µ ◦ Φ)∗∂θ = 0 (µ ◦ Φ)∗∂s = 1.

Write δp0 : B(u(p0), r) → R for the function x 7→ dist(x, u(p0)), so that µ = δp0 ◦ u. So for any tangent vector w
to the domain µ−1({a}) × [a, b] of v we have

gJ(∇δp0 , v∗w) = (δp0 ◦ u ◦ Φ)∗w = µ∗Φ∗w.

In particular
gJ(∇δp0 , v∗∂θ) = 0 gJ(∇δp0 , v∗∂s) = 1.

Now ∇δp0 has norm 1, so this implies that the orthogonal projection of v∗∂s along ∇δp0 has length 1; since ∇δp0

is orthogonal to v∗∂θ this proves that |v∗∂θ ∧ v∗∂s|gJ ≥ |v∗∂θ|gJ . Thus

A(b) − A(a) = Area(v) =

∫ b

a

∫
µ−1({a})

|v∗∂θ ∧ v∗∂s|gJ dθds ≥
∫ b

a

(∫
µ−1({a})

|v∗∂θ|gJ dθ
)

ds

≥ (b − a) min
a≤s≤b

L(t).

�

On any interval [a, b] as in Proposition 8.6, by using the diffeomorphism Φ as in the proof of the proposition
it’s not difficult to see that A is differentiable and that L is continuous on [a, b].15 Now if s is any regular value of
µ in (0, r), since the regular values form an open set we can find an interval [a, b] as in Proposition 8.6 such that
s ∈ [a, b]. Then taking limits as a→ s− and b→ s+, we see from Proposition 8.6 that

A′(s) ≥ L(s) if s ∈ (0, r) is a regular value of µ .

Since we assume r < r0/3, Corollary 8.4 applies to show that, for 0 < s < r, L(s) ≥ 1
√

CC1

√
A(s). Therefore

d
ds

√
A(s) =

A′(s)
2
√

A(s)
≥

1
2
√

CC1
if s ∈ (0, r) is a regular value of µ .

So if [a, b] ⊂ (0, r) is an interval of regular values of µ then
√

A(b) −
√

A(a) ≥ b−a
2
√

CC1
.

Now since the regular values of µ form an open, full measure subset of [0, r], for any ε > 0 we can find a finite
disjoint collection of intervals in (0, r) of regular values for µ having total length at least (1 − ε)r. We also know
that

√
A(0) = 0, and that t 7→

√
A(t) is a monotone increasing function. So on each of the intervals of regular

15For this statement and various others below one might worry about what happens if L vanishes for some s; however unless u is constant
on each connected component this doesn’t happen if s is a regular value, for instance because the Carleman similarity principle shows that a
circle in Σ can’t be mapped entirely to the same point.
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values in our collection
√

A increases by at least 1
2
√

CC1
times the length of the interval, while it also increases

(by an unknown amount) on the remainder of [0, r]. Hence
√

A(r) ≥ (1−ε)r
2
√

CC1
. Since ε was arbitrary, this proves:

Theorem 8.7 (Monotonicity theorem). Let u : Σ → M be a nonconstant J-holomorphic map from a connected
compact surface Σ and suppose p0 ∈ Σ, 0 < r < r0/3, and

u(∂Σ) ∩ B(u(p0), r) = ∅.

Then

Area(u(Σ) ∩ B(u(p0), r)) ≥
1

4CC1
r2.

Remark 8.8. In the case that (M, ω, J) = (R2n, ω0, J0), we have r0 = ∞, C1 = 1 since J0 is ω0-compatible, and
as noted earlier C = 1

4π by the classical isoperimetric inequality. Thus 1
4CC1

= π. So we recover the fact that
a J0-holomorphic curve passing through the origin of a ball of radius r in R2n and with boundary contained in
the boundary of the ball must have area at least πr2. We appealed to this fact (which more generally holds for
minimal surfaces) earlier in the sketch of the proof of the Gromov non-squeezing theorem.

Some elementary arguments now let us derive from Theorem 8.7 and Corollary 8.3 some facts whose hy-
potheses (unlike those of the results so far) don’t make reference to balls in M:

Proposition 8.9. There is a constant ~ > 0 such that, if Σ is a compact surface and u : Σ → M is C1 and
J-holomorphic with Area(u) < ~, then Area(u) ≤ CC1L(u|∂Σ)2. In particular if ∂Σ = ∅, then any nonconstant
J-holomorphic map u : Σ→ M has area at least ~.

Proof. Where C′ = 1
4CC1

is the constant appearing in Theorem 8.7, set ~ = min{CC1,C′}
(

r0
6

)2
. Assume that

Area(u) < ~ (and also that u is nonconstant, since the result is trivial if u is constant). Write L = L(u|∂Σ).
Obviously if L ≥ r0

6 then Area(u) ≤ CC1L2, so it suffices to consider the case that L < r0
6 .

I claim that there must be a ball of radius r0
3 which contains the image of u. More to the point, I claim

that if this were not the case, there would be a point p ∈ Σ such that B(u(p), r0/6) ∩ u(∂Σ) = ∅; once this is
established Theorem 8.7 shows that we’d have Area(u) ≥ C′(r0/6)2 which contradicts our assumption on u. To
prove this claim, note first that it trivially holds if ∂Σ = ∅. On the other hand if ∂Σ , ∅, choose any p0 ∈ ∂Σ,
so by assumption u(Σ) 1 B(u(p0), r0/3). So if p1 has dist(u(p1), u(p0)) ≥ r0/3, then since L < r0/6 we have
dist(u(p1), u(∂Σ)) ≥ r0/6. This confirms that if no ball of radius r0/3 contains the image of u then there would
be a point p1 in Σ with B(u(p), r0/6) ∩ u(∂Σ) = ∅, which as discussed above contradicts Theorem 8.7 and the
assumption on Area(u).

But now that we know there is a ball of radius r0/3 containing the image of u, Proposition 8.4 immediately
gives Area(u) ≤ CC1L2, completing the proof. �

Proposition 8.10. Let Σ be a compact connected surface with exactly two boundary components ∂−Σ, ∂+Σ. If
ε < r0/3 and if u : Σ → M is a C1 J-holomorphic map with Area(u) < C′ε2 and L(u|∂−Σ), L(u|∂+Σ) < ε, then the
diameter of u(Σ) is less than 5ε.

The main case of interest here is where Σ is an annulus. Here and below the diameter of a subset S ⊂ M refers
to the supremal distance (as measured by the metric on M, which takes into account paths that leave S ) between
any two points of S .

Proof. It’s enough to show that if we had diam(u(Σ)) ≥ 5ε while L(u|∂±Σ) < ε then there would be p ∈ Σ with
dist(u(p), u(∂Σ)) > ε, since in this case Theorem 8.7 would contradict our assumption on Area(u). The proof of
this claim splits naturally into two cases.
Case 1: δ := dist(u(∂−Σ), u(∂+Σ)) ≤ 2ε. Now the diameters of the individual loops u(∂−Σ), u(∂+Σ) are each

less than ε/2 (since if p and q are two points on one ∂−Σ or ∂+Σ such that u(p) and u(q) are maxi-
mally far apart, then u(∂±Σ) contains two distinct paths from p to q (one “clockwise” and the other
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“counterclockwise”)). So the assumption δ ≤ 2ε implies that any two points u(p), u(q) ∈ u(∂Σ) have
dist(u(p), u(q)) < 3ε. So if diam(u(Σ)) ≥ 5ε, then choosing x, y ∈ Σ so that dist(u(x), u(y)) ≥ 5ε, we
have

5ε ≤ dist(u(x), u(∂Σ)) + dist(u(y), u(∂Σ)) + max{d(u(p), u(q))|p, q ∈ ∂Σ}

< dist(u(x), u(∂Σ)) + dist(u(y), u(∂Σ)) + 3ε,

and so one or the other of dist(u(x), u(∂Σ)) and dist(u(y), u(∂Σ)) must be at least ε.
Case 2: δ = dist(u(∂−Σ), u(∂+Σ)) > 2ε. Choose p ∈ ∂−Σ and q ∈ ∂+Σ such that dist(u(p), u(q)) = δ. Let

γ : [0, 1] → Σ be a continuous path from p to q. The continuous function t 7→ dist(u(γ(t)), ∂−Σ) then
takes values 0 at t = 0 and δ at t = 1, so by the Intermediate Value Theorem there is t0 such that
dist(u(γ(t0), ∂−Σ)) = δ/2. But by the definition of δ as the infimal distance from u(∂−Σ) to u(∂+Σ) (and
by the triangle inequality) we then necessarily have dist(u(γ(t0)), ∂+Σ) ≥ δ−δ/2 = δ/2. So since δ/2 > ε,
γ(t0) ∈ Σ has the desired property.

�

8.2. Removal of singularities and Gromov’s Schwarz Lemma. An important consequence of the monotonic-
ity theorem (and its corollary, Proposition 8.10) is another analogue of a property of standard holomorphic
functions, namely that a holomorphic map of a punctured disk extends to a holomorphic map of the whole disc
provided that it doesn’t diverge too severely as one approaches the puncture. To set this up, for 0 < r < R,
introduce the notations:

D(R) = {z ∈ C||z| ≤ R},

D∗(R) = {z ∈ C|0 < |z| ≤ R},

A(r,R) = {z ∈ C|r ≤ |z| ≤ R}.

Theorem 8.11 (Removal of Singularities). Suppose that u : D∗(R)→ M is a J holomorphic map such that

Area(u) =

∫
D∗(R)

∣∣∣∣∣∂u
∂x
∧
∂u
∂y

∣∣∣∣∣
gJ

dxdy < ∞.

Then u extends to a continuous function on all of D(R).

Note that once we know that u extends to a continuous function, since the hypothesis that the area is finite
(so also the energy

∫
|du|2 is finite, as these are equal for J-holomorphic curves) implies that u is of class W1,2,

Theorem 6.1 implies that u is C∞ on the interior of D(R) (or, if J is just Ck, u is Ck), and so in particular
u : D(R)→ M is a genuine J-holomorphic curve.

Proof. Consider arbitrary numbers η, ρ with 0 < η < ρ < R, and for t ∈ [η, ρ] define

α(t) = Area(u|A(η,t)) λ(t) = Length(u|∂D(t)).

Since the standard polar coordinate basis vectors ∂r, ∂θ have |∂r | = 1 and |∂θ| = r, and so j∂θ = −r∂r, we see that,
since u is J-holomorphic,

α(t) =

∫ t

η

∫ 2π

0

∣∣∣∣∣∂u
∂θ
∧
∂u
∂r

∣∣∣∣∣
gJ

dθdr =

∫ t

η

∫ 2π

0

∣∣∣∣∣∂u
∂θ
∧ J

∂u
∂θ

∣∣∣∣∣
gJ

r−1dθdr

=

∫ t

η

(∫ 2π

0

∣∣∣∣∣∂u
∂θ

∣∣∣∣∣2 r−1dθ
)

dr.

So

α′(t) = t−1
∫ 2π

0

∣∣∣∣∣∂u
∂θ

∣∣∣∣∣2 dθ.
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Meanwhile

λ(t)2 =

(∫ 2π

0

∣∣∣∣∣∂u
∂θ

∣∣∣∣∣ dθ)2

≤ 2π
∫ 2π

0

∣∣∣∣∣∂u
∂θ

∣∣∣∣∣2 dθ

by the Schwarz inequality. This shows that

α′(t) ≥
1

2πt
λ(t)2.

Consequently we have

α(ρ) ≥ α(ρ) − α(η) ≥
∫ ρ

η

1
2πt

λ(t)2dt

≥
1

2π
log

(
ρ

η

)
min
η≤t≤ρ

λ(t)2.(34)

Now since Area(u) < ∞, we have α(t) → 0 as t → 0. Let C′ be as in Proposition 8.10, and let ε > 0 be
given. Choose a number ρ1 > 0 such that α(ρ1) < C′ε2. Since log(ρ1/η)→ ∞ as η→ 0+, we can choose a value
η1 ∈ (0, ρ1) such that (34) (with r = ρ1, η = η1) forces

min
η1≤t≤ρ1

λ(t) < ε.

Choose a particular t1 ∈ [η1, ρ1] so that λ(t1) < ε. I claim that diam(u|D∗(t1)) ≤ 5ε. To show this, it suffices to show
that given any ρ2 ∈ (0, 1) we have diam(u|A(ρ2,t1)) < ε. But applying (34) once again with r = ρ2 and η = η2 � ρ2
we find that (if we choose η2 appropriately) minη2≤t≤ρ2 λ(t) < ε.

Choosing a particular t2 ∈ [η2, ρ2] so that λ(t2) < ε, we have A(ρ2, t1) ⊂ A(t2, t1) ⊂ D∗(ρ1). The second
inclusion shows that Area(u|A(t2,t1)) < C′ε2 by the choice of ρ1, while we’ve arranged that the restriction of u to
either boundary component of A(t2, t1) has length less than ε. So by Proposition 8.10 we have diam(u(A(t2, t1))) <
5ε, whence diam(u(A(ρ2, t1))) < 5ε. The number ρ2 ∈ (0, t1) was arbitrary, so this proves that diam(u(D∗(t1))) <
5ε.

In sum, we’ve shown that if ε > 0 then there is t1 > 0 such that u(D∗(t1)) has diameter less than 5ε. But it
immediately follows from this that if zn ∈ D∗(R) with zn → 0, then u(zn) is a Cauchy sequence. We have assumed
that M is complete, so this Cauchy sequence has a limit u0. Extending u by setting u(0) = u0, we have arranged
that if ε > 0 then there is t1 such that all points of u(D(t1)) are within distance 5ε of u(0), so u is continuous at
0. �

The analysis in Theorem 8.11 also helps to prove the following:

Proposition 8.12. Where ~ is the constant of Propostion 8.9, if ε > 0 there is a constant η > 0 such that if
u : D(1)→ M is a J-holomorphic map with Area(u) < ~, then

u(D(η)) ⊂ B(u(0), ε).

Proof. Given u as in the statement, for 0 ≤ t ≤ 1 let α(t) = Area(u|D(t)) and λ(t) = Length(u|∂D(t)). By Proposition
8.9, since Area(u) < ~ we have α(t) ≤ Cλ(t)2 for some (newly redefined) constant C. Just as in the proof of
Proposition 8.11, we have (by (34) with ρ = 1) for 0 < η < 1

~ ≥ α(1) ≥ α(1) − α(η) ≥
1

2π
log

(
1
η

)
min
η≤t≤1

λ(t)2.

Given ε > 0, we can then choose η independently of u such that for some t1 ∈ [η, 1] we’ll have λ(t1) < ε.
The same argument as in the proof of Theorem 8.11 then shows, using another application of (34), that for any
ρ2 ∈ (0, t1) there is is t2 < ρ2 with λ(t2) < ε. Also, Area(u|A(t2,t1)) ≤ α(t1) < Cε2, and so we get from Proposition
8.10 that (for some universal constant C̃ depending on C/C′) diam(u(A(ρ2, t1))) ≤ diam(u(A(t2, t1))) < C̃ε. Since
ρ2 < t1 was arbitrary this shows that diam(u(D(t1))) ≤ C̃ε, and hence that (since t1 ≥ η) diam(u(D(η))) ≤ C̃ε.
While t1 and t2 in principle depended on u, the values η and C̃ just depended on ε and ~, so the proposition
follows upon renaming the parameters appropriately. �
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Before applying Proposition 8.12, we record the following consequence of the proof of Theorem 6.1.

Proposition 8.13. Fix p > 2, k ≥ 1, and r,N > 0, and a coordinate neighborhood in M with compact closure,
identified with a bounded open subset U of R2n. Then there are δ > 0 and N′ > 0 such that if u : D(r) → U is
J-holomorphic and ‖u‖W1,p(D(1)) ≤ N, then ‖u‖Wk+1,p(D(δr)) ≤ N′.

The point of the proposition is that δ and N′ depend only on the W1,p bound on u and not on the particular u
obeying the bound.

Proof. After postcomposing the coordinate patch with a translation we assume that u(0) = ~0 and that the almost
complex structure J coincides with J0 at ~0. (The expression of the almost complex structure J in these new
coordinates will depend on the initial value of u(0), but by compactness of the neighborhood all expressions for
J obtained in this way will obey a uniform Ck bound, and this will suffice for what follows.) As in Section 6.1,
the equation for u to be J-holomorphic then takes the form

∂z̄u + q(u(z))∂zu = 0

for some matrix valued function q with q(0) = 0 which obeys a uniform Ck+1 bound. By induction on k, it’s
enough to prove the conclusion assuming that for some N, r > 0 we have a bound ‖u‖Wk,p(D(r)) ≤ N. The proof
is essentially just a matter of examining carefully the proof of Theorem 6.1. Let α : D(r) → [0, 1] be a smooth
function equal to 1 on D(3r/4) and to 0 outside D(7r/8). The parameter δ shall be chosen so that the function
u2δ(z) = u(2δz) has the property that the operator on Wk,p defined by multiplication by q◦αu2δ has operator norm
less than 1

2‖T‖k,p
where ‖T‖k,p is the operator norm of the Calderón–Zygmund operator T on Wk,p. δ can be chosen

in a way that depends only on N by the chain rule, the product rule, and the fact that ‖u2δ‖Wk,p(D(r)) is bounded by
a constant times δ1−2/p‖u‖Wk,p(D(r)).

With this δ chosen, let χ : D(r) → [0, 1] be a smooth function (independent of u) supported in D(3r/4) and
equal to 1 on D(r/2). We then have an equation

(I + (q ◦ (αu2δ)) · T )∂z̄(χu2δ) = (∂z̄χ + q ◦ (αu2δ)∂zχ)u2δ.

The right hand side satisfies a Wk,p bound which depends on N (and on δ, but δ just depends on N) but not on
u, while the operator I + (q ◦ (αu2δ)) · T is invertible as an operator on Wk,p, with inverse having norm no larger
than 2. This gives us a Wk,p bound on ∂z̄(χu2δ) that depends only on N, and hence a bound on ‖χuδ/2‖k+1,p by
Theorem 5.10. So since χuδ/2|D(r/2) = u|D(r/2) we get a bound on ‖u2δ‖Wk+1,p(D(r/2)). Considering the behavior of
the Wk+1,p-norm under rescaling by 2δ, this implies the desired bound on ‖u‖Wk+1,p(D(δr)). �

Corollary 8.14 (Gromov’s Schwarz Lemma). For any compact K ⊂ M there is a constant C such that if
u : D(1)→ M is a J-holomorphic map with Area(u) < ~ and u(0) ∈ K then ‖du(0)‖ ≤ C.

In fact, we have the following stronger statement:

Corollary 8.15. For any coordinate neighborhood in M with compact closure and any p > 2, k ≥ 1 there are
C > 0, δ > 0 such that if u : D(1)→ M is a J-holomorphic map with Area(u) < ~ we have ‖u‖Wk,p(D(δ)) < C.

Proof. Proposition 8.13 implies that it’s enough to prove the result for k = 1. Note also that the k = 2 version
of the corollary implies Gromov’s Schwarz Lemma, since Corollary 4.13 bounds the L∞ norm of du on D(δ) as
soon as the W2,p norm of u is bounded on D(δ).

The proof of the k = 1 case combines Proposition 8.12 with the strategy of the proof of Theorem 6.1. Namely,
after changing coordinates on the target so that u(0) = 0, the equation for u to be J-holomorphic is

∂z̄u + q(u)∂zu = 0

where the matrix-valued function q has q(0) = 0 and obeys a uniform C1 bound. Let ε be so small that if ‖w‖ < ε
then |q(w)| is less than 1

2‖T‖p
where ‖T‖p is the operator norm of the Calderón-Zygmund operator T on Lp. By

Proposition 8.12, we may choose δ > 0 so that any u as in the statement of the corollary will have ‖u(z)‖ < ε
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for all |z| ≤ 2δ. Taking cutoffs χ equal to 1 on D(δ) and supported in D(3δ/2), and α equal to 1 on D(3δ/2) and
supported in D(2δ), we have

(I + (q ◦ (αu)) · T )∂z̄(χu) = (∂z̄χ + q ◦ (αu)∂zχ)u.

Since (q ◦ (αu)) has C0 norm at most 1
2‖T‖p

by construction, (I + (q ◦ (αu)) is invertible on Lp with inverse having
norm at most 2. Since the right hand side above obeys a u-independent Lp bound (as the cutoff functions are
independent of u and u|2δ is C0-small), it follows that ∂z̄(χu) obeys a u-independent Lp bound, and this gives the
desired W1,p bound on χu (and hence also on u|D(δ)) by Theorem 5.10.

�

8.3. Bubbling. We now come to the heart of the derivation of the weak form of compactness that holds for J-
holomorphic curves. The question to be addressed is: given a sequence un : Σ→ M of J-holomorphic maps from
a closed surface Σ, does there exist a subsequence converging in an appropriate sense to a J-holomorphic curve?
Certainly we would need to assume that M is compact, or at least that the un all have image contained in a fixed
compact set, since otherwise we could derive a counterexample just by considering a sequence of constant maps.
It should also be plausible that we would need the energies (equivalently, the areas) of the un to be bounded—
after all the area is presumably a continuous function with respect to our notion of convergence, and the limit
should have a well-defined (and finite) area. Luckily, it is common to encounter sequences of J-holomorphic
curves with area bounds: recall from the start of the course that for a J-holomorphic curve u : Σ → M the area
is just the topological quantity 〈[ω], u∗[Σ]〉, so if we assume the un to all represent the same homology class then
an area bound comes for free.

So consider a sequence of J-holomorphic curves un : Σ → M such that there is a compact K ⊂ M and a
constant C such that for all n we have Area(un) ≤ C and U(Σ) ⊂ K. Note that since Area(un) = Energy(un) =
1
2

∫
Σ
|dun|

2, so we are assuming an L2 bound on the derivatives of the un. We’ll see shortly (and fairly easily)
based on the results at the end of the last subsection that if instead there were some p > 2 such that we had an
Lp-bound on the dun then the un would have a convergent subsequence—note that our area bound fails to give us
this, but only by the slightest of margins. In particular, Corollary 8.15 implies compactness if our energy bound
C less than the small but universal constant ~16. So what remains to be discussed is the situation where we have
an energy bound which is not small, and we’ll see that here there can be more complicated behavior, but also that
very useful results can be obtained. First we’ll justify the assertion that I just made about compactness under an
Lp bound on the derivative for p > 2.

Theorem 8.16. Let Σ be a fixed almost complex 2-manifold (perhaps with boundary) and let un : Σ → M be
a sequence of J-holomorphic maps such that there is a compact subset of M (independent of n) containing the
image of each un. Suppose that, for some p > 2, there is an open subset int(U) ⊂ Σ and a constant C such that∫

U |dun|
p ≤ C for all n. Then for any compact subset K ⊂ U and any l ≥ 1 there is a subsequence {unk }

∞
k=1 and a

J-holomorphic map u : K → M such that unk → u in W l,p.

Proof. For any x ∈ K, applying Proposition 8.13 to a coordinate neighborhood of x with compact closure con-
tained in U shows that there is a (smaller) neighborhood Ux of x such that for each n ‖un‖W l+1,p(Ux) ≤ Nx, where Nx

depends on on x but not on n because we have assumed an n-independent Lp bound on dun. Since K is compact,
it may be covered by finitely many of these coordinate charts Ux1 , . . .Uxn , and then we have ‖un‖W l+1,p(K) ≤ N′

where N′ is the maximal value among the Nxi . But then Theorem 4.16 shows that we may find a subsequence
of the un whose restrictions to Ux1 converge in W l,p, and then a subsubsequence of this subsequence which con-
verges on restriction to Ux2 , and so on until we have produced a sub...subsubsequence {unk }

∞
k=1 converging in W l,p

over all of K. Taking the limit of the equations 0 = ∂̄Junk = dunk +J(unk )◦du◦ j shows that the limit u = lim∞k=1 unk

is J-holomorphic. (This uses that the fact that the convergence of unk → un is with strength W l,p with l ≥ 1 and
p > 2 implies that J ◦ unk → J ◦ u in C0 and dunk → du in Lp). �

16Since I assumed that Σ was closed this isn’t really saying anything since we earlier noted that any closed pseudoholomorphic curve
with area less than ~ is constant; however the reasoning just given also applies if Σ has boundary
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As noted earlier, the natural geometric assumption is that we have an L2 bound on the derivatives, not an Lp

bound with p > 2. Here is an example which both demonstrates that things can be more complicated in this
context, and suggests that it should still be possible to salvage something.

Example 8.17. Consider initially the map un : C \ {0} → C given by un(x) =
(
x, 1

nx

)
. Thus the “real cross-

section” of the image of this map is a hyperbola, which in some sense (which you could make precise if you are
so inclined) is converging to the union of the x and y axes as n→ ∞.

In order to work with compact domain and range, we can “projectivize” these map to the following (still
denoted by un):

un : CP1 → CP2

[x : y] 7→
[

x
y

:
y

nx
: 1

]
= [x2 : y2/n : xy],

(where we use homogeneous coordinates throughout—the point is that taking the open subsets where the last
coordinate of domain or range is 1 gives back the original map). Of course, while the maps as defined on C \ {0}
failed to extend over zero, these maps [x : y] 7→ [x2 : y2/n : xy] are well-defined on all of the closed manifold
CP1 = S 2.

The maps un : CP1 → CP2 are clearly all homologous (indeed they are homotopic)17 , so since they are
holomorphic with respect to the standard complex structure J0 they must all have the same energy, equal to the
common value

∫
S 2 u∗nω where ω is the standard symplectic form on CP2 (we constructed this last semester and

called it the Fubini-Study form). We thus have a sequence of J0-holomorphic maps satisfying an energy bound.
Notice that the un are one-to-one maps, with

Im(un) =

[z0 : z1 : z2] ∈ CP2

∣∣∣∣∣∣z0z1 =
z2

2

n

 .
So as n→ ∞, it would appear that the images of the un converge to{

[z0 : z1 : z2] ∈ CP2 |z0z1 = 0
}

= {[0 : z1 : z2]} ∪ {[z0 : 0 : z2} =: A0 ∪ A1,

i.e. to the union of the two “axes” A0 and A1. You should be able to convince yourself that there is no holomorphic
map S 2 → CP2 having image A0 ∪ A1 (think about what the preimage of the single point [0 : 0 : 1] of A0 ∩ A1
would be, and remember that nonconstant holomorphic functions have isolated zeros), which would seem to
bode poorly for the prospect of the un converging to a J0-holomorphic map.

Of course, since we have fairly simple formulas, we can directly check whether convergence happens. Observe
that, for x , 0, and n→ ∞

un([x; y]) = [x2 : y2/n : xy]→ [x2 : 0; xy] = [x : 0 : y] for x , 0.

(Since the coordinates of a point in projective space are not allowed to all be zero this isn’t valid for x = 0). Thus
for all but the single point [0 : 1] of CP1, the un converge to the function u : [x : y] 7→ [x : 0 : y]. Of course, the
singularity at [0 : 1] is removable: the function u([x : y]) = [x : 0 : y] is defined on all of CP1, with image equal
to the “axis” A1 referred to above.

So we have a J0-holomorphic map u : CP1 → CP2 such that un → u on CP1 \ {[0 : 1]}. Clearly un does not
converge to u at [0 : 1]; indeed un([0 : 1]) = [0 : 1/n : 0] = [0 : 1 : 0] for all n whereas u([0 : 1]) = [0 : 0 : 1].
Related to this, we expected the images of the un to converge to the union of the two axes A0 and A1, but the
image of u consists only of A1; somehow, A0 got lost.

Interestingly, we can recover A0. Define vn : CP1 → CP2 by vn([x : y]) = un([x : ny]). In other words,
where φn : CP1 → CP1 is the holomorphic diffeomorphism [x : y] 7→ [x : ny] we are setting vn equal to the
reparametrization vn = un ◦ φn. We see that

vn([x : y]) = [x2 : ny2 : nxy] = [x2/n : y2 : xy]→ [0 : y2 : xy] = [0 : y : x] for y , 0

17It’s not hard to see that the (un)∗[S 2] is equal to 2 times the standard generator of H2(CP2;Z) � Z
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Thus where v([x : y]) = [0 : y : x], v is a holomorphic map on all of CP1 with image equal to A0, such that
vn → v on CP1 \ {[0 : 1]}. Meanwhile, just like with the un, v([0 : 1]) has a well-defined but “wrong” value:
v([0 : 1]) = [0 : 0 : 1] whereas vn([0 : 1]) = [1 : 0 : 0] for all n.

Thus by reparametrizing the un, we were able to make them to converge on the complement of a point to the
“other part” of the expected limit. The limit did extend as a holomorphic map on all of CP1 (just like the limit of
the un did). It accordingly makes sense to think of the union of the two maps u and v (whose images, we note,
meet at the point [0 : 0 : 1] of A0 ∩ A1) as a sort of generalized limit of the J0-holomorphic curves un. The
holomorphic sphere v : CP1 → CP2 is considered to have “bubbled off” from the un.

Returning to the general situation, assume given a sequence un : Σ→ M a sequence of Jn-holomorphic maps,
where Σ is a fixed almost complex 2-manifold, (M, ω) is a symplectic manifold, and the ω-tame almost complex
structures Jn converge (in C2 norm) to the ω-tame almost complex structure J. We continue to impose the
“bounded geometry” assumptions on M that were assumed at the start of this section (in particular these hold
if M is closed), and we assume that the images of the un are all contained in some fixed compact subset of M.
Moreover, assume that, for all n

Area(un) ≤ C.

Definition 8.18. A point z ∈ Σ is a bubble point of the sequence {un}
∞
n=1 if, for every open U ⊂ Σ such that z ∈ U,

we have
lim inf

n→∞
Area(un|U) ≥ ~.

Clearly, if there is an open neighborhood U0 of z on which we have an L∞ bound ‖dun‖L∞ < A, then z is not
a bubble point of {un}

∞
n=1, as for open subsets U ⊂ U0 we would have Area(un|U) < A2Area(U) which could be

made arbitrarily small (in particular, smaller than ~) by taking U to be a very small disc around z.
If, on the other hand, there is no such neighborhood U0, then after passing to a subsequence (still denoted by

un) we could find zn → z with |dun(zn)| → ∞. One might think that one could have a situation where, say, for
small open sets U around z the quantity Area(un|U) is on the order of ~/2 (or maybe even arbitrarily small), but
the following important lemma shows that this is not the case.

Lemma 8.19. With notation as above, suppose that there is a sequence {zn}
∞
n=1 in Σ with zn → z and |dun(zn)| →

∞. Then z is a bubble point of {un}
∞
n=1, and there exists a nonconstant J-holomorphic sphere v : S 2 → M.

(The method of construction of the J-holomorphic sphere is more important than the mere existence statement,
so you should pay attention to the proof.)

Proof. Fix a complex coordinate chart around z (so that z is identified with 0 ∈ C), and in general if w is in this
coordinate chart write D(δ,w) for the disc of radius δ centered at w.

The argument will be made easier by replacing the sequence {zn}
∞
n=1 by a sequence {ζn}

∞
n=1, still obeying ζn → z

with the following property: Where cn = |dun(ζn)|, there are positive εn ≤
1

|dun(zn)|1/2 such that εncn ≥ |dun(zn)|1/2

and
|dun(ζn)| ≥

1
2

sup
D(εn,ζn)

|dun|.

The idea is that the ζn should be something like local maxima of the function |dun|, though as is reflected in the
factor of 1

2 above it may not be possible to arrange them to actually be local maxima. The proof that such ζn exist
is deferred to the end of the proof of the lemma.

Note in particular that εn → 0 but εncn → ∞.
Now define

vn : D(εncn, 0)→ M

w 7→ un

(
ζn +

w
cn

)
.

Several observations are in order regarding the vn:
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• If K ⊂ C is any compact subset, then for all n sufficiently large the domain of vn contains K.
• For all n we have |dvn(0)| = 1

cn
|dun(ζn)| = 1.

• For all n and for all w in the domain D(εncn, 0) of vn we have

|dvn(w)| =
1

|dun(ζn)|

∣∣∣∣∣∣dun

(
ζn +

w
cn

)∣∣∣∣∣∣ ≤ 2.

The vn have bounded area (their areas coincide with Area(un|D(εn,0))), which is at most C by our assumed
area bound on un), and the third item above shows that their derivatives satisfy an L∞ bound. Consequently,
by Theorem 8.16, for any N we obtain a J-holomorphic map vN : D(N, 0) → M such that, after passing to a
subsequence, we have vn → vN in any given W l,p norm on D(N, 0). Indeed, by a standard “diagonal” argument,
we may pass to a further subsequence so that there is a J-holomorphic v : C→ M such that vn → v in any given
W l,p norm on any given compact subset of C.18

Note that

Area(v) = lim
N→∞

Area(v|D(N,0)) ≤ lim
N→∞

(
lim sup

n→∞
Area(vn|D(N,0))

)
≤ C.

Now define
ṽ : C \ {0} → M

by
ṽ(z) = v(1/z).

The map ṽ is J-holomorphic and has finite area (equal to the area of v) and so by the Removal of Singularities
Theorem 8.11 ṽ extends to a J-holomorphic map ṽ : C → M. But then since ṽ(z) = v(1/z) wherever both are
defined, ṽ and v now patch together to give a J-holomorphic map v : S 2 → M where as usual we identify S 2 with
the Riemann sphere C ∪ {∞}. This map v is the J-holomorphic map promised in the statement of the lemma; to
see that it is nonconstant we simply note that every vn obeys |dvn(0)| = 1, and therefore dv(0) , 0.

Since v : S 2 → M is a nonconstant J-holomorphic map, its area is at least ~ by Proposition 8.9. So if ε > 0
there is N so that when n ≥ N we have Area(vn) > ~ − ε. Now Area(vn) = Area(un|D(εn,ζn)), and if U is any given
open neighborhood of z then (since εn → 0 and ζn → z) for n sufficiently large we will have D(εn, ζn) ⊂ U. Thus
for n sufficiently large Area(un|U) > ~ − ε. Thus lim infn→∞ Area(un|U) ≥ ~, which (since U was an arbitrary
neighborhood of z) proves that z is a bubble point of {un}

∞
n=1.

This proves the lemma except for the construction of the sequence of “quasi-maxima” ζn. This follows im-
mediately from the following lemma (applied once for each value of n) about complete metric spaces, under the
following dictionary: zn ↔ x, ζn ↔ ξ, 1

|dun(zn)|1/2 ↔ δ, |dun| ↔ f , εn ↔ ε.

Lemma 8.20. Let (X, d) be a complete metric space, δ > 0, and x ∈ X, and f : X → [0,∞) a continuous
function. Then there are ξ ∈ X and ε > 0 with the following properties

(i) ε ≤ δ
(ii) d(x, ξ) < 2δ

(iii) ε f (ξ) ≥ δ f (x)
(iv) f (ξ) ≥ 1

2 supBε (ξ) f

Proof of Lemma 8.20. We will prove that, if the lemma failed, it would be possible to construct a sequence
{xk}

∞
k=0 such that x0 = x, d(xk+1, xk) ≤ δ

2k , and f (xk+1) > 2 f (xk). This would certainly give a contradiction, since
f is assumed continuous and the xk will converge by the completeness of the metric space, whereas the f (xk) are
obviously divergent.

So assume the lemma is false and suppose inductively that we have constructed x0, . . . , xk obeying the desired
properties. It suffices to show how to construct xk+1. Consider the properties (i)-(iv) of the lemma, applied with

18The diagonal argument goes as follows: Iteratively applying Theorem 8.16 allows us to find, for any m, a sequence {vnmk }
∞
k=1 so that

{vn(m+1)k }
∞
k=1 is a subsequence of {vnmk }

∞
k=1 and such that vnmk converges to a J-holomorphic map on D(m, 0). The sequence {vnmm }

∞
m=1 will

then converge to a single J-holomorphic map v : C→ M in W l,p on any compact subset of C.
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ξ = xk and ε = δ
2k (our assumption that the lemma fails implies that not all of (i)-(iv) can hold). Obviously ε ≤ δ,

so (i) holds. Since
∑k

m=0 2−m < 2, condition (ii) also holds. Since we have f (x j+1) > 2 f (x j) for all 0 ≤ j < k,
we have f (xk) > 2k f (x0), so since ε = δ2−k (iii) holds. Hence (iv) does not hold, which is to say that there is
xk+1 ∈ Bδ2−k (xk) such that f (xk+1) > 2 f (xk). But these are precisely the desired properties for xk+1.

This confirms that if the lemma is false we can produce a sequence {xk}
∞
k=1 with the stated (impossible) prop-

erties, thus producing the desired contradiction. �

�

This allows us to obtain a weak version of compactness, which we will later refine somewhat:

Theorem 8.21. Let un : Σ → M be a sequence of Jn-holomorphic curves where Jn → J, and assume that
Area(un) ≤ C for some constant C. Let l ≥ 2 and p > 2. Then, after passing to a subsequence (still denoted
{un}

∞
n=1) the following holds. There is a finite collection of points z(1), . . . , z(b) ∈ Σ and a J-holomorphic map

u : Σ→ M such that
• For any compact subset K ⊂ Σ \ {z(1), . . . , z(b)}, we have un → u in W l,p(K).
• For i = 1, . . . , b the quantity

m(z(i)) = lim
δ→0

(
lim
n→∞

Area(un|D(δ,z(i)))
)

is well-defined, and m(z(i)) ≥ ~.
•

(35) lim
n→∞

Area(un) = Area(u) +

b∑
i=1

m(z(i))

Here D(δ, z) denotes the disc of radius δ around z (with respect to an arbitrary fixed metric on Σ).

Proof. Theorem 8.16 and Lemma 8.19 suggest how we should begin: If supn ‖dun‖L∞(Σ) < ∞, then Lemma 8.16
immediately gives the desired result with b = 0 (i.e. with no points z(i)). On the other hand, if supn ‖dun‖L∞(Σ) =

∞, then after passing to a subsequence (and using the compactness of Σ) we may find a point z(1) ∈ Σ and a
sequence zn → z(1) such that |dun(zn)| → ∞. Then z(1) is a bubble point, so for all δ > 0 we have

(36) lim inf
n→∞

Area(un|D(δ,z(1))) ≥ ~.

There are now two cases to consider. In the first, for every compact subset K ⊂ Σ \ {z(1)} there is an L∞

bound ‖dun‖L∞(K) ≤ CK . Then appealing to Theorem 8.16 for each of the compact sets K \ D(1/m, z(1)) and then
using a diagonal argument produces a J-holomorphic map u : Σ \ {z(1)} and a subsequence (still denoted un) such
that un → u in W l,p on any compact subset of Σ \ {z(1)}. Now since lim inf Area(un|D(δ,z(1))) ≥ ~ for all δ > 0,
the restriction of the un to any given compact subset of Σ \ {z(1)} has area at most C − ~. The same area bound
hence holds for u. In particular, u : Σ \ {z(1)} → M has finite area, so its singularity at z(1) may be removed by
Theorem 8.11. Thus u extends to a J-holomorphic map u : Σ → M. For some fixed small δ0 we may pass to a
subsequence such that the lim inf in (36) is a genuine limit for δ = δ0; then since the un converge on any given
D(δ0, z(1)) \ D(δ, z(1)) for 0 < δ < δ0 the corresponding lim inf for δ will also be a limit. Now if ε > 0, then for
sufficiently small δ we will have Area(u|D(δ,z)) ≤ ε, and therefore, once n is large enough, for any given η ∈ (0, δ),

Area(un|{η≤|z|≤δ}) < 2ε.

This proves that the limits in the definition of m(z(1)) in the statement of the lemma do exist, and (36) implies that
they are at least ~. By taking δ > 0 small and N large, for n ≥ N we can make Area(un|Σ\{z(1)}) arbitrarily close to
Area(u), while Area(un|D(δ,z(1))) is arbitrarily close to m(z(1)). This proves the last statement of the theorem in this
case.

This concludes the proof in the case where for every compact K ⊂ Σ \ {z(1)} there is an L∞ bound on |dun|. The
remaining case is that in which there exists some compact K ⊂ Σ \ {z(1)} on which no L∞ bound holds. Then after
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passing to a subsequence there are zn ∈ K so that |dun(zn)| → ∞. Passing to a further subsequence and using the
compactness of K, we find that zn → z(2) for some z(2) ∈ K (in particular z(2) , z(1)). Then Lemma 8.19 gives that
lim infn→∞ Area(un|D(δ,z(2))) ≥ ~ for all δ > 0.

Proceeding inductively, assume that we have found z(1), . . . , z(k) such that for each i and each δ > 0 we have
lim infn→∞ Area(un|D(δ,z(i))) ≥ ~. Thus on every compact subset of Σ \ {z(1), . . . , z(k)}, for n large enough the un

have area bounded by C − k~. (In particular, this puts an a priori bound on k: it can’t be larger than C/~). If there
is some compact subset K of Σ\ {z(1), . . . , z(k)} on which the un are not bounded in L∞, then applying Lemma 8.19
again produces a point z(k+1) ∈ K obeying the same property as the other z(i). However, after finitely many (at
most C/~) steps, we will be unable to produce such a point, and so it will necessarily hold that, for every compact
K ⊂ Σ \ {z(1), . . . , z(k)}, the dun are bounded in L∞(K). We then apply the same reasoning as before: after passing
to a suitable diagonal subsequence, we obtain a J-holomorphic map u : Σ \ {z(1), . . . , z(b)} → M such that un → u
in W l,p on all compact subsets. Theorem 8.11 shows that the singularities of u may be removed to produce a
J-holomorphic map u : Σ → M. Using, as earlier, that the un converge (at least in C1 since l ≥ 2, p > 2) to the
C1 function u on annuli around the z(i), we obtain that the limits defining the quantities m(z(i)) exist, and they are
at least ~ by construction. And finally, the fact that u extends in C1 fashion over the z(i) can be used to prove
Equation 35: for small δ and large n it holds that Area(un|Σ\∪D(δ,z(i))) is approximately equal to Area(u), while
Area(un|∪D(δ,z(i))) is approximately equal to

∑
m(z(i)). �

Lemma 8.19 and Theorem 8.21 show that any sequence un : Σ→ M of Jn-holomorphic curves with bounded
area has a subsequence which “converges modulo bubbling” (in particular, converges genuinely on compact
subsets of the complement of finitely many points in Σ) to a J-holomorphic curve u : Σ → M, and moreover
that J-holomorphic spheres can be produced by studying the failure of convergence at any of the finitely many
“bubble points.” We have yet to relate these “bubbles” to the curve u. Our intention now is to argue that the
combination of u with a collection of bubbles similar to those are produced in the proof of Lemma 8.19 forms a
“bubble tree” which serves as an appropriate generalized limit of a subsequence of un.

Accordingly let {un}
∞
n=1 be a (sub)sequence as in the conclusion of Theorem 8.21. For some fixed i = 1, . . . , b

choose local coordinates around the bubble point z(i) (with z(i) identified with 0); we may scale these so that
D(1, 0) does not contain any other z( j) and

Area(un|D(1,0)) ≤ m(z(i)) +
~

3
.

By the definition of m(z(i)) we may, for sufficiently large n) choose a number δn > 0 such that

Area(un|D(δn,0)) = m(z(i)) −
~

2
,

and moreover it holds that limn→∞ δn = 0. Define

vn : D
(

1
δn
, 0

)
→ M

by
vn(z) = un(δnz).

Where as before we write A(r,R) for the annulus {z ∈ C|r ≤ |z| ≤ R}, we have

Area(vn|D(1,0)) ≤ m(z(i)) −
~

2
, Area(vn|A(1,δ−1

n )) < ~.

For any compact K ⊂ C \ D(1, 0), for n sufficiently large K will be contained in the domain of vn, and there
will be rK > 0 such that any z ∈ K has D(rK , z) ⊂ C\D(1, 0). By applying Gromov’s Schwarz Lemma (Corollary
8.14) to the function w 7→ vn((w − z)/rK) we thus see that the vn obey a uniform (and n-independent) bound
‖dvn‖L∞(K) ≤ C′/rK . So by Theorem 8.16 the vn have a subsequence (still denoted by vn) which converges to
some limit v in any given W l,p(K) where K is any given compact subset of C \ D(1, 0). By writing C \ D(1, 0) as
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a countable union of compact subsets and using a diagonal argument we can arrange that a single subsequence
of the vn has such a limit simultaneously on each such compact subset.

At the same time, Theorem 8.21 and its proof establish that, after passing to a further subsequence, the vn will
“converge modulo bubbling” within D(1, 0) as well. Thus we obtain a limiting J-holomorphic map v : C → M
such that vn → v in W l,p (for arbitrary l, p) on any compact subset of the complement of a finite set of points,
with each of these (new) bubble points contained in the unit disc D(1, 0). The map v has area at most equal to
lim supn→∞ Area(vn), which by assumption is finite, so by considering the map z 7→ v(1/z) we see as in the proof
of Lemma 8.19 that v extends to a J-holomorphic map v : S 2 → M, where we make the usual identification
S 2 � C ∪ {∞}. We view this v : S 2 → M as the “main bubble” that forms from the un at the bubble point z(i); as
our discussion should suggest, there may be additional bubbles that form “off the side of” this main bubble v at
points in the southern hemisphere D(1, 0) ⊂ S 2.

Claim 8.22. We have
v(∞) = u(0) and Area(v|S 2\D(1,0)) =

~

2
.

Proof. Note that by construction, if ε > 0 then for any T > 1 we will have, for n sufficiently large,

Area(vn|A(1,T )) = Area(un|A(δn,Tδn)) ≤
~

2
+ ε

(using that Area(un|D(δn,0)) = m(z(1)) − ~2 and that Tδn → 0). Consequently for any T, ε we have Area(v|A(1,T )) ≤
~
2 + ε. Since this holds for all T, ε it follows that Area(v|S 2\D(1,0)) ≤ ~

2 . Thus for the second equation in the
claim we only need to prove the inequality ‘≥’ (which in particular will imply the non-obvious fact that v is
nonconstant).

Let ε > 0. Now un converges in C1 norm to the C1 function u on any given compact subset of D(1, 0) \ {0}.
Consequently there is η < 1 such that, for all sufficiently large n, we have

Length(un||z|=η) < ε and un({|z| = η}) ⊂ Bε(u(0)).

By the same token, the vn converge in C1 norm on any given compact subset of C \ D(1, 0) to the function v,
which extends to a C1 function on C ∪ {∞}. Consequently there is ρ > 1 such that, for all sufficiently large n, we
have

Length(vn||z|=ρ) < ε and vn({|z| = ρ}) ⊂ Bε(v(∞)).
Recall that vn(z) = un(δnz). Consider the restrictions vn|A(ρ,η/δn). By construction (since η < 1 and ρ > 1) these Jn-
holomorphic annuli have energy at most ~2 + ~

3 < ~. Consequently Proposition 8.9 shows that Area(vn|A(ρ,η/δn)) ≤
C′′ε2 for an appropriate constant C′′. But then

Area(vn|A(1,ρ)) = Area(vn|D(η/δn,0)) − Area(vn|D(1,0)) − Area(vn|A(ρ,η/δn)) ≥ Area(un|D(η,0)) −
(
m(z(1)) −

~

2

)
−C′′ε2

≥
~

2
− 2C′′ε2

for sufficiently large n. Thus Area(v|A(1,ρ)) ≥ ~2 − 2C′′ε2, implying that (since ρ and ε are both independent of n)
Area(v) ≥ ~2 .

Meanwhile, since the vn|A(ρ,η/δn) have area bounded by a constant times ε2 and their boundaries have length
bounded by 2ε, Proposition 8.10 shows that their diameters are bounded by a constant times ε. But by construc-
tion u(0) has distance at most ε from the image under vn of one boundary component of A(ρ, η/δn), while v(∞)
has distance at most ε from the image of the other boundary component. Hence dist(v(∞), u(0)) ≤ C̃ε for an
appropriate constant C̃. Since ε was arbitrary this proves that v(∞) = u(0). �

The discussion in the proof of the above claim shows moreover that, for a sufficiently small choice of the
parameter ε, the Jn-holomorphic annuli vn|A(ρ,ηδ−1

n ) are homotopic to the map formed by taking the “connected
sum” of the J-holomorphic discs v||z|≥ρ and u||z|≤η (a precise formulation of this statement is left to the reader;
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to prove it, construct the homotopy br travelling along geodesics contained in a small ball around the common
value u(0) = v(∞). In the simple case where the vn genuinely converge (with no bubbling) to v and where z(i) is
the only bubble point of the un, this implies that, for large n, the Jn-holomorphic curves un are homotopic to the
connected sum of u : Σ→ M and v : S 2 → M.

As discussed earlier, the sequence vn may have bubble points, though these are all contained in the southern
hemisphere D(1, 0). This adds some complication (especially in notation), but the bubble points of the vn can be
analyzed in much the same way as the bubble points of the un, in particular producing a “main bubble” at each
of the bubble points (analagous to v), which again will be nonconstant by Claim 8.22 and off of which additional
bubbles might form. This process must eventually terminate, since all the bubbles that arise have area at least ~
and the sum of their areas can be no larger than our bound C on the areas of the un. Making repeated use of the
analysis of the proof of Claim 8.22 one can prove the following embellishment of Theorem 8.21.

Theorem 8.23. Let un : Σ → M be a sequence of Jn-holomorphic curves where Jn → J, and assume that
Area(un) ≤ C for some constant C. Let l ≥ 2 and p > 2. Then, after passing to a subsequence (still denoted
{un}

∞
n=1) the following holds. There is a finite (possibly empty) collection of points z(1), . . . , z(b) ∈ Σ and a J-

holomorphic map u : Σ→ M such that
• For any compact subset K ⊂ Σ \ {z(1), . . . , z(b)}, we have un → u in W l,p(K).
• There are nonconstant J-holomorphic spheres v(1), . . . , v(b) : S 2 → M such that v(i)(∞) = u(z(i)).
• For some finite (possibly empty) collection of nonconstant J-holomorphic spheres wi : S 2 → M such

that, for each i, wi(∞) is in the image either of some other w j or of some v( j), we have

lim
n→∞

(un)∗[Σ] = u∗[Σ] +

b∑
j=1

v( j)
∗ [S 2] +

∑
i

(wi)∗[S 2].

The picture to have here is that the un are converging to a “bubble tree” consisting of u, the v(i) (which are
attached to u), and the w j (which themselves could be subdivided into stages, of which the first consists of
spheres attached to the v(i) and each successive one consists of spheres attached to spheres in the previous stage).
Importantly, the total homology class of this bubble tree is equal to the limit of the homology classes of the un.
(Of course, since H2(M;Z) is a discrete set this means that the (un)∗[Σ] are eventually constant, which itself is a
notable result since our assumptions on the un don’t obviously imply it). As follows from this remark about the
homology class, or more directly from repeated application of Claim 8.22, it is also true that the total area of the
bubble tree is equal to the limit of the areas of the un.

There are ways of being more precise about the definition of a bubble tree and the exact meaning of the
statement that a sequence of maps converges to a bubble tree, but these tend to be rather notationally cumbersome
and we won’t generally need them. If you’re interested, one approach to this (at least where Σ is a sphere) is
developed in some detail in [MS2, Chapter 5].

9. Nonsqueezing revisited

The significant amount of machinery that we’ve built up now allows us to fill in the missing piece (namely the
proof of Lemma 3.4) of the proof of the Gromov Non-Squeezing Theorem 3.1. Below the symplectic manifold
(M,Ω) has M equal to a product S 2 × T 2n−2, and Ω equal to a “split” symplectic form ωS 2 ⊕ ωT 2n−2 , where ωS 2

is any area form on S 2 (recall from last semester that these are classified up to symplectomorphism by their total
area, which can be an arbitrary real number) and ωT 2n−2 is obtained by viewing T 2n−2 as quotient R

2n−2

NZ2n−2 for some
real number N and setting ωT 2n−2 equal to the form induced on the quotient by the standard symplectic form
ω0 =

∑
dxi∧dyi on R2n−2. Of course this Ω depends on two parameters (the area of the sphere and the parameter

N in the identification of T 2n−2 as a quotient) but the following result holds independently of those parameters.
We identify S 2 with the Riemann sphere C ∪ {∞} in the usual way.

Theorem 9.1. For any J ∈ Jτ(M,Ω) and any p ∈ T 2n−2 there is a J-holomorphic map u : S 2 → M such that
u(0) = (0, p) and u∗[S 2] = [S 2 × {p}] ∈ H2(M;Z).
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Proof. Write the projections onto either factor as

M = S 2 × T 2n−2

π1

xxqqqqqqqqqqq
π2

''NNNNNNNNNNN

S 2 T 2n−2

For any J ∈ Jτ(M,Ω) define

MJ =
{
u : S 2 → M

∣∣∣∂̄Ju = 0, u∗[S 2] = [S 2 × {p}], u(0) = (0, p), π1(u(1)) = 1, π1(u(∞)) = ∞
}
.

(The last two conditions are included because, without them, for any u ∈ MJ it would hold that also u ◦ φ ∈ MJ

for a continuous family of Möbius transformations φ, and it’s techinically useful to eliminate this redundancy.)
Consider first MJ for J equal to the standard, split almost complex structure J0 = JS 2 ⊕ JT 2n−2 , given by

operating on tangent vectors in the S 2 direction by the usual complex structure on S 2 = CP1, and on tangent
vectors in the T 2n−2 direction by the complex structure induced on the quotient from the standard one on R2n−2 =

Cn−1. The map u0(z) = (z, p) clearly belongs to MJ0 . Conversely, suppose that u ∈ MJ0 . Now by our choice
of J0 we have π1∗ ◦ J0 = JS 2 ◦ π1∗ and π2∗ ◦ J0 = JT 2n−2 ◦ π2∗. Consequently the fact that ∂̄J0 u = 0 implies that
π1 ◦ u : S 2 → S 2 and π2 ◦ u : S 2 → T 2n−2 are holomorphic (with respect to the standard complex structures on
source and target). Now the condition on the homology class represented by u shows that π2◦u is nullhomologous,
and hence constant (as it has zero energy). So since π2(u(0)) = p, π2 ◦ u is equal to the constant map to p.
Meanwhile π1 ◦ u is a degree-1 holomorphic map from S 2 to S 2 and hence is a Möbius transformation. Also,
π1 ◦ u takes each of the points 0, 1,∞ to themselves; the only Möbius transformation that acts on 0, 1,∞ in this
fashion is the identity, so π1 ◦ u(z) = z. This proves that our arbitrary element u ∈ MJ0 is equal to the map
u0(z) = (z, p). Thus

MJ0 = {u0}.

Let us call an almost complex structure J regular if, for every u ∈ MJ the linearization at u of the restriction
of the Cauchy-Riemann operator ∂̄J to maps v : S 2 → M having v(0) = (0, p), π1(v(1)) = 1, π1(v(∞)) = ∞ is
surjective. The results of Section 7 (appropriately adjusted as in Section 7.4) show that the space J reg of regular
almost complex structures contains a countable intersection of open, dense subsets ofJτ(M,Ω), and in particular
is dense. For any J ∈ J reg,MJ is a manifold of dimension equal to the index of the aforementioned linearization
of the Cauchy-Riemann operator, which we see is

2n + 2〈c1(S 2 × T 2n−2), [S 2 × {p}]〉 − 2n − 2 − 2

(the last three terms arise from the conditions on the values of u at (respectively) 0, 1, and ∞). Now c1(S 2 ×

T 2n−2) = π∗1c1(S 2) + π∗2c1(T 2n−2), so

〈c1(S 2 × T 2n−2), [S 2 × {p}]〉 = 〈c1(S 2), [S 2]〉 = 2,

so the above formula for the dimension ofMJ works out to give 0. Thus for J ∈ J reg,MJ is a 0-dimensional
manifold.

We will postpone the proof of the following lemma to the end of the proof of this theorem:

Lemma 9.2. The standard complex structure J0 on S 2 × T 2n−2 is regular,

Now as explained in Section 7.4, if J1 is another almost complex structure belonging to J reg, then for a dense
set of paths {Jt |0 ≤ t ≤ 1} connecting the regular almost complex structure J0 to J1, the parametrized moduli
space

M{Jt} := ∪0≤t≤1{t} ×MJt

is a 1-dimensional manifold, with boundaryMJ0 ∪MJ1 .
I now claim thatM{Jt} is compact. Let {(tn, un)}∞n=1 be a sequence inM{Jt}. Since [0, 1] is compact, we may pass

to a subsequence so that tn → t∗ for some t∗ ∈ [0, 1]. The un are thus Jtn holomorphic spheres, all representing
the same homology class [S 2 × {p}] (hence all having the same area), where Jtn → Jt∗ . Thus by Theorem 8.23,
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after passing to a further subsequence the un converge modulo bubbling to some Jt∗ -holomorphic u : S 2 → M,
producing in the limit a Jt∗ -holomorphic bubble tree, consisting of several Jt∗ -holomorphic spheres (including u),
the sum of whose homology classes is equal to [S 2 × {p}]. I will now argue that no bubbling in fact takes place,
so that un → u genuinely.

Denote the spheres in the bubble tree (including u) by {uα}α∈A. If uα : S 2 → M is any one of these spheres,
then π2 ◦ uα : S 2 → T 2 necessarily has degree zero by topological considerations, in view of which (uα)∗[S 2] =

kα[S 2 × {p}] for some kα ∈ Z. Since Area(uα) = 〈[Ω], (uα)∗[S 2]〉, we have kα ≥ 0, with equality only if uα
is constant. On the other hand since the total homology class of the bubble tree equals that of the un, namely
[S 2 × {p}], we must have

∑
α kα = 1. So only one of the uα can be nonconstant, and this nonconstant uα must

represent the class [S 2 × {p}]. Consulting Theorem 8.23, note that all of the bubbles in the bubble tree are
nonconstant. This leaves just two possibilities: either there is just one bubble and the limit-modulo-bubbling u
is a constant map, or else there are no bubbles and the un genuinely converge to u. We now rule out the first
possibility.19 Indeed, if u were a constant map and if there were just one bubble, then in particular there would
be just one bubble point for the sequence un. So since un → u uniformly on compact subsets of the complement
of the bubble point, at least two of the three points p = 0, 1,∞ are in a region where limn→∞ un(p) = u(p). So by
the conditions on π1(un(p)) for p = 0, 1,∞ coming from the definition ofMJn , we will have π1(u(p)) = p for at
least two of the three points p = 0, 1,∞. But obviously this implies that u is not constant, a contradiction.

Thus no bubbling occurs in the sequence un, and so we have genuine convergence un → u. In other words, for
an arbitrary sequence {(tn, un)}∞n=1 inM{Jt} we have produced a subsequence converging to some (t∗, u) ∈ M{Jt}.
ThusM{Jt} is compact. Now we have already determinedM{Jt} to be a 1-manifold with boundaryMJ0 ∪MJ1 .
The only compact 1-manifolds with boundary are disjoint unions of closed intervals and circles; in particular
they always have an even number of boundary points. So since MJ0 consists of the single point u0, it follows
thatMJ1 must be nonempty, as otherwiseM{Jt} would be a compact manifold with an odd number of boundary
points, which is impossible (of course if we didn’t have a compactness statement this wouldn’t have worked,
since thenM{Jt} could have been a half-open interval). So we have shown that

If J1 ∈ J
reg, thenMJ1 , ∅.

The theorem called for J to be an arbitrary element ofJτ(M,Ω), not necessarily a regular one. But sinceJ reg

is dense, we may choose regular almost complex structures Jn (n ∈ N) so that Jn → J, and elements un ∈ MJn .
Since the un all represent the same homology class and so have the same area, the un converge modulo bubbling
to a J-holomorphic map u : S 2 → M. But the exact same argument used earlier shows that, essentially by
topological considerations, no bubbling can in fact occur, and so un → u genuinely (in any Sobolev norm). In
particular, u(0) = (0, p) and u∗[S 2] = [S 2 × {p}], as desired. This completes the proof of the Theorem except for
the proof of Lemma 9.2. �

Proof of Lemma 9.2. SinceMJ0 = {u0}, we need to show that the linearization of the Cauchy-Riemann operator
(associated to the standard split complex structure on S 2 × T 2n−2) at u0 is surjective. Denote this linearization by
D. Recall that we are restricting attention to maps u : S 2 → S 2 × T 2n−2 such that u(0) = (0, p), π1(u(1)) = 1, and
π1(u(∞)) = ∞; thus the domain of the linearization D consists of sections ξ of u∗0T M with the property that these
conditions are preserved upon moving in the direction ξ.

We have
u∗0T M = (π1 ◦ u0)∗TS 2 ⊕ (π2 ◦ u0)∗TT 2n−2.

Now π2 ◦ u0 is just the constant map to p, while π1 ◦ u0 is the identity, so in fact

u∗0T M = TS 2 ⊕ TpT 2n−2.

19I sort of elided this possibility in class, but in a more general context it can happen: for instance consider vn : C ∪ {∞} → C ∪ {∞}
defined by vn(z) = nz. This sequence converges modulo bubbling to the constant map v(z) = ∞, with the unique “bubble point” of the
sequence being zero. In our context, the fact that we fixed the values of π1 ◦ u at 0, 1, and∞ prevents this sort of behavior.
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The tangent space TpT 2n−2 at the point p can just be identified with Cn−1 (using the standard complex structure
JT 2n−2 ). Thus taking into account the conditions at 0, 1,∞, the linearization D is a map

D : W1,p(S 2,TS 2) ×W1,p(S 2,Cn−1)→ Lp(HomJ0 (TS 2u∗0T M)).

Now as noted in the proof of the theorem, D is a Fredholm operator of index zero. Thus dim(ker D) =

dim(coker D), so to show that D is surjective it is enough to show that D is injective. Consider then an arbi-
trary element ξ = (ξ1, ξ2) of ker D, so that ξ1 is a section of TS 2 (i.e. a vector field on S 2) and ξ2 : S 2 → Cn−1

is some function. The conditions on the maps u that we are considering at 0, 1,∞ show that ξ1(0) = ξ2(0) = 0
and that ξ1(1) = ξ1(∞) = 0. Since J0 is the standard split integrable almost complex structure on S 2 × T 2n−2, the
operator ∂̄J0 is just the standard Cauchy-Riemann operator acting on maps from the complex manifold S 2 = CP1

to the complex manifold CP1 × T 2n−2. Note that when this standard Cauchy–Riemann operator is written out in
local coordinates, it is a linear operator, and so the linearization in local coordinates coincides with this local-
coordinate expression for the operator. Hence to say that D(ξ1, ξ2) = 0 is to say that ξ1 is a holomorphic vector
field on S 2 = CP1 and that ξ2 : CP1 → Cn−1 is a holomorphic function.

Now any holomorphic function from CP1 to Cn−1 is constant: indeed, since CP1 is compact any such function
attains it maximum modulus somewhere, and the maximum principle from complex analysis quickly implies that
the set on which it attains its maximum is open, so since this set is also closed it is all of CP1, and so the open
mapping theorem forces the map to be constant. But then since ξ2(0) = 0 it follows that ξ2 = 0 identically.

As for ξ1, note that ξ1 is a holomorphic vector field on CP1 which vanishes at 0, 1, and ∞. I claim that any
holomorphic vector field on CP1 which vanishes at 3 points in fact vanishes everywhere. There are various ways
of seeing this (you might try to think of other ways yourself), but here is an elementary argument. Suppose that
ξ1 is a holomorphic vector field vanishing at the 3 points 0, 1, and∞ (if it vanished at a different set of 3 points we
could apply a Möbius transformation to reduce to this case). Consider the expression for ξ1 in local coordinates
on C: we will have, for z ∈ C, ξ1(z) = f (z)∂z for some entire function f , where ∂z = 1

2 (∂x − i∂y) as usual. Since
ξ1(0) = ξ1(1) = 0 we can write, for some entire function g, f (z) = z(z − 1)g(z).

Now let w = 1
z be the standard local holomorphic coordinate near∞ ∈ CP1. We have

dw = −
1
z2 dz, and so ∂w = −z2∂z = −

1
w2 ∂z.

Hence, on C \ {0} (i.e. on the intersection of the two standard coordinate patches),

ξ = z(z − 1)g(z)∂z = −
1
w

(
1
w
− 1

)
w2g

(
1
w

)
∂w = (1 − w)g

(
1
w

)
∂w.

Hence the fact that ξ1(∞) = 0 (where the point ∞ corresponds to w = 0) shows that g(z) → 0 as |z| → ∞. But
g is an entire function, and the only entire function with this property is the zero function. Thus ξ1 is identically
zero.

We have thus shown that the only element of ker D has both its entries ξ1 and ξ2 identically equal to 0. Thus
dim ker D = 0, and so since D has Fredholm index zero it also holds that dim coker D = 0. In other words, D is
surjective. Since D is the linearization of the Cauchy-Riemann operator at the only point ofMJ0 , this proves that
J0 is regular in the sense of the proof of Theorem 9.1.

�
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