
CHAPTER 1

The Hodge theorem and Sobolev spaces

We will start by considering a question relating to differential forms and de Rham cohomology

on a smooth manifold M . We denote by Ωk(M) the space of degree-k differential forms on M . So

if we have a local coordinate chart (x1, . . . , xn): U → Rn for M then we can express the restriction

of any element ω ∈ Ωk(M) to U as

ω|U =
∑

i1<···<ik

fi1...ik
d x i1
∧ · · · ∧ d x ik

where the various fi1...ik
are smooth functions. Recall that there is then an exterior differentiation

operator d : Ωk(M)→ Ωk+1(M) which, in terms of these local coordinate expressions, is given by

d

 ∑

i1<···<ik

fi1...ik
d x i1
∧ · · · ∧ d x ik

!
=
∑

j

∑

i1<···<ik

∂ fi1...ik

∂ x j

d x j ∧ d x i1
∧ · · · ∧ d x ik

(where the d x ’s appearing on the right can then be put in order by using d xk ∧ d x l = −d x l ∧ d xk).

The kth de Rham cohomology1 of M is then by definition

Hk(M) =
ker

�
d : Ωk(M)→ Ωk+1(M)

�

Im (d : Ωk−1(M)→ Ωk(M))
.

So in this definition Hk(M) is a subquotient (i.e., a quotient of a subspace) of the space Ωk(M) of

all differential forms, and an element of Hk(M) is an equivalence class within the space of closed

differential forms (those ω with dω= 0), and indeed a fairly large one (for 1≤ k ≤ n) since d will

typically have infinite-dimensional image. In the hopes of making Hk(M) a little more concrete, we

could ask:

QUESTION 1.0.1. Is there a natural way of identifying Hk(M) with a subspace of Ωk(M), rather

than a subquotient of Ωk(M)?

Hodge theory will give an affirmative answer to this question provided that M is compact,

oriented, and endowed with a Riemannian metric, i.e. a smoothly-varying inner product on the

tangent spaces of M (and the word “natural” is interpreted in the category of Riemannian manifolds

rather than just smooth ones). Note that any smooth manifold can be given a Riemannian metric,

though the choice is not canonical. (If the manifold is embedded in some RN then the obvious

choice is the restriction of the standard inner product on RN , though this depends sensitively on the

embedding.) In addition various features of Hk(M) for compact M , such as Poincaré duality and

the fact that it is finite-dimensional, have nice and simple interpretations in terms of the description

that we will provide. There’s also a version of all of this for certain complex manifolds, which leads
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1As you may know (though it’s not directly relevant to this course), Hk(M) is isomorphic to the real-coefficient versions

of various other forms of cohomology, such as singular or Čech.
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2 1. THE HODGE THEOREM AND SOBOLEV SPACES

to especially strong statements about their cohomology which are difficult to understand by other

means.

In the following section I will give a sketch of how we will answer Question 1.0.1, though it

will be clear from the sketch that various strokes of luck will be necessary for it to work out.

1.1. Formulating the strategy

1.1.1. Complements. We follow the usual notation of putting

Z k(M) = ker(d : Ωk(M)→ Ωk+1(M)) Bk(M) = Im(d : Ωk−1(M)→ Ωk(M)),

so (since d2 = 0) we have Bk(M)≤ Z k(M)≤ Ωk(M), and by definition

Hk(M) =
Z k(M)

Bk(M)
.

From standard constructions of smooth functions on manifolds2 it’s not hard to see that Bk(M) (and

hence also Z k(M) and Ωk(M)) is infinite-dimensional for 1≤ k ≤ dim M . (If this weren’t true then

what we’re about to do would be much easier.)

The goal is to identify the quotient of vector spaces
Zk(M)

Bk(M)
with a subspace of Ωk(M); in fact

we’ll identify it with a subspace of Z k(M). The standard way of approaching this is dictated by the

following easy fact:

PROPOSITION 1.1.1. Let V be a vector space, and W ≤ V . Suppose that X ≤ V is another subspace

such that V =W ⊕ X . Then x 7→ [x] defines an isomorphism of vector spaces X ∼= V/W.

PROOF. That V = W ⊕ X means that W ∩ X = {0} and each element of V can be written as

w + x where w ∈ W and x ∈ X . An element of the kernel of the map π|X : X → V/W given by

x 7→ [x] would belong to W ∩ X and hence be zero, so π|X is injective. π|X is also surjective, since

any element of V/W has the form [w+ x]where w ∈W and x ∈ X . But [w+ x] = [x] = π|X (x). �

So our goal is now to find a complement H k(M) to the exact forms Bk(M) within the closed

forms Z k(M), i.e. we want a subspaceH k(M) ≤ Z k(M) with Z k(M) = Bk(M)⊕H k(M). Now the

existence of such a complement can be proven fairly easily using Zorn’s lemma, but this is quite

inexplicit—there would be no way of telling whether a given closed form actually belongs to the

complement—and is not natural under any reasonable interpretation of that word.

A familiar way of constructing a complement to a subspace W of a vector space V is to use the

orthogonal complement W⊥. This requires V to be endowed with an inner product 〈·, ·〉 in which

case, by definition, W⊥ = {x ∈ V |(∀w ∈ W )(〈w, x〉 = 0)}. As you are undoubtedly aware, if V is

finite-dimensional then V =W ⊕W⊥. There are two issues, one much more serious than the other,

in applying this to our situation. The less serious issue is that we need to have an inner product

on Z k(M) to try to do this. As we will see later, there is a natural way of constructing such an

inner product provided that M is endowed with a Riemannian metric (as it always can be, though the

resulting inner product depends on the metric). The more serious issue is that the space Z k(M) that

is playing the role of V is not finite-dimensional, so a priori there is no guarantee that the orthogonal

complement Bk(M)⊥ will actually be a complement. The following general result expresses part of

the issue; for context note that an inner product 〈·, ·〉 on a vector space V induces a topology, given

by the metric d(v1, v2) =
p
〈v1 − v2, v1 − v2〉.

PROPOSITION 1.1.2. Let (V, 〈·, ·〉) be an inner product space and W ≤ V . Suppose that V =

W ⊕W⊥. Then W is closed with respect to the topology on V induced by 〈·, ·〉.
2showing for instance that if p ∈ U where U is an open subset of M there is a smooth function taking value 1 at p and

vanishing identically outside of U
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PROOF. The main point is that, denoting by W̄ the closure of W with respect to the topology

induced by 〈·, ·〉, we have W̄ ⊂ (W⊥)⊥. Indeed, if x ∈ W⊥, the function y 7→ 〈x , y〉 is continuous

(this is an easy corollary of the Cauchy–Schwarz inequality), so {y ∈ V |〈x , y〉 = 0} is a closed

set that contains W and hence also contains W̄ . Since this holds for all x ∈ W⊥ we indeed have

W̄ ⊂ (W⊥)⊥.

If V = W ⊕W⊥, it suffices to show that if y ∈ W̄ is written as y = w + x where w ∈ W and

x ∈ W⊥ then x = 0. But by the previous paragraph we have 〈y, x〉 = 0, and moreover 〈w, x〉 = 0

by the definition of W⊥, so we find that

〈x , x〉= 〈w− y, x〉= 0

and hence that x = 0. �

So if the strategy of taking H k(M) to be the orthogonal complement of Bk(M) in Z k(M) is

to work (which it eventually will), it would need to be the case that Bk(M) is closed as a subset

of Z k(M), i.e. that the image of d is closed inside the kernel of d (or equivalently is closed inside

all of Ωk(M), at least assuming that Z k(M) is closed, which it will be). This is not at all easy to

show—the reader might want to think through at this point what it means to say that the image of

a linear transformation between infinite-dimensional vector spaces is closed to get a sense of where

the difficulties lie.

By the way, as you may know, if (V, 〈·, ·〉) is a Hilbert space (i.e. the metric defined by the inner

product is complete) then the converse to Proposition 1.1.2 is true, i.e. if W ≤ V is closed then W⊥

is a complement to W . But this isn’t immediately useful to us because it’s not so easy to define an

inner product on Ωk(M) that yields a complete metric space, and the inner product that we will use

certainly does not. The difficulty here is that the elements of Ωk(M) are infinitely-differentiable. It

is possible to get a Hilbert space using certain finitely-differentiable versions of differential forms,

but then our exterior derivative operator d wouldn’t preserve the differentiability condition. We

will manage these sorts of issues later on using Sobolev spaces.

1.1.2. Adjoints. Since the plan is to consider the orthogonal complement to Bk(M) = Im(d : Ωk−1(M)→
Z k(M) ⊂ Ωk(M)) inside Z k(M), let us think more about how we can describe this complement. Ab-

stracting the problem a bit, we have a linear map A: U → V where U and V carry an inner product,

and we plan to consider the orthogonal complement of A(U) in V . Now if U and V are finite-

dimensional, there is a familiar description of this orthogonal complement: we can consider the

adjoint A∗ : V → U characterized by the relationship

〈Au, v〉= 〈u,A∗v〉
(and given in terms of matrix representatives by matrix transposition), and then it will hold that

A(U)⊥ = ker(A∗). The inclusion ≥ here is obvious: if A∗v = 0 then clearly 〈Au, v〉 = 〈u,A∗v〉 = 0,

and then the reverse inclusion follows by a dimension count.

Of course in our setting the relevant vector spaces are infinite-dimensional, so one can’t use a

dimension count to infer that ker(A∗) = A(U)⊥. But this will turn out to be true in our case.

So the plan will be to let H k(M) be the kernel of the adjoint of d : Ωk−1(M) → Z k(M) with

respect to the inner products that we will define later. Note that we’re taking the codomain to be

Z k(M) here (so that the adjoint maps Z k(M)→ Ωk−1(M)); it is more natural to define an adjoint

d∗ : Ωk(M)→ Ωk−1(M) to d : Ωk−1(M)→ Ωk(M), and then the map of whichH k(M) is the kernel

is d∗|Zk(M). Said differently, we will set

H k(M) = ker(d)∩ ker(d∗)

where d : Ωk(M)→ Ωk+1(M) is the exterior derivative and d∗ : Ωk(M)→ Ωk−1(M) is the adjoint of

the exterior derivative Ωk−1(M)→ Ωk(M).
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We can usefully rephrase this as follows:

PROPOSITION 1.1.3. If d and d∗ are as above, then ω ∈ ker(d) ∩ ker(d∗) if and only if (d∗d +
dd∗)ω= 0.

PROOF. The forward implication is trivial. For the backward implication, if (d∗d + dd∗)ω = 0

then

0= 〈(d∗d + dd∗)ω,ω〉= 〈dω, dω〉+ 〈d∗ω, d∗ω〉
by the defining property of the adjoint, and this equality forces dω= 0 and d∗ω = 0. �

It remains of course to actually construct the adjoint (at this point we have neither a construction

nor a general result implying its existence), which does not even make sense until we say what the

inner product on differential forms is.

1.1.3. d∗ on forms on Rn. Before doing this in general it is probably instructive to work out

the local behavior for differential forms on Rn with compact support. Of course (since we assume

compact support) such forms can be transplanted to arbitrary smooth manifolds by working in a

coordinate chart and extending by zero outside of the coordinate chart; conversely any differential

form on a smooth manifold M can be written as a sum of forms supported in coordinate charts by

using a partition of unity. We write Ωk
c
(Rn) for the space of compactly supported k-forms on Rn.

We introduce some notation to reduce the number of indices that we need to write: we will

generically use I (or sometimes J) to denote a k-tuple (for some k of elements of {1, . . . , n} with

i1 < · · ·< ik, and we will write d x I = d x i1
∧ · · · ∧ d x ik

. So a general element of Ωk
c
(Rn) is given by

∑

I

fI d x I

where the fI are compactly supported smooth functions. We use the following inner product on

Ω
k
c
(Rn):

(1)

®∑

I

fI d x I ,
∑

J

gJ d xJ

¸
=
∑

I

ˆ

Rn

fI gI d x1 ∧ · · · ∧ d xn.

EXAMPLE 1.1.4. Let’s work out the adjoint of d on Ωk
c
(R2) for k = 1,2 (which are the only values

of k for which it could be nonzero). Recall that, on 0- and 1-forms, d is given by

d f =
∂ f

∂ x
d x +

∂ f

∂ y
d y

d(Pd x +Qd y) =

�
∂Q

∂ x
− ∂ P

∂ y

�
d x ∧ d y.

So d∗ : Ω1
c
(Rn)→ Ω0

c
(Rn) should satisfy, for any Ad x + Bd y ∈ Ω1

c
(R2) and f ∈ Ω0

c
(R2),

ˆ

R2

f d∗(Ad x + Bd y)d x ∧ d y = 〈 f , d∗(Ad x + Bd y)〉= 〈d f ,Ad x + Bd y〉=

∂ f

∂ x
d x +

∂ f

∂ y
d y,Ad x + Bd y

·

=

ˆ

R2

�
∂ f

∂ x
A+

∂ f

∂ y
B

�
d x ∧ d y = −

ˆ

R2

f

�
∂ A

∂ x
+
∂ B

∂ y

�
d x ∧ d y

where we have integrated by parts in the final step.

This holds for every function f ∈ Ω0
c
(R2) if and only if we define d∗(Ad x + Bd y) = −

�
∂ A
∂ x +

∂ B
∂ y

�
.

Note that under the obvious identification of one-forms on R2 with vector fields, d corresponds to the

scalar curl and −d∗ corresponds to the divergence.
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Let us also compute d∗ onΩ2
c
(R2). We have, for any Pd x+Qd y ∈ Ω1

c
(R2) and gd x∧d y ∈ Ω2

c
(R2),

〈d(Pd x +Qd y), gd x ∧ d y〉=
ˆ

R2

�
−∂ P

∂ y
g +

∂Q

∂ x
g

�
d x ∧ d y =

ˆ

R2

�
P
∂ g

∂ y
−Q

∂ g

∂ x

�
d x ∧ d y

=


Pd x +Qd y,

∂ g

∂ y
d x − ∂ g

∂ x
d y

·
.

So we can (and must) take

d∗(gd x ∧ d y) =
∂ g

∂ y
d x − ∂ g

∂ x
d y

for gd x ∧ d y ∈ Ω2
c
(R2).

In view of Proposition 1.1.3 let us now compute d∗d + dd∗ on each Ωk
c
(R2). For k = 0, we have:

(d∗d + dd∗) f = d∗
�
∂ f

∂ x
d x +

∂ f

∂ y
d y

�
= −

�
∂ 2 f

∂ x2
+
∂ 2 f

∂ y2

�
;

for k = 1:

(d∗d + dd∗)(Pd x +Qd y) = d∗
��
∂Q

∂ x
− ∂ P

∂ y

�
d x ∧ d y

�
− d

�
∂ P

∂ x
+
∂Q

∂ y

�

=

�
∂ 2Q

∂ x∂ y
− ∂

2P

∂ y2

�
d x +

�
−∂

2Q

∂ x2
+
∂ 2P

∂ x∂ y

�
d y −

�
∂ 2P

∂ x2
+
∂ 2Q

∂ x∂ y

�
d x −

�
∂ 2P

∂ x∂ y
+
∂ 2Q

∂ y2

�
d y

= −
�
∂ 2P

∂ x2
+
∂ 2P

∂ y2

�
d x −

�
∂ 2Q

∂ x2
+
∂ 2Q

∂ y2

�
d y.

Finally, for k = 2,

(d∗d + dd∗)(gd x ∧ d y) = d

�
∂ g

∂ y
d x − ∂ g

∂ x
d y

�
= −

�
∂ 2 g

∂ x2
+
∂ 2 g

∂ y2

�
d x ∧ d y.

In other words, at least in this case, the operator d∗d + dd∗ (sometimes called the “Hodge Lapla-

cian”) acts by the negative of the standard Laplace operator ∂ 2

∂ x2 +
∂ 2

∂ y2 on each function component

fI of the differential form
∑

I fI d x I . This situation persists in more general cases, though when the

Riemannian metric used to define the inner product on Ωk(M) has curvature there are additional terms

that appear when the Hodge Laplacian is written out in coordinates.

Although with sufficient patience we could perform a similar computation to that in Example

1.1.4 for Ωk
c
(Rn) for any values of k and n, it is better to proceed by rephrasing the definition of

the inner product (1) in the following way. We will use the “Hodge star” operator ⋆: Ωk
c
(Rn) →

Ω
n−k
c
(Rn) which we define presently. For any k-tuple I = (i1, . . . , ik) ∈ {1, . . . , n}k such that i1 <

· · ·< ik, let us write I◦ for the complementary increasing (n− k)-tuple ( j1, . . . , jn−k) ∈ {1, . . . , n}n−k,

such that { j1, . . . , jn−k} = {1, . . . , n} \ {i1, . . . , ik} and j1 < · · · < jn−k. Also let ε(I) denote the sign

of the permutation that sends 1, . . . , k, k+1, . . . , n, respectively, to i1, . . . , ik, j1, . . . , jn−k. The Hodge

star operator ⋆: Ωk
c
(Rn)→ Ωn−k

c
(Rn) may be defined by the formula

(2) ⋆

�∑

I

fI d x I

�
=
∑

I

ε(I) fI d x I◦ .

Note in particular that if I = (i1, . . . , ik) and J = ( j1, . . . , jk) are both in increasing order, then

d x I ∧ ⋆d xJ =

§
d x1 ∧ · · · ∧ d xn if I = J

0 otherwise.
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In view of this, the definition (1) of the inner product on compactly supported k-forms on Rn is

easily seen to be equivalent to saying that, for any ω,θ ∈ Ωk
c
(Rn),

(3) 〈ω,θ 〉=
ˆ

Rn

ω∧ ⋆θ .

While the definition of ⋆ appears rather coordinate-dependent, we will see later that its defi-

nition extends to the compactly supported forms on any oriented Riemannian manifold, allowing

us to define an inner product on such forms just as in (3). Before doing this, let us work out the

adjoint of d with respect to this inner product. To do this, first note that for I = (i1, . . . , ik) ∈
{1, . . . , n}k, the product of the signs ε(I) and ε(I◦) is equal to the sign of the permutation which

maps (i1, . . . , ik, j1, . . . , jn−k) to ( j1, . . . , jn−k, i1, . . . , ik), and this latter sign is just (−1)k(n−k). Conse-

quently the definition of ⋆ yields

⋆⋆= (−1)k(n−k) as a map Ωk
c
(Rn)→ Ωk

c
(Rn).

If ω ∈ Ωk−1
c
(Rn) and θ ∈ Ωk

c
(Rn), we then find by the Leibniz rule and Stokes’ theorem that

〈dω,θ 〉=
ˆ

Rn

(dω)∧ ⋆θ =
ˆ

Rn

�
d(ω∧ ⋆θ )− (−1)k−1ω∧ d(⋆θ )

�

= (−1)k
ˆ

Rn

ω∧ d(⋆θ ) = (−1)k+(k−1)(n−k+1)

ˆ

Rn

ω∧ ⋆(⋆d ⋆ θ ) = 〈ω, (−1)(k−1)n+1 ⋆ d ⋆ θ 〉.

So the adjoint of d with respect to the inner product (3) is the map d∗ : Ωk
c
(Rn) → Ωk−1

c
(Rn)

given by

d∗ = (−1)(k−1)n+1 ⋆ d ⋆ .

In particular (since ⋆ is its own inverse up to sign), d∗ is, up to sign, the conjugate of d by the

⋆ operator. For instance, on R3, ⋆ sets up an isomorphism between 1-forms and 2-forms, and since

d acts on 1-forms like the curl operator on vector fields, it follows that d∗ acts on 2-forms like the

curl operator on vector fields.

1.1.4. Hodge star on a general oriented manifold. The inner product on forms given in (3)

would have an obvious generalization to compactly-supported differential forms on an arbitrary

n-dimensional oriented Riemannian manifold M if only we knew how to define the Hodge star

operator ⋆: Ωk
c
(M) → Ωn−k

c
(M). We will now make this construction. Recall that an element of

Ω
k
c
(M) is a (smooth and compactly supported) choice, for every p ∈ M , of element ωp from the�

n

k

�
-dimensional vector space Λk(Tp M)∗. Here for any n-dimensional vector space V , ΛkV ∗ is the

vector space of k-linear, alternating functions V k → R, and has basis given by the wedge products

e∗
i1
∧ · · · ∧ e∗

ik
(1≤ i1 < · · ·< ik ≤ n) for any basis {e1, . . . , en} for Tp M with dual basis {e∗

1
, . . . , e∗

n
}.3

In the case of Rn, with its standard basis {e1, . . . , en}, the standard differential forms d x I =

d x i1
∧· · ·∧d x ik

have value e∗
i1
∧· · ·∧ e∗

ik
at each point p, and the Hodge star operator was induced by

the linear mapΛk(Rn)∗→ Λk(Rn−k)∗ that sends e∗
i1
∧· · ·∧e∗

ik
to ε(I)e∗

j1
∧· · ·∧e∗

jn−k
where I = (i1, . . . , ik)

and I◦ = ( j1, . . . , jn−k). The key, non-obvious, fact is that we would obtain the same map if we used

any other oriented, orthonormal basis for Rn in place of {e1, . . . , en} in the construction. One could

try to prove this by a computation involving the change of basis matrix, but this quickly gets ugly;

instead we will find a manifestly basis-independent formulation of ⋆. (See also [W, p. 79, Ex. 13]

for a different approach.)

3I’m using the same approach to the alternating algebra that I have in previous courses, see e.g. [U2, Section 4.1]; in

particular in this formulation the wedge product is defined in [U2, p. 23, (7)]. The approach in, for instance, [W, Chapter

2] is of course ultimately equivalent but makes more use of tensor products, universal mapping properties, etc.
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Let us consider an oriented, n-dimensional inner product space (V, 〈·, ·〉,o). From V we can

construct the vector spaces ΛkV ∗ mentioned above; we can also construct ΛkV , which has basis

{ei1
∧ · · · ∧ eik

|i1 < · · · < ik} for any basis {e1, . . . , en} for V ; for consistency with how we defined

Λ
kV ∗ we will say that we are just defining ΛkV as Λk(V ∗)∗ using the canonical identification of V

with (V ∗)∗ (though there are other formulations). Note that a vector space isomorphism A: V →W

induces a vector space isomorphism ΛkA: ΛkV → ΛkW via ΛkA(ei1
∧· · ·∧ eik

) = (Aei1
)∧· · ·∧ (Aeik

).4

The inner product 〈·, ·〉 on V induces an isomorphism

(4) ℓ: V → V ∗ via ℓ(x)(y) = 〈x , y〉.
The orientation o on V , together with the inner product, defines a canonical generatorωV = e1∧· · ·∧
en for ΛnV where e1∧· · ·∧en is an oriented, orthonormal basis for V . This elementωV is independent

of the choice of such a basis because for any other basis { f1, . . . , fn} the standard properties of wedge

products show that f1 ∧ · · · ∧ fn = (det P)e1 ∧ · · · ∧ en where P is the change of basis matrix from

{e1, . . . , en} to { f1, . . . , fn} and if both {e1, . . . , en} and { f1, . . . , fn} are orthonormal and oriented then

P ∈ SO(n) and so det P = 1.

Our map ⋆: ΛkV ∗→ Λn−kV ∗ will be the following composition:

(5) Λ
kV ∗

(Λkℓ)−1

// ΛkV
φ // (Λn−kV )∗

ι−1
// Λn−kV ∗

where:

• Λkℓ: ΛkV → ΛkV ∗ is the isomorphism induced by the isomorphism ℓ: V → V ∗ from (4).

• φ : ΛkV → (Λn−kV )∗ is defined by, for α ∈ ΛkV and β ∈ Λn−kV , setting (φα)(β) equal

to the number t such that α ∧ β = tωV , where ωV is the canonical generator for ΛnV

associated to the inner product and orientation.

• The isomorphism ι : Λn−kV ∗ → (Λn−kV )∗ is determined as follows. Let {e1, . . . , en} be a

basis for V . Then for θ ∈ Λn−kV ∗ we define ιθ ∈ (Λn−kV )∗ by extending linearly from

(6) (ιθ )(ei1
∧ · · · ∧ ein−k

) = θ (ei1
, . . . , ein−k

)

(we make the definition initially just for i1 < . . .< in−k, but since both sides are antisym-

metric in the ei the identity continues to hold for any (n − k)-tuple (i1, . . . , in−k)). This

map ι is clearly linear and injective, so by a dimension count it is a linear isomorphism.

It’s not hard to see that ι is independent of the choice of basis {e1, . . . , en} used in its defi-

nition: in fact if f1, . . . , fn−k are any elements of V given in terms of the basis {e1, . . . , en}
by f j =

∑
i Pi, jei , then

f1 ∧ · · · ∧ fn−k =
∑

i1,...,ik

Pi1,1 · · · Pin−k ,n−kei1
∧ · · · ∧ ein−k

,

and so with ιθ defined by (6) we will have

(ιθ )( f1 ∧ · · · ∧ fn−k) =
∑

i1,...,in−k

Pi1,1 · · · Pin−k ,n−kθ (ei1
, . . . , ein−k

) = θ ( f1, . . . , fn−k).

So the prescription (6) yields an isomorphism ι : Λn−kV ∗→ (Λn−kV )∗ that is independent

of the basis {e1, . . . , en} used in the formula, and in fact (6) holds for arbitrary elements

e1, . . . , en−k, not necessarily coming from a basis for V .

We can now prove the following basic result about the star operator:

4To make clear that this is well-defined and basis-independent, if we’re regarding ΛkV as consisting of k-linear alter-

nating functions on V ∗, then for θ ∈ ΛkV and w∗1, . . . , w∗
k
∈ W ∗ we will have

�
(ΛkA)(θ )

�
(w∗1, . . . , w∗

k
) = θ (A∗w∗1, . . . , A∗w∗

k
)

where A∗ : W ∗→ V ∗ is the adjoint of A.
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PROPOSITION 1.1.5. Let (V, 〈·, ·〉,o) be an n-dimensional, oriented inner product space. Then for

1≤ k ≤ n−1 there is a unique linear map ⋆: ΛkV ∗→ Λn−kV ∗ such that, for any oriented, orthonormal

basis {e1, . . . , en} for V , we have

(7) ⋆ (e∗
i1
∧ · · · ∧ e∗

ik
) = ε(I)e∗

j1
∧ · · · ∧ e∗

jn−k

for any I = (i1, . . . , ik) with i1 < · · ·< ik, where I◦ = ( j1, . . . , jn−k) and j1 < · · ·< jn−k.

REMARK 1.1.6. We have excluded the somewhat-degenerate cases k = 0, n from the proposition.

Recall that Λ0V ∗ = R, while ΛnV ∗ is one-dimensional and generated by volV := e∗
1
∧ · · · ∧ e∗

n
for any

choice of oriented orthonormal basis {e1, . . . , en} for V . (As with the corresponding generatorωV for

Λ
nV , different choices of oriented orthonormal basis would be related by an element P ∈ SO(n),

so changing the basis would have the effect of multiplying volV by det(PT )−1 = 1; thus volV is

canonically determined by the orientation and inner product.) So we shall define ⋆: Λ0V ∗→ ΛnV ∗

by ⋆(t) = tvolV , and ⋆: ΛnV ∗→ Λ0V ∗ by ⋆(tvolV ) = t.

PROOF. The linearity of ⋆ and the prescription (7) for even a single oriented orthonormal basis

{e1, . . . , en} suffice to uniquely determine ⋆ if it exists, so we just need to prove existence. More

specifically, we will show that the composition (5) satisfies the required property. So let {e1, . . . , en}
be an oriented orthonormal basis for V , and let I = (i1, . . . , ik) and I◦ = ( j1, . . . , jn−k) with i1 < · · ·<
ik and j1 < · · ·< jn−k, and let us consider the effect of (5) on the element e∗

i1
∧ · · · ∧ e∗

ik
∈ ΛkV ∗.

Since the ei form an orthonormal basis, the isomorphism ℓ: V → V ∗ sends each ei to the dual

basis element e∗
i
, so (Λkℓ)−1 sends e∗

i1
∧ · · · ∧ e∗

ik
to ei1
∧ · · · ∧ eik

.

To determine the valueφ(ei1
∧· · ·∧eik

) ∈ (Λn−kV )∗, sinceΛn−kV has basis given by ea1
∧· · ·∧ean−k

with a1 < · · ·< an−k it suffices to find eachφ(ei1
∧· · ·∧eik

)(ea1
∧· · ·∧ean−k

). Now if (a1, . . . , an−k) 6= I◦,
then the pigeonhole principle (and the fact that the ir and ar are ordered) shows that one of the

ar is equal to one of the is and hence that ei1
∧ · · · ∧ eik

∧ ea1
∧ · · · ∧ ean−k

= 0. Meanwhile for

(a1, . . . , an−k) = I◦ = ( j1, . . . , jn−k), we have (by the definition of the sign ε(I))

ei1
∧ · · · ∧ eik

∧ e j1
∧ · · · ∧ e jn−k

= ε(I)e1 ∧ · · · ∧ en.

So for any ordered (n− k)-tuple (a1, . . . , an−k) we have

(8)
�
φ ◦ (Λkℓ)−1(e∗

i1
∧ · · · ∧ e∗

ik
)
�
(ea1
∧ · · · ∧ ean−k

) =

§
ε(I) (a1, . . . , an−k) = I◦

0 otherwise.

But using the basis {e1, . . . , en} to compute the isomorphism ι via (6), it is clear that (8) still holds

if its left hand side is replaced by ι(ε(I)e∗
j1
∧ · · · ∧ e∗

jn−k
)(ea1
∧ · · · ∧ eak

). So we have
�
φ ◦ (Λkℓ)−1(e∗

i1
∧ · · · ∧ e∗

ik
)
�
= ι(ε(I)e∗

j1
∧ · · · ∧ e∗

jn−k
),

which proves that our map ⋆= ι−1 ◦φ ◦ (Λkℓ)−1 indeed satisfies the property (7). �

With Proposition 1.1.5 in hand we can readily generalize the constructions of Section 1.1.3.

First we explicitly define the notion of a Riemannian manifold:

DEFINITION 1.1.7. A Riemannian manifold is a pair (M , g) where M is a smooth manifold and

a Riemannian metric g. In other words, g is a choice, for all p ∈ M , of an inner product gp on the

real vector space Tp M , satisfying the smoothness condition that, for any two (smooth) vector fields

X , Y on M , the function g(X , Y ): M → R defined by p 7→ gp(X p, Yp) is a smooth function.

The smoothness condition is equivalent to the statement that, in any local coordinate chart

(x1, . . . , xn): U → Rn for M , the inner products gi j(p) = gp

�
∂
∂ x i

, ∂
∂ x j

�
are smooth functions of p.

Thus in local coordinates the Riemannian metric g is represented by a symmetric, positive-definite
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matrix (gi j(p)) that varies smoothly from point to point. One should not expect in general to be able

to choose coordinates in which the matrix is (even locally) constant—the curvature of the metric

(which we do not define here) gives an obstruction to doing so.

Let (M , g) be an oriented n-dimensional Riemannian manifold. The orientation of M together

with the Riemannian metric g endow each Tp M with the structure of an oriented inner product

space. This allows us to define a Hodge star operator Ωk
c
(M)→ Ωn−k

c
(M) for any 0 ≤ k ≤ n simply

by (⋆ω)p = ⋆(ωp) where the ⋆ on the right hand side is given by Proposition 1.1.5 or Remark 1.1.6.

The same discussion as at the end of Section 1.1.2 shows that

⋆⋆= (−1)k(n−k) : Ωk
c
(M)→ Ωk

c
(M).

Just as in the case of Rn we can define an inner product 〈·, ·〉 on Ωk
c
(M) by setting

(9) 〈ω,θ 〉=
ˆ

M

ω∧ ⋆θ .

EXERCISE 1.1.8. Prove that (9) is indeed an inner product.

Furthermore, we can again use Stokes’ theorem5 to find, for ω ∈ Ωk−1
c
(M) and θ ∈ Ωk

c
(M) that

〈dω,θ 〉=
ˆ

M

�
d(ω∧ ⋆θ )− (−1)k−1ω∧ d(⋆θ )

�

= (−1)k
ˆ

ω∧ (−1)(n−k+1)(k−1) ⋆ ⋆d ⋆ θ = 〈ω, (−1)n(k−1)+1 ⋆ d ⋆ θ 〉

in view of which

(10) d∗ = (−1)n(k−1)+1 ⋆ d⋆: Ωk(M)→ Ωk−1(M)

satisfies the adjoint relation 〈dω,θ 〉= 〈ω, d∗θ 〉.
EXERCISE 1.1.9. Prove that d∗ ◦ d∗ = 0, and that the map ⋆ induces an isomorphism

ker(d∗ : Ωk(M)→ Ωk−1(M))

Im(d∗ : Ωk+1(M)→ Ωk(M))
∼= Hn−k(M).

As suggested in Section 1.1.2 we will let

(11) H k(M) = ker(d)∩ ker(d∗) = ker(d∗d + dd∗),

where the second equality follows from Proposition 1.1.3, and prove:

THEOREM 1.1.10 (Hodge theorem, first version). Let (M , g) be a compact, oriented Riemannian

manifold, define d∗ by (10) and define H k(M) by (11). Then H k(M) is a finite-dimensional vector

space, and Z k(M) = Bk(M)⊕H k(M).

By Proposition 1.1.1 it then follows that H k(M) ∼= Hk(M); thus one immediate consequence

of Theorem 1.1.10 is that Hk(M) is finite-dimensional for all k if M is a compact oriented smooth

manifold.6 One also obtains the Poincaré duality result that dim Hk(M) = dim Hn−k(M) from the

following:

PROPOSITION 1.1.11. The Hodge star operator ⋆ restricts toH k(M) as an isomorphismH k(M)→
H n−k(M).

5Throughout these notes all manifolds are manifolds without boundary unless otherwise stated; recall that Stokes’

theorem in this context says that if M is an n-dimensional manifold without boundary and if α ∈ Ωn−1
c (M) then

´

M dω = 0.

If we considered manifolds with boundary and allowed our differential forms to be nonzero at the boundary then additional

terms would be required in the adjoint.
6Note that any smooth manifold admits a Riemannian metric, as follows from a partition-of-unity argument.
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PROOF. Since ⋆⋆ = (−1)k(n−k) it is clear that ⋆ is a bijection between Ωk(M) and Ωn−k(M), so

we just need to see that ⋆mapsH k(M) toH n−k(M) (and vice versa). But we have, forω ∈ Ωk(M),

d(⋆ω) = ± ⋆ ⋆d ⋆ω = ± ⋆ d∗ω

so since ⋆ is an isomorphism we have

d∗ω= 0⇔ d(⋆ω) = 0 and likewise d∗(⋆ω) = 0⇔ dω= 0.

Thus ω ∈H k(M)⇔ ⋆ω ∈H n−k(M). �

The discussion so far should indicate that Theorem 1.1.10 would be easy to prove if Z k(M)

were finite-dimensional, but of course Z k(M) is not finite-dimensional and so various analytical

subtleties such as the one suggested by Proposition 1.1.2 become relevant. The proof of Theorem

1.1.10 will require a clearer understanding of certain properties of the Hodge Laplacian d∗d + dd∗;
these properties are shared more generally by the class of elliptic differential operators which appear

often in the geometry of manifolds. We will begin working toward this understanding in the next

section. But first we will reformulate the Hodge theorem in a way that more closely reflects what

the analytical argument will show, and draw out some consequences of this (including the original

formulation Theorem 1.1.10).

THEOREM 1.1.12 (Hodge theorem, second version). Let M be a compact oriented Riemannian

manifold and endow Ωk(M) with the inner product 〈·, ·〉 from (9). Define ∆ = d∗d + dd∗, so that

H k(M) = ker(∆). ThenH k(M) is finite-dimensional, and

(12) Im(∆ : Ωk(M)→ Ωk(M)) =H k(M)⊥.

REMARK 1.1.13. Note that∆ is easily seen to be (formally) self-adjoint in the sense that 〈∆ω,θ 〉=
〈ω,∆θ 〉, as an immediate consequence of the fact that d and d∗ are adjoint to each other. So if

ω = ∆α ∈ Im(∆) and θ ∈ H k(M) then certainly 〈ω,θ 〉 = 〈α,∆θ 〉 = 0; thus the inclusion “⊂” in

(12) is straightforward. So the difficult parts of the Hodge theorem are the statements thatH k(M)

is finite-dimensional and that any ω ∈ Ωk(M) satisfying the obviously-necessary condition that

〈ω,θ 〉= 0 for all θ ∈H k(M) can in fact be written as ω =∆α for some α ∈ Ωk(M).

We now extract some consequences of this formulation of the Hodge theorem:

COROLLARY 1.1.14. Assuming Theorem 1.1.12, we have an orthogonal direct sum decomposition

Ω
k(M) =H k(M)⊕ Im(∆ : Ωk(M)→ Ωk(M)).

PROOF. We have already observed that the two summands are orthogonal and Theorem 1.1.12

says that Im(∆) = H k(M)⊥, so we just have to show that any ω ∈ Ωk(M) can be written as

ω= x + y where x ∈H k(M) and y ∈H k(M)⊥. Although we noted earlier (cf. Proposition 1.1.2)

that this sort of question is generally subtle, in this particular case it is easy because Theorem 1.1.12

also says thatH k(M) is finite-dimensional. So we can choose an orthonormal basis {e1, . . . , eN} for

H k(M) and write

ω =

�
N∑

i=1

〈ω, ei〉ei

�
+

�
ω−

N∑

i=1

〈ω, ei〉ei

�

where the first expression in parentheses belongs to H k(M) and the second belongs to H k(M)⊥.

�

COROLLARY 1.1.15. Assuming Theorem 1.1.12, we have an orthogonal direct sum decomposition

Ω
k(M) =H k(M)⊕ Im(d : Ωk−1(M)→ Ωk(M))⊕ Im(d∗ : Ωk+1(M)→ Ωk(M)).
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PROOF. By Corollary 1.1.14 we just need to show that Im(∆) = Im(d)+Im(d∗) and that 〈ω,θ 〉=
0 whenever ω ∈ Im(d) and θ ∈ Im(d∗). The latter statement is clear, since if ω = dα and θ = d∗β
then

〈ω,θ 〉= 〈dα, d∗β〉= 〈ddα,β〉= 0

since d2 = 0. Also the statement that Im(∆) ⊂ Im(d) + Im(d∗) is clear from the equation ∆(ω) =
d(d∗ω) + d∗(dω).

For the reverse inclusion, we note that if ω= dα, then for all φ ∈H k(M) we have

〈ω,φ〉= 〈α, d∗φ〉= 0

because Proposition 1.1.3 implies that d∗φ = 0. Thus Im(d) ⊂ H k(M)⊥. The same argument

(using instead that dφ = 0 by Proposition 1.1.3) shows that Im(d∗) ⊂H k(M)⊥. So we have

Im(d)⊕ Im(d∗) ⊂H k(M)⊥ = Im(∆)

where the last equality is given by Theorem 1.1.12, and the result follows. �

PROOF OF THEOREM 1.1.10, ASSUMING THEOREM 1.1.12. The statement that H k(M) is finite-

dimensional is part of Theorem 1.1.12, so we just need to show that Z k(M) = Bk(M) ⊕H k(M).

If ω ∈ Z k(M), then Corollary 1.1.15 allows us to write ω = φ + dα+ d∗β for some φ ∈ H k(M),

α ∈ Ωk−1(M), and β ∈ Ωk+1(M). Moreover 〈φ, d∗α〉= 〈dα, d∗β〉= 0, so we have

〈d∗β , d∗β〉= 〈ω, d∗β〉= 〈dω,β〉= 0,

so in fact d∗β = 0 and ω = φ + dα.

This proves that Z k(M) ⊂ Bk(M)⊕H k(M), while the reverse inclusion follows from the defi-

nitions (and Proposition 1.1.3). �

The “Hodge decomposition” in Corollary 1.1.15 leads to additional interesting consequences,

including a PDE-free characterization of the space H k(M) of harmonic forms. Recall that by defi-

nition a de Rham cohomology class c ∈ Hk(M) is a coset of Bk(M) in Z k(M), so that if we choose

one element ω0 ∈ c (necessarily having dω0 = 0) then c = {ω0 + dβ |β ∈ Ωk−1(M)}.
COROLLARY 1.1.16. Assume Theorem 1.1.12. Then for any c ∈ Hk(M) there is a unique element

ω ∈ c such that, for all θ ∈ c, we have

〈ω,ω〉 ≤ 〈θ ,θ 〉 with equality only if θ =ω

Moreover this element ω is the unique element of c that also belongs toH k(M).

PROOF. Choose an aribitrary ω0 ∈ c. As was shown in the proof of Theorem 1.1.10, we can

write ω0 = ω + dα for some ω ∈ H k(M) and α ∈ Ωk−1(M) (the Im(d∗) term vanishes because

dω0 = 0). In particular ω ∈ c ∩H k(M). If there were another element ω′ ∈ c ∩H k(M), then we

would have ω−ω′ ∈H k(M)∩ Bk(M) = {0}, so ω is in fact the unique element of c ∩H k(M).

We can then write any θ ∈ c as θ = ω+ dβ for some β ∈ Ωk−1(M). The orthogonality of the

splitting in Corollary 1.1.15 then shows that

〈θ ,θ 〉 = 〈ω,ω〉+ 〈dβ , dβ〉 ≥ 〈ω,ω〉,
with equality iff dβ = 0, i.e. iff θ =ω. �

Thus harmonic forms can be characterized as precisely those closed forms ω which minimize

the “energy” 〈ω,ω〉 =
´

M ω∧ ⋆ω among all forms in their cohomology class [ω]. Moreover in any

cohomology class there is a unique such form.

The following exercise gives a notable consequence of the Hodge decomposition that is less

directly related to cohomology:
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EXERCISE 1.1.17. Let M be a compact oriented Riemannian manifold, and assume Theorem 1.1.12

(and hence all of its corollaries). Prove that if ω is any exact form, then there is a unique α ∈ Im(d∗)
such that ω = dα. Moreover, prove that if β ∈ Ωk−1(M) with dβ = ω, then 〈β ,β〉 ≥ 〈α,α〉, with

equality only if β = α.

(Hints: For the existence of α, use the facts that Im(d) ⊂ Im(∆) (proven in the proof of Corollary

1.1.15) and that Im(d) and Im(d∗) are orthogonal. For uniqueness, you might draw inspiration from

the proof of Proposition 1.1.3.)

Thus Hodge theory singles out a preferred solution to the equation dα = ω whenever this

equation has a solution; namely, if one takes α equal to the unique element of Im(d∗) (i.e. the

unique “coexact” form) with dα = ω, then this choice of α will have the strictly smallest possible

energy 〈α,α〉 among all solutions.

By Exercise 1.1.9, if Hn−k(M) = {0} then a k-form is coexact if and only if it is coclosed (i.e., in

ker(d∗)). So in this case if ω is an exact (k + 1)-form then there is a unique β ∈ Ωk(M) satisfying

the system of differential equations

§
dβ =ω

d∗β = 0
.

To relate this to physics, let n = 3 and k = 1. A 2-form ω written locally as B1d y ∧ dz + B2dz ∧
d x+B3d x ∧d y can be seen as corresponding to a magnetic field ~B = (B1, B2, B3). One of Maxwell’s

equations (corresponding to the nonexistence of magnetic monopoles) says that ∇ · ~B = 0, i.e.

that dω = 0. So if H2(M) = 0 there is α ∈ Ω1(M) with dα = ω. We can likewise view α =

A1d x + A2d y + A3dz as corresponding to a vector field ~A= (A1,A2,A3), and the equation dα = ω

says that ∇ × ~A = ~B, i.e. that ~A is what physicists call a “vector potential” for the magnetic field
~B. There are many such vector potentials for any given ~B, corresponding to all the solutions to

dα = ω; one is said to “fix a gauge” when one makes a choice of the vector potential. One gauge-

fixing criterion that is commonly used is the “Coulomb gauge,” wherein one requires ∇ · ~A = 0.

This equation is equivalent to d∗α= 0. So it follows that any magnetic field on a compact oriented

3-manifold M with H2(M) = 0 has a unique vector potential which is in Coulomb gauge.

1.2. Introductory Analysis of the Laplacian

1.2.1. The Hodge Laplacian in local coordinates. Our intention is to look for solutions ω ∈
Ω

k(M) to the equation∆ω = α for arbitrary α ∈H k(M)⊥; doing this will require some information

about what this equation says when ω is written in suitable local coordinates.

As before we assume that (M , g) is a compact oriented Riemannian manifold. The Hodge star

operator ⋆: Ωk(M)→ Ωn−k(M) is then induced pointwise by linear maps ⋆: Λk Tp M∗→ Λn−k Tp M∗

for each p ∈ M , which are characterized by the property that, if {e1, . . . , en} is any oriented or-

thonormal basis for Tp M with dual basis {e1, . . . , en}, then ⋆(e1 ∧ · · · ∧ ek) = ek+1 ∧ · · · ∧ en. (The

values of the various ⋆(ei1 ∧ · · · ∧ eik) can then be inferred by reordering the oriented basis.) Then

d∗ : Ωk(M)→ Ωk−1(M) is given by d∗ = (−1)n(k−1)+1 ⋆ d⋆ and ∆ = d∗d + dd∗.
Choose a coordinate chart φ = (x1, . . . , xn): U → Rn for M , with φ(p) = 0. Given an oriented

orthonormal basis {e1, . . . , en} for Tp M , by postcomposing φ with some linear map that sends the

basis {φ∗e1, . . . ,φ∗en} to the standard basis for Rn, we may assume that {φ∗e1, . . . ,φ∗en} is equal

to the standard basis in Rn. In other words, for each i we have ei =
∂
∂ x i

���
p
∈ Tp M where we use the

standard notation for the ith coordinate tangent vector at p induced by the coordinate chart.
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Now the coordinate chart indeed gives us vector fields ∂
∂ x1

, . . . , ∂
∂ xn

throughout the open set U ,

and so the Riemannian metric g gives us functions

gi j : U → R defined by gi j(q) = g

�
∂

∂ x i

����
q

,
∂

∂ x j

����
q

�
.

For each q ∈ U , the matrix (gi j(q)) is symmetric and positive definite. Since the coordinate basis

coincides with the orthonormal basis {e1, . . . , en} at p, we have gi j(p) = δi j; however this equality

generally holds only at p and not elsewhere. In some special cases it may be possible to choose the

coordinate chart φ so that gi j = δi j everywhere, but if the curvature of the metric g is nonzero then

this will not be the case.7

In spite of this warning, let us compute∆ in terms of the local coordinates x1, . . . , xn on U ⊂ M

under the assumption that gi j = δi j throughout U; after doing this we will explain qualitatively

what happens in the more general situation. Thus everywhere in U , { ∂∂ x1
, . . . , ∂

∂ xn
} gives an ori-

ented orthonormal basis for the tangent space, and so (recalling that, essentially by definition,

{d x1, . . . , d xn} is the dual basis to { ∂∂ x1
, . . . , ∂

∂ xn
}), the action of the Hodge star operator is given by

the formula from (2).

By linearity and reordering coordinates it suffices to work out the action of ∆ = d∗d + dd∗ on

a differential k-form of the shape f d x1 ∧ · · · ∧ d xk. Beginning with the action of dd∗, we obtain

(whereb is used to signify omission of a term from a wedge product)

dd∗( f d x1 ∧ · · · ∧ d xk) = (−1)n(k−1)+1d ⋆ d ⋆ ( f d x1 ∧ · · · ∧ d xk)

= (−1)n(k−1)+1d ⋆ d( f d xk+1 ∧ · · · ∧ d xn) = (−1)n(k−1)+1

k∑

i=1

d ⋆

�
∂ f

∂ x i

d x i ∧ d xk+1 · · · ∧ d xn

�

= (−1)n(k−1)+1

k∑

i=1

(−1)(k−1)(n−k)+i−1d

�
∂ f

∂ x i

d x1 ∧ · · · ∧dd x i ∧ · · · ∧ d xk

�

=

k∑

i=1

(−1)i

 
∂ 2 f

∂ x2
i

d x i ∧ d x1 ∧ · · · ∧dd x i ∧ · · · ∧ d xk +

n∑

j=k+1

(−1)k−1 ∂ 2 f

∂ x i∂ x j

d x1 ∧ · · · ∧dd x i ∧ · · · ∧ d xk ∧ d x j

!

= −
�

k∑

i=1

∂ 2 f

∂ x2
i

d x1 ∧ · · · ∧ d xk

�
+

k∑

i=1

n∑

j=k+1

(−1)i+k−1 ∂ 2 f

∂ x i∂ x j

d x1 ∧ · · · ∧dd x i ∧ · · · ∧ d xk ∧ d x j .

(13)

(The simplification of the sign in the second to last equality uses that n(k − 1) + (k − 1)(n− k) =

(k− 1)(2n− k) which is even since k(k− 1) is always even.)

7More specifically, by using “exponential coordinates” one can arrange for the partial derivatives of the gi j to be zero

at p, but the curvature at p gives a coordinate-independent obstruction to the second derivatives all vanishing at p. See [dC,

Chapter 4] or any other text on Riemannian geometry for more details.
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Meanwhile,

d∗d( f d x1 ∧ · · · ∧ d xk) = (−1)nk+1 ⋆ d ⋆ (d f ∧ d x1 ∧ · · · ∧ d xk) = (−1)nk+k+1 ⋆ d ⋆

 
n∑

j=k+1

∂ f

∂ x j

d x1 ∧ · · · ∧ d xk ∧ d x j

!

= (−1)nk+k+1 ⋆ d

 
n∑

j=k+1

(−1) j−k−1 ∂ f

∂ x j

d xk+1 ∧ · · · ∧dd x j ∧ · · · ∧ d xn

!

=

n∑

j=k+1

(−1)nk+ j ⋆

�
(−1) j−k−1 ∂

2 f

∂ x2
j

d xk+1 ∧ · · · ∧ d xn +

k∑

i=1

∂ 2 f

∂ x i∂ x j

d x i ∧ d xk+1 ∧ · · · ∧dd x j ∧ · · · ∧ d xn

�

= (−1)nk+k−1+k(n−k)

n∑

j=k+1

∂ 2 f

∂ x2
j

d x1 ∧ · · · ∧ d xk

+

k∑

i=1

n∑

j=k+1

(−1)nk+ j+(i−1)(n−k)+(k−i)(n−k−1)+n− j ∂ 2 f

∂ x i∂ x j

d x1 ∧ · · · ∧dd x i ∧ · · · ∧ d xk ∧ d x j .

Now nk+ k− 1+ k(n− k) = −1+ k(2n+ 1− k) is always odd (since k(1− k) is always even).

Meanwhile nk+ j+ (i− 1)(n− k)+ (k− i)(n− k− 1) + n− j = n(k+ 1) + (n− k)(k− 1)− (k− i) =

2kn− k(k− 1)− k− i has the same parity as i + k. So we obtain:

(14)

d∗d( f d x1∧· · ·∧d xk) = −
 

n∑

j=k+1

∂ 2 f

∂ x2
j

d x1 ∧ · · · ∧ d xk

!
+

k∑

i=1

n∑

j=k+1

(−1)i+k ∂ 2 f

∂ x i∂ x j

d x1∧· · ·∧dd x i∧· · ·∧d xk∧d x j .

Combining (13) with (14) we see significant cancellation yielding that

∆( f d x1 ∧ · · · ∧ d xk) =

�
−

n∑

i=1

∂ 2 f

∂ x2
i

�
d x1 ∧ · · · ∧ d xk if gi j ≡ δi j .

Of course this is consistent with what we found in Example 1.1.4.

As mentioned earlier, in general we can only hope to choose coordinates in which gi j coincides

with δi j at a prescribed point p, rather than throughout the domain U of the coordinate chart. In the

more general situation, applying the Gram-Schmidt process pointwise to the bases { ∂∂ x1
|q, . . . , ∂

∂ xn
|q}

yields vector fields e1, . . . , en on U with each {(e1)q, . . . , (en)q} an oriented orthonomal basis for

Tq M . Denoting by {e1, . . . , en} the corresponding dual basis of one-forms, the Hodge star operator

is determined not by (2) but rather by ⋆(e1∧ · · ·∧ ek) = ek+1∧ · · ·∧ en (and similar identities for the

other ei1 ∧ · · · ∧ eik , with the usual signs ε(I)).
We could repeat the above calculation of∆, working consistently in terms of the pointwise basis

of forms {ei1 ∧ · · · ∧ eim} in order to compute ∆( f e1 ∧ · · · ∧ ek). This will lead to more complexity,

however, because the one-forms ei (unlike the coordinate forms d x i) have no reason to be closed.

For our purposes it will suffice to give a qualitative description of what ensues. We will encounter

various derivatives of the form

(15) d(hei1 ∧ · · · ∧ eim) = (dh)∧ ei1 ∧ · · · ∧ eim + hd(ei1 ∧ · · · ∧ eim).

Note that, although the ei do not come from a coordinate system, we can still expand dh=
∑

i(∇ei
h)ei

where we define ∇ei
h = dh(ei) as the derivative of h along the vector field ei . Thus the first

term on the right hand side of (15) (which is the only term that involves the derivative of h) is
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∑
i(∇ei

h)(ei ∧ ei1 ∧ · · · ∧ eik); this is just like what one sees in the simpler case that ei = d x i . On the

other hand the second term involving d(ei1 ∧ · · · ∧ eim) is rather different.

Fortunately, however, the terms of ∆( f e1 ∧ · · · ∧ ek) that involve the most derivatives (i.e., two

derivatives) of f are the ones that will be most relevant to us. If one were to pay attention only to

terms in Leibniz rule expansions that involve differentiating f rather than the ei , then the discussion

in the previous paragraph shows that the calculation of∆( f e1∧· · ·∧ek) is identical to the derivations

of (13 and 14), just with d x i ’s replaced by ei ’s and ∂
∂ x i

’s replaced by ∇ei
’s. I do not intend to work

out anything more about the other terms that appear in ∆( f e1∧· · ·∧ ek) beyond the facts that they

depend linearly on the input and involve differentiating f either zero or one times (and also involve

some number of differentiations of the ei).8

To make this more precise, using the abbreviation eI for ei1∧· · ·∧eik for k-tuples I = (i1, . . . , ik),

the following should be evident from the above discussion.

PROPOSITION 1.2.1. Let (e1, . . . , en) be an oriented orthonormal frame of vector fields throughout

some coordinate chart U for a Riemannian manifold (M , g), and let f ∈ C∞(U). Then for each

I = (i1, . . . , ik) we have

∆( f eI ) =

�
−

n∑

i=1

∇ei
(∇ei

f )

�
eI +

n∑

i=1

∑

J

(∇ei
f )β i

I J
eJ +

∑

J

γI J fI e
J

for some β i
I J

,γI J ∈ C∞(U) depending only on the orthonormal frame and not on f .

1.2.2. Harmonic functions and the mean value property. For the rest of Section 1.2 we will

work with real-valued functions defined on open subsets Ω ⊂ Rn, and we will regard the Laplacian

on such functions as defined by

∆u= −
n∑

i=1

∂ 2 f

∂ x2
i

.

“Laplace’s equation” is then the statement that ∆u = 0; more generally one can prescribe a

function f : Ω → Rn and consider “Poisson’s equation” ∆u = f . A function on Rn is said to be

harmonic if it satisfies Laplace’s equation.

Notice that, with our sign convention, ∆u = −∇ · (∇u) = −div(gradu) in terms of the famil-

iar divergence and gradient operators from multivariable calculus. Consequently, if u ∈ C2(Ω) is

harmonic and if x0 ∈ Ω with the closed radius-r ball Br(x0) ⊂ Ω, we obtain:

0=

ˆ

Br (x0)

(∆u)dV = −
ˆ

Br (x0)

div(gradu)dV = −
ˆ

∂ Br (x0)

(gradu) · νdS

where we have used the divergence theorem.9 Now (gradu) ·ν is of course equal to the directional

derivative of f along ν, so if σ denotes the standard volume form on Sn−1 the above shows that,

8While we won’t pursue this, the detailed structure of these terms does have some interesting features and consequences

for Riemannian geometry, see for instance [P, Section 7.3.3].
9 Here dV = d x1 ∧ · · · ∧ d xn is the standard volume form on Rn and dS is the standard volume form on ∂ Br (x0)

and ν is the outward normal vector along the boundary. So we have dS = ινdV as differential forms (ιν means insertion

of ν as the first argument of dV ). While the divergence theorem as taught in multivariable classes is usually phrased for

domains in R3, it is equally valid in Rn: to give a Hodge-star-based proof, if F = (F1, . . . , Fn) is a vector field on Rn we can

construct the one-form φ =
∑

Fi d x i , and then the reader can easily verify that (divF)dV = d(⋆φ). So Stokes’ theorem gives
´

Ω
(div F)dV =

´

∂Ω(⋆φ). Given a point x ∈ ∂Ω, if we work in a rotated coordinate system in which Tx∂Ω = {x1 = 0}, we

then have

(⋆φ)|Tx ∂Ω
= F1d x2 ∧ · · · ∧ d xn = (F · ν)dS|Tx ∂Ω

.

This holds at each x ∈ ∂Ω, so ⋆φ restricts to ∂Ω as (F · ν)dS, and we indeed have
´

Ω
(divF)dV =

´

∂Ω(F · ν)dS.
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provided that Br(x0) ⊂ Ω,
ˆ

ν∈Sn−1

d

d t
u(x0 + tν)

����
t=r

σ = 0.

This applies equally well with r replaced by an arbitrary value s between 0 and r; integrating over

s then yields

0=

ˆ r

0

�
ˆ

ν∈Sn−1

d

d t
u(x0 + tν)

����
t=s

σ

�
ds =

ˆ r

0

d

ds

�ˆ

Sn−1

u(x0 + sν)σ

�
ds =

ˆ

ν∈Sn−1

(u(x0+rv)−u(x0))σ

where we have used Fubini’s theorem and the fundamental theorem of calculus.

In other words, if u is harmonic on Ω then we have
´

∂ Br (x0)
(u−u(x0))dS = 0 whenever Br(x0) ⊂

Ω. This is one version of the mean value property for harmonic functions. We will instead using a

version that integrates over balls rather than spheres and follows almost immediately: we equally

well have
´

∂ Bs(x0)
(u− u(x0))dS = 0 for 0 < s < r, and then integrating over s (with a weight sn−1

to reflect a change from polar to Cartesian coordinates) and applying Fubini’s theorem produces
´

Br (x0)
(u − u(x0))dV = 0. In other words, denoting by

ffl

U f dV the average value 1
vol(U)

´

f dV of

a function f over a bounded set U , if u is harmonic in Ω then we have, on any closed ball Br(x0)

contained in Ω,

(16) u(x0) =

 

Br (x0)

udV.

This is called the mean value property for harmonic functions.

Conversely, if u is not harmonic, choose a point x0 with (∆u)(x0) 6= 0; for convenience (replac-

ing u by −u if necessary) let us assume that ∆u(x0)> 0. We assumed that u was C2, so this implies

∆u> 0 throughout some ball Br(x0).

Reasoning in exactly the same way as before, the divergence theorem now gives
´

∂ Bs(x0)
(gradu)·

νdS < 0 for all s < r, from which we infer via reasoning just like that above that u(x0)>
ffl

Br (x0)
udV .

To summarize:

DEFINITION 1.2.2. If u: Ω→ R is any locally integrable10 function on an open set Ω ⊂ Rn, we

say that u satisfies the mean value property provided that for all x0 ∈ Ω and all r > 0 such that

Br(x0) ⊂ Ω, we have

u(x0) =

 

Br (x0)

udV.

PROPOSITION 1.2.3. Let u ∈ C2(Ω) where Ω ⊂ R2 is open. Then ∆u = 0 if and only if u satisfies

the mean value property.

Of course, a function does not need to be differentiable in order for one to ask whether it satisfies

the mean value property. We will see below that functions that satisfy the mean value property are

however automatically C2 (in fact C∞) and hence are indeed solutions to Laplace’s equations. To

do this we will first need to record some facts about convolutions which will also be useful to us

elsewhere.

1.2.3. Convolution and Mollifiers. For two functions f , g : Rn → R one may (attempt to,

depending on how well-behaved f and g are) define a new function f ∗ g : Rn→ R by

( f ∗ g)(x) =

ˆ

Rn

f (x − y)g(y)dVy

10i.e., Lebesgue integrable over each compact set
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called the convolution of f and g (we use the notation dVy for the volume form d y1 ∧ · · · ∧ d yn). A

simple change of variables to z = x − y shows

( f ∗ g)(x) =

ˆ

Rn

f (x − y)g(y)dVy =

ˆ

Rn

g(x − z) f (z)dVz = (g ∗ f )(x)

provided that both sides are defined, so f ∗ g is symmetric in f and g. However we will typically

use convolution in a rather asymmetric way, in that often the function f will be known and quite

well-behaved (e.g. smooth and compactly supported) while g will be potentially less well-behaved

(e.g. we might just assume that g is locally integrable). Note that if f ∈ C0(R
n) (where the subscript

denotes compact support) and g is locally integrable then f ∗ g is certainly well-defined since for

each x the integrand in the integral defining ( f ∗ g)(x) has compact support and is obtained from

multiplying g by a bounded function.

In general, when f is well-behaved, we can often expect f ∗ g to be similarly well-behaved

regardless of g, as we now start to illustrate.

PROPOSITION 1.2.4. Let f ∈ C0(R
n) and let g : Rn → R be locally integrable. Then f ∗ g is

continuous.

PROOF. We have

|( f ∗g)(x+h)−( f ∗g)(x)| ≤
ˆ

Rn

| f (x−y+h)− f (x−y)||g(y)|dVy =

ˆ

BR(x)

| f (x−y+h)− f (x−y)||g(y)|dVy

if we take |h| < 1 and R so large that BR−1(0) contains the support of f . Since f is continuous

and has compact support it is uniformly continuous, so for any ε > 0 there is r ∈ (0,1) such

that for all z,h ∈ Rn with |h| < r we have | f (z + h) − f (z)| < ε. So we obtain, for |h| < r,

|( f ∗ g)(x +h)− ( f ∗ g)(x)| ≤ ε
´

BR(x)
|g|dV for all x ∈ Rn. Since g is locally integrable,

´

BR(x)
|g|dV

is just some finite constant, so this suffices to prove continuity. �

PROPOSITION 1.2.5. Let f ∈ C1
0
(Rn) and let g : Rn→ R be locally integrable. Then for each i the

partial derivative ∂
∂ x i
( f ∗ g) exists and is equal to

�
∂ f

∂ x i

�
∗ g.

PROOF. For x ∈ Rn and h ∈ (−1,1) we have

(17)
( f ∗ g)(x + hei)− ( f ∗ g)(x)

h
=

ˆ

Rn

f (x − y + hei)− f (x − y)

h
g(y)dVy

Our assumptions on f imply that
∂ f

∂ x i
is compactly supported and continuous, and hence bounded in

absolute value by some number M , and then it will hold that, for all z ∈ Rn, | f (z+hei)− f (z)| ≤ M |h|.
Consequently the integrand in (17) has absolute value bounded by |M g|, and moreover is supported

in a compact set Kx (which can be chosen independent of h ∈ (−1,1), though it will depend on x;

specifically we can take Kx = {y : dist(x − y, supp( f )) ≤ 1}) on which g is integrable. So we can

apply the Dominated Convergence Theorem to show that

lim
h→0

( f ∗ g)(x + hei)− ( f ∗ g)(x)

h
= lim

h→0

ˆ

Kx

f (x − y + hei)− f (x − y)

h
g(y)dVy =

ˆ

Kx

∂ f

∂ x i

(x−y)g(y)dVy =

�
∂ f

∂ x i

�
∗g(x),

as desired. �

A straightforward induction argument then yields:

COROLLARY 1.2.6. Let f ∈ C∞
0
(Rn) and let g : Rn → R be locally integrable. Then f ∗ g ∈

C∞(Rn), with

∂ α1+···+αn( f ∗ g)

∂ x
α1

1 · · ·∂ x
αn
n

=

�
∂ α1+···+αn f

∂ x
α1

1 · · ·∂ x
αn
n

�
∗ g
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for all α1, . . . ,αn ∈ Z≥0.

The following inequality will help us prove that Lp functions can be approximated using certain

(smooth) convolutions, see Theorem 1.2.10 below.

PROPOSITION 1.2.7 (Young’s inequality). Let f ∈ C0(R
n) and let g ∈ Lp(Rn) (1 ≤ p ≤ ∞).

Then f ∗ g ∈ Lp(Rn), with

‖ f ∗ g‖p ≤ ‖ f ‖1‖g‖p.

REMARK 1.2.8. One could make the weaker assumption that f ∈ L1(Rn) here; the only reasons

that I assumed f ∈ C0(R
n) were that I didn’t want to bother making a separate argument as to why

f ∗ g is well-defined, and that in our applications f will be in C0(R
n).

PROOF. If p =∞ the statement is obvious:

| f ∗ g(x)|=
����
ˆ

Rn

f (x − y)g(y)dVy

����≤ ‖g‖∞
ˆ

Rn

| f (x − y)|dVy = ‖ f ‖1‖g‖∞.

If p = 1 the result essentially follows from Fubini’s theorem:

‖ f ∗ g‖1 =
ˆ

Rn

����
ˆ

Rn

f (x − y)g(y)dVy

���� dVx ≤
ˆ

Rn

ˆ

Rn

| f (x − y)||g(y)|dVy dVx

=

ˆ

Rn

|g(y)|
�ˆ

Rn

| f (x − y)|dVx

�
dVy = ‖ f ‖1‖g‖1.

So for the rest of the proof assume that 1< p <∞, and let 1
p +

1
q = 1 (so also 1< q <∞, and

p

q = p− 1). Then using Hölder’s inequality we obtain, for any x ,

| f ∗ g(x)|=
ˆ

Rn

| f (x − y)|1/q| f (x − y)|1/p|g(y)|dVy ≤
�ˆ

Rn

| f (x − y)|dVy

�1/q �ˆ

Rn

| f (x − y)||g(y)|pdVy

�1/p

= ‖ f ‖1/q1

�ˆ

Rn

| f (x − y)||g(y)|pdVy

�1/p

and so, using Fubini’s theorem similarly to the p = 1 case:
ˆ

Rn

| f ∗ g(x)|pdVx ≤ ‖ f ‖p/q1

ˆ

Rn

ˆ

Rn

| f (x − y)||g(y)|pdVy dVx

= ‖ f ‖p−1

1

ˆ

Rn

|g|pdV

ˆ

Rn

| f |dV = ‖ f ‖p1‖g‖pp.

�

Our preferred functions with which to convolve will be the functions ηr (r > 0) constructed

as follows. First choose a function η : Rn → R (a “standard mollifier”) satisfying the following

properties:

(i) η ∈ C∞
0
(Rn).

(ii) η(x)≥ 0 for all x , and η(x) = 0 whenever |x | ≥ 1.

(iii) η(x) only depends on |x | (i.e. each restriction η|Bs(0)
is constant).

(iv)
´

Rn ηdV = 1

Now for r > 0 define

ηr(x) = r−nη
�

x

r

�
.

Then ηr likewise satisfies properties (i), (iii), (iv), while in place of (ii) we have ηr(x) ≥ 0 and

ηr(x) = 0 for |x | ≥ r.
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A convolution of the form ηr ∗ g is then given by (changing variables to z = x − y)

ηr ∗ g(x) =

ˆ

Rn

ηr(x − y)g(y)dVy =

ˆ

Rn

ηr(z)g(x − z)dVz =

ˆ

Br (0)

ηr(z)g(x − z)dVz .

Thus to evaluate ηr ∗ g(x) we essentially average the value of g over the ball of radius r around

x , with weights determined by the (spherically symmetric) function ηr . This should suggest that

ηr ∗ g will approximate g when r is small, a notion that we begin to confirm as follows:

PROPOSITION 1.2.9. If g ∈ C0(R
n) then ηr ∗ g → g uniformly (and hence also in Lp for any p)

as r → 0.

PROOF. Bearing in mind that
´

Rn ηr dV = 1 and ηr ≥ 0, we have

|ηr ∗ g(x)− g(x)|=
����
ˆ

Rn

ηr(x − y)g(y)dVy − g(x)

����=
����
ˆ

Rn

ηr(x − y)(g(y)− g(x))dVy

����

≤
ˆ

Rn

ηr(z)|g(x − z)− g(x)|dVz =

ˆ

Br (0)

ηr(z)|g(x − z)− g(x)|dVz .

Now g is continuous and compactly supported, and hence is uniformly continuous. So if ε > 0

there is r0 > 0 such that, for any x ∈ Rn and any z ∈ Br0
(0), |g(x − z)− g(x)|< ε. So if r ≤ r0 then

´

Rn ηr(z)|g(x − z)− g(x)|dVz ≤ ε
´

Rn ηr dV = ε and so |ηr ∗ g(x)− g(x)| ≤ ε independently of x ,

proving the desired uniform convergence.

Since the support of ηr ∗ g is contained in an r-neighborhood of the (compact) support of g,

the fact that ‖ηr ∗ g − g‖∞→ 0 as r → 0 immediately implies that ‖ηr ∗ g − g‖p→ 0 for all p. �

This fairly quickly yields the following result which will be important to us several times:

THEOREM 1.2.10. For p <∞, if g ∈ Lp(Rn) then ηr ∗ g → g in Lp as r → 0.

PROOF. Let ε > 0. Standard constructions (relying on the assumption that p <∞) show that

g can be arbitrarily well-approximated in Lp norm by compactly supported continuous functions,

so we can choose h ∈ C0(R
n) with ‖h− g‖p < ε/3. We then have

‖ηr ∗ g − g‖p ≤ ‖ηr ∗ (g − h)‖p + ‖ηr ∗ h− h‖p + ‖h− g‖p.

By assumption ‖h−g‖p < ε/3, and moreover ‖ηr∗(g−h)‖p ≤ ‖ηr‖1‖g−h‖p < ε/3 using Proposition

1.2.7. Meanwhile Proposition 1.2.9 shows that there is r0 such that ‖ηr ∗ h− h‖p < ε/3 for r < r0.

So altogether we obtain ‖ηr ∗ g − g‖p < ε for r < r0. �

1.2.4. Weak solutions to Laplace’s equation and Weyl’s lemma. Proposition 1.2.3 states that

a C2 function u satisfies Laplace’s equation∆u= 0 if and only if u satisfies the mean value property

that u(x) =
ffl

Br (x)
udV for all sufficiently small r. One can then think of the latter condition as a

“weak” version of Laplace’s equation, which unlike Laplace’s equation does not require the function

in question to have partial derivatives. (Another, more easily generalizable, weak form of Laplace’s

equation will be given shortly.) For elliptic equations such as Laplace’s equation, a common and

important feature is that solutions to the weak versions of the equation end up being smooth and

consequently are solutions to the original equation. We are now in position to prove this for the

case of Laplace’s equation.

PROPOSITION 1.2.11. Let u: Ω→ R be a locally integrable function where Ω ⊂ Rn is open, and

assume that u satisfies the mean value property. Then u ∈ C∞(Ω) and ∆u= 0.

(In particular this shows that if u ∈ C2(Ω) and ∆u = 0 then u ∈ C∞(Ω), so even in the case

where ∆u is already known to be well-defined and zero the proposition has some content.)
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PROOF. Denote Ωr = {x ∈ Ω|Br(x) ⊂ Ω}. Since Br(x) denotes the closed ball and Ω is open, Ωr

is also open, and it suffices to show that, for each r > 0, u|Ωr
is of class C∞. So from now on we fix

a specific r > 0.

Let ηr be the function constructed from the standard mollifier and defined above Proposition

1.2.9. Note that for each x ∈ Ωr , the integral (ηr ∗u)(x) =
´

Rn ηr(x− y)u(y)dVy makes sense (even

though we only defined u on Ω, not Rn) because η(x − y) = 0 unless y ∈ Br(x) ⊂ Ω. So we can

define the convolution ηr ∗ u: Ωr → R.

Now recall that the functions ηr are spherically symmetric, in that there is a smooth function

g : [0,∞) → R, supported in [0, r], such that ηr(z) = g(|z|) for all z. I claim that this spherical

symmetry, together with the mean value property satisfied by u, implies that ηr ∗ u is simply equal

to u on Ωr . This should be intuitively plausible, though the argument below runs into technicalities

because our local integrability assumption on u is so modest.

Indeed the mean value property can be phrased as the statement that
´

Bs(0)
(u(x−z)−u(x))dVz =

0 for all s ≤ r. Fubini’s theorem shows that, for almost every t ∈ [0, r], the function u(x − ·)−u(x)

is integrable on the sphere ∂ Bt(0), and that, if we denote f (t) =
´

Sn−1(u(x − tz) − u(x))σ, the

statement that
´

Bs(0)
(u(x − z)−u(x))dVz = 0 is equivalent to the statement that

´ s

0
tn−1 f (t)d t = 0.

So for any 0< s1 < s2 < r we have
´ s2

s1
tn−1 f (t) = 0.

Meanwhile we have

ηr ∗ u(x)− u(x) =

ˆ

Br (x)

g(|x − y|)(u(y)− u(x))dVy =

ˆ r

0

tn−1 g(t)

�ˆ

Sn−1

(u(x − tz)− u(x))σ

�
d t

=

ˆ r

0

g(t)tn−1 f (t)d t.

But we showed above that the integral of tn−1 f (t) vanishes over every interval, so it’s easy to see

that the integral of g(t)tn−1 f (t) vanishes (for instance, C0-approximate g by step functions and

then take a limit of the corresponding integrals). So we have in fact shown that ηr ∗ u(x) = u(x)

for all x ∈ Ωr .

But Proposition 1.2.6 shows that ηr ∗ u is a C∞ function, so the fact that u|Ωr
= ηr ∗ u means

that u is C∞ on Ωr . The parameter r > 0 was arbitrary, and the sets {Ωr}r>0 cover Ω, so we indeed

have u ∈ C∞(Ω). Since u is a (better than) C2 function that satisfies the mean value property,

Proposition 1.2.3 shows that ∆u= 0. �

We now, as promised, describe another notion of weak solution to Laplace’s equation, which

adapts more flexibly to other PDE’s. We begin with the observation that if u ∈ C2(Ω) is a genuine

solution to the equation, then for any φ ∈ C∞
0
(Ω), we would have:

0=

ˆ

Ω

(∆u)φdV = −
n∑

i=1

ˆ

Ω

∂

∂ x i

�
∂ u

∂ x i

�
φdV =

n∑

i=1

ˆ

Ω

�
∂ u

∂ x i

��
∂ φ

∂ x i

�
dV = −

n∑

i=1

ˆ

Ω

u
∂ 2φ

∂ x2
i

dV

=

ˆ

Ω

u(∆φ)dV

(we have repeatedly integrated by parts, using that φ and each of the
∂ φ
∂ x i

are compactly supported

inside Ω and consequently integrals
´

Ω

∂
∂ x i
( f φ)dV or

´

Ω

∂
∂ x i

�
f
∂ φ
∂ x i

�
dV always vanish.

Now for any locally integrable function u on Ω we can ask whether it is or is not the case that,

for every φ ∈ C∞
0
(Ω), we have

´

Ω
u∆φdV = 0; if the answer is yes we call u a weak solution to

Laplace’s equation. If u ∈ C2(Ω) the above calculation shows
´

Ω
(∆u)φdV =

´

Ω
u∆φdV , and u is a

weak solution if ∆u= 0, while if ∆u 6= 0 then u is not a weak solution since then we can easily find

φ ∈ C∞
0
(Ω) with

´

Ω
(∆u)φdV 6= 0. The following shows that any (locally integrable) weak solution



1.2. INTRODUCTORY ANALYSIS OF THE LAPLACIAN 21

is in fact a genuine solution in that its Laplacian is well-defined and equal to zero, at least modulo

redefinition on a set of measure zero. (Note that it is clear from the definition of a weak solution

that the criterion is preserved when one changes u on a set of measure zero.)

THEOREM 1.2.12 (Weyl’s Lemma). Assume that Ω ⊂ Rn is open and that u: Ω → R is locally

integrable and has the property that, for all φ ∈ C∞
0
(Ω),

´

Rn u∆φdV = 0. Then, after possibly

redefining u on a set of measure zero, u ∈ C∞(Ω), and ∆u= 0.

PROOF. Similarly to the proof of Proposition 1.2.11 let Ωr = {x ∈ Ω|Br(x) ⊂ Ω} and note that

the mollified functions ηr ∗ u are well-defined and smooth on Ωr . Fix r0 > 0 and consider below

only those r having r ≤ r0 (so always Ωr0
⊂ Ωr and ηr ∗ u is defined on Ωr0

).

CLAIM 1.2.13. For each φ ∈ C∞
0
(Ωr0
) we have

´

Ωr0

(ηr ∗ u)(x)∆φ(x)dVx = 0

PROOF OF CLAIM 1.2.13. Note that the function ηr ∗φ has support in an r-neighborhood of the

support of φ, and hence in Ω since φ is supported in Ωr0
and r < r0. Also Corollary 1.2.6 shows

that ηr ∗ (∆φ) =∆(ηr ∗φ). Then, using the fact that ηr(x − y) = ηr(y − x), we find:
ˆ

Ωr0

(ηr ∗ u)(x)∆φ(x)dVx =

ˆ

Ωr0

ˆ

Ω

ηr(x − y)u(y)∆φ(x)dVy dVx =

ˆ

Ω

ˆ

Ωr0

u(y)ηr(y − x)∆φ(x)dVx dVy

=

ˆ

Ω

u(y)(ηr ∗∆φ)(y)dVy =

ˆ

Ω

u(y)∆(ηr ∗φ)(y)dVy .

But by the assumption on u in the theorem and the fact that ηr ∗φ ∈ C∞
0
(Ω) we have

´

Ω
u(y)∆(ηr ∗

φ)(y)dVy = 0. �

Given Claim 1.2.13, the fact that ηr ∗ u ∈ C∞(Ωr0
) implies that

´

Ωr0

∆(ηr ∗ u)(x)φ(x)dVx = 0

for all φ ∈ C∞
0
(Ωr0
) and hence that ∆(ηr ∗ u) = 0. In particular ηr ∗ u satisfies the mean value

property:

ηr ∗ u(x) =

 

Bs(x)

ηr ∗ udV whenever Bs(x) ⊂ Ωr0
and r ≤ r0.

Now Theorem 1.2.10 shows that, whenever Bs(x) ⊂ Ωr0
, we have ηr ∗ u → u as r → 0 in

L1(Bs(x)), and hence
ffl

Bs(x)
ηr ∗ udV →

ffl

Bs(x)
udV .

Meanwhile, the fact that ηr ∗ u→ u in L1 on all compact sets implies (see, e.g., [F, Proposition

2.29 and Theorem 2.30]) that there is a sequence rk ց 0 such that ηrk
∗ u→ u almost everywhere

on Ωr0
. Let E = {x ∈ Ωr0

|ηrk
∗ u(x)→ u(x)}. We then have

(18) For each x ∈ E : u(x) = lim
rk→0

ηrk
∗u(x) = lim

k→∞

 

Bs(x)

ηrk
∗udV =

 

Bs(x)

udV if Bs(x) ⊂ Ωr0
.

So u satisfies the mean value property at almost every point of Ωr0
; we will modify u on a set of

measure zero so that it satisfies the mean value property on all of Ωr0
.

Let us choose a smooth function s : Ωr0
→ (0,∞) such that Bs(x)(x) ⊂ Ωr0

(as is easily seen

to be possible since Ωr0
is open) and define ũ(x) = (ηs(x) ⋆ u)(x). Due to Corollary 1.2.6 and the

fact that ηr depends smoothly on positive parameters r, ũ is a smooth function. Also if x ∈ E, (18)

shows that u satisfies the mean value property at x for balls of radii less than or equal to s(x), and

so just as in the proof of Proposition 1.2.11 we will have ηs(x) ∗u(x) = u(x). So ũ(x) = u(x) almost

everywhere on Ωr0
. But a continuous function such as ũ that satisfies the mean value property at

almost every point must in fact satisfy it at every point by a simple limiting argument. So ũ is a

smooth function on Ωr0
satisfying the mean value property; thus ∆ũ= 0.

We have thus shown, for any r0 > 0, how to redefine u on a set of measure zero so as to make it

smooth and harmonic on Ωr0
. If r1 < r0 (so Ωr0

⊂ Ωr1
), the functions ũ(r0) and ũ(r1) obtained by this
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procedure will coincide on Ωr0
for the simple reason that they are smooth functions which coincide

almost everywhere, and hence everywhere by continuity. So repeating the process for a sequence

ri ց 0 yields a function ũ: Ω→ R, coinciding with u almost everywhere, such that ∆ũ= 0. �

1.3. Weak derivatives and Sobolev spaces

We motivated Weyl’s Lemma by observing via integration by parts that a smooth function

u: Rn → R necessarily satisfies, for every φ ∈ C∞
0
(Rn),

´

Rn(∆u)φdV =
´

Rn u∆φdV (for sim-

plicity we just consider the case that Ω = Rn here), based on which we said that a weak solution

to the equation ∆u = 0 should be a (a priori not necessarily differentiable) function u such that
´

Rn u∆φdV = 0 for all φ ∈ C∞
0
(Rn). The Laplacian ∆ could be replaced in such considerations by

any number of other differential operators L; in general one can use integration by parts to get an

identity
´

Rn(Lu)φdV =
´

Rn u(L∗φ)dV for some other operator L∗, which leads to a definition of a

weak solution to Lu = 0 or more generally to Lu = f . (The Laplacian is somewhat unusual in that

it is formally self-adjoint and so ∆∗ =∆ in this notation.)

The simplest operator L to which one might apply this—simpler indeed than the Laplacian—is

the single partial derivative operator ∂
∂ x i

. Here one observes that, for φ ∈ C∞
0
(Rn) and u ∈ C1(Rn),

one has by integration by parts (since φ is compactly supported)
´

Rn

�
∂ u
∂ x i

�
φdV = −

´

Rn u
∂ φ
∂ x i

dV .

So if u ∈ C1(Rn) the partial derivative ∂ u
∂ x i

is the unique continuous function f having the property

that, for every φ ∈ C∞
0
(Rn),

´

Rn u
∂ φ
∂ x i

dV = −
´

Rn f φdV . Since the latter condition makes sense if u

is just locally integrable, we make the following definition:

DEFINITION 1.3.1. Let u, f : Rn → R be locally integrable functions. We say that the weak ith

partial derivative of u is defined and equal to f , and write ∂ u
∂ x i

w
= f , provided that, for all φ ∈

C∞
0
(Rn),

ˆ

Rn

u
∂ φ

∂ x i

dV = −
ˆ

Rn

f φdV.

Note that the truth or falsehood of the statement that ∂ u
∂ x i

w
= f is unaffected if either u or f is

modified on a set of measure zero.

EXERCISE 1.3.2. Prove that weak derivatives satisfy the product rule, i.e. that if ∂ u
∂ x i

w
= f and

∂ v
∂ x i

w
= g then

∂ (uv)

∂ x i

w
= ug+ f v. You may assume that, for some p,q with 1

p+
1
q = 1, we have u, f ∈ Lp(Rn)

and v, g ∈ Lq(Rn) (which ensures that uv,ug, f v ∈ L1(Rn) by Hölder’s inequality). Suggestion: First

do the problem in the case that v ∈ C∞(Rn), then approximate.

EXAMPLE 1.3.3. If n= 1 and u(x) = |x |, it probably won’t be too surprising to learn that ∂ u
∂ x

w
= σ,

where σ(x) = 1 if x ≥ 0 and σ(x) = −1 if x < 0. To check this, note that if φ ∈ C∞
0
(R) then

ˆ ∞

−∞
|x |φ′(x)d x = −

ˆ 0

−∞
xφ′(x)d x +

ˆ ∞

0

xφ′(x)d x =

ˆ 0

−∞
φ(x)d x −

ˆ 0

−∞
φ(x)d x = −

ˆ ∞

−∞
σ(x)φ(x)d x

where we have integrated by parts and used the fact that the function x 7→ xφ(x) vanishes at ±∞
and at 0. Thus u has a weak derivative even though it cannot be redefined on a set of measure zero to

be differentiable everywhere.

EXAMPLE 1.3.4. Consider u(x) = |x |−α where 0< α < n, as a function onRn (extended arbitrarily

to x = 0; the condition α < n is needed to keep u locally integrable). Away from 0 we have a genuine

partial derivative ∂ u
∂ x i
= − αx i

|x |α+2 , which is locally integrable provided that α < n− 1. Now if ε > 0 and

φ ∈ C∞
0
(Rn) we can write φ = φε

1
+φε

2
where φε

1
is supported in {‖x‖ ≥ ε

2} and φε
2

is supported in
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{|x | ≤ ε} (namely take a smooth function β : R→ [0,1] such that β(s) = 0 for s ≤ ε/2 and β(s) = 1

for s ≥ ε and put φε
1
= βφ and φε

2
= (1 − β)φ). Moreover we can do this in such a way that, for

some constant M depending on φ but independent of ε, we have ‖φε
i
‖∞ < M and ‖∇φε

i
‖∞ < M/ε.

Then if α < n−1, both
´

Rn |x |−α ∂ φ
ε
2

∂ x i
dV and

´

Rn

αx i

|x |α+2φ
ε
2
dV converge to zero as ε→ 0, as both of these

are bounded above by a constant multiple of the integral of |x |−α−1 over an n-ball of radius ε, which is

equal to a constant multiple of εn−1−α. On the other hand we have
´

Rn |x |−α ∂ φ
ε
1

x i
dV =

´

Rn

αx i

|x |α+2φ
ε
1
dV

simply because ∂
∂ x i
|x |−α = − αx i

|x |α+2 (in the usual sense) throughout the support of φε
1
. Sending ε→ 0

and using that φ = φε
1
+φε

2
, we deduce that

∂

∂ x i

|x |−α w
= − αx i

|x |α+2
provided that α < n− 1.

So this gives an example of a weakly differentiable function that fails to be continuous at the

origin; this example can be made quite a lot worse in the following way (cf. [E, Example 5.2.2.4]).

Let {rk}∞k=1
be a sequence which is dense in Rn, and define (for x /∈ {rk}∞k=1

; the values u(rk) can be

prescribed arbitrarily):

u(x) =

∞∑

k=1

2−k|x − rk|−α

where 0< α < n− 1. Also let

f (x) = −
∞∑

k=1

2−k α(x − rk)i

|x − rk|α+2
.

The previous paragraph obviously extends, for any K ∈ N and any φ ∈ C∞
0
(Rn), to give

ˆ

Rn

�
K∑

k=1

2−k|x − rk|−α
�
∂ φ

∂ x i

dV =

ˆ

Rn

�
K∑

k=1

2−k α(x − rk)i

|x − rk|α+2

�
φdV,

and it is not hard to see from the Dominated Convergence Theorem that taking a limit as K → ∞
shows that

´

Rn u
∂ φ
∂ x i

dV = −
´

Rn f φdV . Thus ∂ u
∂ x i

w
= f . Thus u has weak partial derivatives even though

it is an extremely poorly behaved function—indeed there is no open set on which u is bounded, so u is

not continuous anywhere.

Analogously to Proposition 1.2.5 (and to the start of the proof of Weyl’s Lemma), we have:

PROPOSITION 1.3.5. Suppose that ∂ u
∂ x i

w
= f , and let g ∈ C0(R

n). Then ∂
∂ x i
(g ∗ u)

w
= g ∗ f .

PROOF. Define ḡ(z) = g(−z). For φ ∈ C∞
0
(Rn) we have:

ˆ

Rn

g ∗ u(x)
∂ φ

∂ x i

(x)dVx =

ˆ

Rn

ˆ

Rn

g(x − y)u(y)
∂ φ

∂ x i

(x)dVy dVx

=

ˆ

Rn

u(y)

�ˆ

Rn

ḡ(y − x)
∂ φ

∂ x i

(x)dVx

�
dVy =

ˆ

Rn

u(y)

�
ḡ ∗ ∂ φ
∂ x i

�
(y)dVy

=

ˆ

Rn

u(y)
∂

∂ x i

( ḡ ∗φ)(y)dVy

where we have used Proposition 1.2.5 to obtain ḡ ∗ ∂ φ∂ x i
= ∂

∂ x i
( ḡ ∗φ). Now since g was assumed

compactly supported and φ ∈ C∞
0
(Rn), Corollary 1.2.6 shows that ḡ ∗φ ∈ C∞

0
(Rn). Hence the fact

that ∂ u
∂ x i

w
= f implies that the last line displayed above is equal to −

´

Rn f (y)( ḡ ∗φ)(y)dVy . So we
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obtain
ˆ

Rn

g ∗ u(x)
∂ φ

∂ x i

(x)dVx = −
ˆ

Rn

f (y)

�ˆ

Rn

ḡ(y − x)φ(x)dVx

�
dVy

=

ˆ

Rn

ˆ

Rn

g(x − y) f (y)φ(x)dVy dVx =

ˆ

Rn

(g ∗ f )(x)φ(x)dVx .

This holds for all φ ∈ C∞
0
(Rn), so we have shown that ∂

∂ x i
(g ∗ u)

w
= g ∗ f . �

COROLLARY 1.3.6. Let g ∈ C1
0
(Rn) and suppose that u: Rn→ R is locally integrable with ∂ u

∂ x i

w
= f .

Then the partial derivative ∂
∂ x i
(g ∗ u) exists (in the ordinary sense) and is equal to g ∗ f .

PROOF. Propositions 1.2.4 and 1.2.5 show that that g∗u is a C1 function, with partial derivatives�
∂ g

∂ x i

�
∗ u. Integration by parts then shows that also ∂

∂ x i
(g ∗ u)

w
=
�
∂ g

∂ x i

�
∗ u. But the preceding

proposition shows that, at the same time, ∂
∂ x i
(g∗u) w

= g∗ f . From the definition of a weak derivative,

this implies that the functions h1 =
�
∂ g

∂ x i

�
∗ u and h2 = g ∗ f have the property that, for all φ ∈

C∞
0
(Rn),

´

Rn h1φdV =
´

Rn h2φdV . Moreover h1 and h2 are both continuous by Proposition 1.2.4,

so it is easy to see from this that they are equal. So g ∗ f is indeed equal to the genuine ith partial

derivative of g ∗ u. �

We will also be dealing with higher order (both weak and genuine) partial derivatives; let us

introduce a standard notation for doing this. Consider multi-indices α = (α1, . . . ,αn) ∈ Zn
≥0

. For

any such α define the “order” of α to be |α|=
∑n

i=1
αi . We then define

Dα =
∂ |α|

∂ x
α1

1 · · ·∂ x
αn
n

.

So for instance Corollary 1.2.6 says that if f ∈ C∞
0
(Rn) and g is locally integrable then f ∗ g is

smooth with Dα( f ∗ g) = (Dα f ) ∗ g for all α. As for weak derivatives, iterating Definition 1.3.1, we

say that Dαu
w
= f (for u, f locally integrable) provided that

´

Rn uDαφdV = (−1)|α|
´

Rn f φdV for all

φ ∈ C∞
0
(Rn).

Weak derivatives are used to define the following Sobolev spaces, which provide an effective

way of interpolating between Lp functions and smooth functions.

DEFINITION 1.3.7. Let k ∈ Z≥0 and 1≤ p <∞. The (k, p)-Sobolev space on Rn is

W k,p(Rn) =
¦

u ∈ Lp(Rn)|For each α with |α| ≤ k, there is fα ∈ Lp(Rn) such that Dαu
w
= fα

©
.

If u ∈W k,p(Rn) with Dαu
w
= fα, the (k, p)-Sobolev norm of u is

‖u‖k,p =

 
‖u‖p

p
+

∑

1≤|α|≤k

‖ fα‖pp

!1/p

where ‖ · ‖p denotes the usual Lp norm.

So W k,p(Rn) is the space of functions having all weak derivatives of order up to k belonging to

the class Lp, and the W k,p norm is a natural combination of the Lp norms of these weak derivatives

(including the zeroth).

Recall the mollifying functions ηr ∈ C∞
0
(Rn) defined above Proposition 1.2.9.

PROPOSITION 1.3.8. If u ∈ W k,p(Rn) then for all r > 0 we have ηr ∗ u ∈ W k,p(Rn) ∩ C∞(Rn),

and ‖ηr ∗ u− u‖k,p→ 0 as r → 0.
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PROOF. If Dαu= fα ∈ Lp(Rn)where |α| ≤ k, then iterating Proposition 1.3.5 shows that Dα(ηr ∗
u)

w
= ηr ∗ fα, which lies in Lp(Rn) by Proposition 1.2.7. Thus ηr ∗ u ∈ W k,p(Rn), while of course

ηr ∗ u ∈ C∞(Rn) by Corollary 1.2.6. Moreover we have ‖ηr ∗ fα − fα‖p → 0 as r → 0 by Theorem

1.2.10. So since Dα(ηr ∗ u− u)
w
= ηr ∗ fα − fα for each α with |α| ≤ k it immediately follows from

the definition of ‖ · ‖k,p that ‖ηr ∗ u− u‖k,p→ 0. �

An important feature of the Lp spaces is that they are complete with respect to the norm ‖ · ‖p;

analogously we have:

PROPOSITION 1.3.9. Each (W k,p(Rn),‖ · ‖k,p) is a complete normed space.

PROOF. Let {um}∞m=1
be a sequence which is Cauchy in the norm ‖·‖k,p. So whenever |α| ≤ k we

have f α
m
∈ Lp(Rn) with Dαum

w
= f α

m
, and the Cauchy condition on um amounts to the statement that

each { f α
m
}∞

m=1
is a Cauchy sequence in Lp. (In particular for the zero multi-index we see that {um}∞m=1

is Cauchy in Lp.) So by the completeness of Lp(Rn) we have u ∈ Lp(Rn) and (for 1 ≤ |α| ≤ k)

f α ∈ Lp(Rn) such that um → u in Lp and each f α
m
→ f α in Lp. Now the Hölder inequality readily

implies that, for any φ ∈ C∞
0
(Rn) and any α with |α| ≤ k,

ˆ

Rn

uDαφdV = lim
m→∞

ˆ

Rn

umDαφdV = (−1)|α| lim
m→∞

ˆ

Rn

f α
m
φdV = (−1)|α|

ˆ

Rn

f αφdV.

Thus we have Dαu
w
= f α whenever |α| ≤ k. Since u, f α ∈ Lp(Rn) this shows that u ∈W k,p(Rn), and

we have

‖u− um‖k,p = ‖u− um‖p +
∑

1≤|α|≤k

‖ f α − f α
m
‖p→ 0 as m→∞.

Thus our arbitrary Cauchy sequence {um}∞m=1
in W k,p(Rn) converges to a limit u ∈ W k,p(Rn) with

respect to ‖ · ‖k,p. �

COROLLARY 1.3.10. W k,p(Rn) is (Banach-space-isomorphic to) the completion of C∞
0
(Rn) with

respect to the norm ‖ · ‖k,p.

PROOF. Clearly we have C∞
0
(Rn) ⊂ W k,p(Rn), and we have just shown that W k,p(Rn) is com-

plete. So it suffices to show that C∞
0
(Rn) is dense in W k,p(Rn).

Let u ∈ W k,p(Rn) and ε > 0. Proposition 1.3.8 shows that, by taking v = ηr ∗ u for small r,

we can find v ∈ W k,p(Rn)∩ C∞(Rn) with ‖v − u‖k,p <
ε
2 . So given this v ∈ W k,p(Rn)∩ C∞(Rn) it

suffices to find w ∈ C∞
0
(Rn) with ‖v − w‖k,p <

ε
2 .

Now since v is smooth the weak derivatives of v are equal to its genuine partial derivatives

Dαv. Since v ∈ W k,p(Rn) we have Dαv ∈ Lp(Rn) whenever |α| ≤ k, so given δ > 0 we can find R

such that, whenever |α| ≤ k,
´

Rn\BR(0)
|Dαv|pdV ≤ δ. Let χ : Rn→ [0,1] be a compactly supported

smooth function which is identically equal to 1 on BR(0) and which obeys |Dαχ(x)| ≤ 1 for all

x ∈ Rn whenever |α| ≤ k. Now define w= χv, so certainly w ∈ C∞
0
(Rn).

The function v −w= (1−χ)v is supported outside of BR(0), and obeys, whenever |α| ≤ k and

x ∈ Rn,

|Dα(v − w)(x)|=
�����
∑

β+γ=α

(Dβ (1−χ))(Dγv)(x)
�����≤

∑

β+γ=α

|Dγv(x)|.

Since the integral of each |Dγv|p over Rn\BR(0) is at most δ, it follows that each
´

Rn |Dα(v−w)|pdV

is bounded above by a quantity that tends to zero as δ→ 0. So by taking δ sufficiently small in this

construction we can arrange that ‖v − w‖k,p <
ε
2 . �
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1.3.1. Embedding theorems. As Example 1.3.4 shows, the existence of the weak derivatives

such as those that appear in the definition of W k,p(Rn) is not necessarily enough to directly guar-

antee that a function is differentiable, even after redefinition on a set of measure zero. We cannot

generally expect a function that lies in W k,p(Rn) to be k-times differentiable. However our use of

Sobolev spaces in proving major results such as Theorem 1.1.10 is premised in part on the fact that,

given p ≥ 1 a function which belongs to the Sobolev space W k,p(Rn) for every k is necessarily of

class C∞ after redefinition on a set of measure zero (see Corollary 1.3.22 below for a more precise

statement). This is guaranteed by two separate “Sobolev embedding theorems” (one for large p and

one for small p), to which we turn now.

THEOREM 1.3.11 (Morrey’s inequality). Fix a number p > n. Then there is a constant C such

that if u ∈W 1,p(Rn)∩ C∞(Rn) then, for all x , y ∈ Rn,

(19) |u(x)| ≤ C‖u‖1,p and |u(x)− u(y)| ≤ C‖∇u‖p|x − y|1−n/p.

REMARK 1.3.12. Here the notation ‖∇u‖p just means
�∑n

i=1

´

Rn

��� ∂ u
∂ x i

���
p

dV

�1/p

. So ‖u‖p1,p =

‖u‖p
p
+ ‖∇u‖p

p
.

PROOF. The key is the following lemma:

LEMMA 1.3.13. If p > n, there is a constant C0 > 0 such that for all x ∈ Rn, r > 0, and u ∈
C∞(Br(x)) we have

 

Br (x)

|u− u(x)|dV ≤ C0‖∇u‖p r1−n/p.

PROOF OF LEMMA 1.3.13. As usual let σ denote the standard volume form on Sn−1. For 0 ≤
s ≤ r we have:

ˆ

w∈Sn−1

|u(x + sw)− u(x)|σ =
ˆ

w∈Sn−1

����
ˆ s

0

∇u(x + tw) ·wdt

����σ

≤
ˆ s

0

ˆ

w∈Sn−1

|∇u(x + tw)|σd t =

ˆ

Bs(x)

|∇u(y)|
|y − x |n−1

dVy

where in the last equality we have converted from (n-dimensional) polar to Cartesian coordinates

using the change of variables y = x + tw.

So we obtain
ˆ

Br (x)

|u− u(x)|dV =

ˆ r

0

�
sn−1

ˆ

w∈Sn−1

|u(x + sw)− u(x)|σ
�

ds

≤
ˆ r

0

sn−1

ˆ

Bs(x)

|∇u(y)|
|y − x |n−1

dVy ds ≤ rn

n

ˆ

Br (x)

|∇u(y)|
|y − x |n−1

dVy .(20)

Now the assumption that p > n implies that, where q is given by 1
p +

1
q = 1, we have n

q =

n(1−1/p)> n−1, and hence that (n−1)q < n, in view of which the function y 7→ 1
|y−x |n−1 belongs

to Lq(Br(x)), with


1

|y − x |n−1


q

=

�ˆ r

0

tn−1

ˆ

Sn−1

1

t(n−1)q
σd t

�1/q

=

�
αn

n− (n− 1)q
rn−(n−1)q

�1/q

= cnrn/q−n−1

where αn is the ((n− 1)-dimensional) volume of Sn−1 and cn is some dimensional constant. Now

n/q−(n−1) = n(1−1/p)−(n−1) = 1−n/p, so applying Hölder’s inequality to (20) shows (perhaps
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after redefining cn)
ˆ

Br (x)

|u− u(x)|dV ≤ rncn‖∇u‖p r1−n/p.

Dividing both sides by the volume of Br(x0) then proves the lemma. �

The first inequality in (19) follows easily from Lemma 1.3.13 once we observe that

|u(x)| ≤
 

B1(x)

|u− u(x)|dV +

 

B1(x)

|u|dV.

The first term on the right is bounded above by a constant times ‖∇u‖p by Lemma 1.3.13, and the

second is bounded above by a constant times ‖u‖p by Hölder’s inequality.

As for the second inequality in (19), let x , y ∈ Rn and put r = |x − y|. Let U = Br(x)∩ Br(y),

and notice that the volume of U is bounded below by a positive constant an times the volume of

Br(x) or of Br(y) (for instance we could take an = 2−n since U contains a ball of radius r/2 around
x+y

2 ). Now observe that

|u(x)−u(y)| ≤
 

U

|u−u(x)|dV+

 

U

|u−u(y)|dV ≤ a−1
n

�
ˆ

Br (x)

|u− u(x)|dV +

ˆ

Br (y)

|u− u(y)|dV

�
≤ 2a−1

n
C0‖∇u‖p r1−n/p

where the last inequality uses Lemma 1.3.13. Since r = |x − y| this proves the result. �

THEOREM 1.3.14 (Sobolev embedding W k,p ,→ C k−1,γ for p > n). Let k ≥ 1 and p > n, and

define γ = 1 − n/p. Then any function u ∈ W k,p(Rn) coincides almost everywhere with a unique

function (still denoted u) that lies in the space C k−1,γ(Rn) of continuous functions whose derivatives

Dαu of all orders α with 0 ≤ |α| ≤ k − 1 exist and are Hölder continuous with exponent γ. Moreover

there is a constant C independent of u such that, for 0≤ |α| ≤ k− 1,

(21) max
x
|Dαu(x)|+ sup

x ,y,x 6=y

|Dαu(x)− Dαu(y)|
|x − y|γ ≤ C‖u‖k,p.

PROOF. For each u ∈W k,p(Rn), Proposition 1.3.8 produces a sequence of functions um ∈ C∞(Rn)∩
W k,p(Rn) such that ‖um−u‖k,p→ 0. In particular this implies that, if 0≤ |α| ≤ k−1, then {Dαum}∞m=1

is a Cauchy sequence in the norm W 1,p(Rn) (with limit equal to the weak α-derivative of u). But then

Theorem 1.3.11 gives an inequality maxx∈Rn |Dαul(x)−Dαum(x)| ≤ C‖Dαul−Dαum‖1,p, so that, for

0 ≤ |α| ≤ k − 1, {Dαum}∞m=1
is uniformly Cauchy. So each sequence Dαum converges uniformly to

some continuous function which we temporarily denote by vα. In particular (in case α= (0, . . . , 0)),

um converges uniformly to a continuous function, which since um → u in Lp must coincide almost

everywhere with u. So if necessary we redefine u on a set of measure zero to coincide with the

uniform limit of the um.

Now in general if we have a sequence of smooth functions fm with uniform limits fm→ f and
∂ f

∂ x i
→ g (so f and g are both continuous), then

f (x + hei)− f (x) = lim
m→∞

ˆ h

0

∂ fm

∂ x i

(x + tei)d t =

ˆ h

0

g(x + tei)d t,

and so dividing by h and sending h→ 0 shows that
∂ f

∂ x i
exists and is equal to g. Applying this to our

functions vα from the previous paragraph which were uniform limits of the sequences Dαum (with

um → u uniformly) shows that, for each α, Dαu exists and is equal to vα. Thus the function u is

indeed (k−1)-times continuously differentiable, and for 0≤ |α| ≤ k−1 we have Dαum→ Dαu both

in W 1,p and unariformly, with

max |Dαu(x)|= lim
m→∞

max |Dαum(x)| ≤ lim
m→∞

C‖Dαum‖1,p = C‖Dαu‖1,p ≤ C‖u‖k,p
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where C is the constant from Theorem 1.3.11.

Likewise, for 0≤ |α| ≤ k− 1 and γ= 1− n/p, and for distinct points x , y ∈ Rn,

|Dαu(x)− Dαu(y)|
|x − y|γ = lim

m→∞
|Dαum(x)− Dαum(y)|

|x − y|γ ≤ C lim
m→∞
‖∇(Dαum)‖p ≤ C‖u‖k,p

where we have used Theorem 1.3.11. In particular each Dαu with 0 ≤ |α| ≤ k − 1 is Hölder

continuous with exponent γ, and the estimate (21) follows immediately. �

This suffices to show that, if p > n, then a function lying in W k,p(Rn) for all p will be smooth.

Note that most of the hard work in the proof was a statement, namely Morrey’s inequality, about

functions that were already smooth. The point was that since smooth functions are dense in W k,p

we could combine this with an approximation argument, and Morrey’s inequality converts the Lp

convergence used in Sobolev spaces (which does not behave well with respect to classical differen-

tiation, hence the introduction of weak derivatives) to uniform convergence (which behaves better,

see the start of the second paragraph of the proof of Theorem 1.3.14).

While it might be nice to imagine that Theorem 1.3.14 would extend to the case that p = n to

at least give that W 1,n functions are continuous, the following shows that this is not the case:

EXERCISE 1.3.15. Show that the function u: Rn → R defined by u(x) = log log
�
1+ 1

|x |

�
for

x 6= 0 and u(0) = 0 has
´

B1(0)
|∇u|ndV <∞ for all n ≥ 2, and hence that χu ∈ W 1,n(Rn) for every

χ ∈ C∞
0
(Rn).

The following consequence of Theorem 1.3.14 (and the Arzelà-Ascoli theorem) will be helpful

later:

THEOREM 1.3.16 (Rellich-Kondrachov compactness for p > n). Let p > n and k ≥ 1. Suppose

that um ∈ W k,p(Rn) (m ∈ N) and that there is a bounded set Ω ⊂ Rn such that each supp(um) ⊂ Ω
and a constant C such that ‖um‖k,p ≤ C. Then there is u ∈ C k−1(Rn) and a subsequence {um j

}∞
j=1

of

um such that um j
→ u in C k−1 norm (and hence in W k−1,q norm for all q).

PROOF. By Theorem 1.3.14, after we redefine the um on a set of measure zero, each um is a

class C k−1 function, supported within Ω, such that the quantities |Dαum(x)| and
|Dαum(x)−Dαum(y)|
|x−y|1−n/p

are bounded independently of m, x , y when 0 ≤ |α| ≤ k − 1. Thus each {Dαum}∞m=1
is a uniformly

bounded and equicontinuous sequence of functions supported in the bounded set Ω, so the Arzelà-

Ascoli theorem (e.g. [F, Theorem 4.44]) shows that there is a subsequence {um j
}∞

j=1
such that each

{Dαum j
}∞

j=1
converges uniformly. If u = lim j→∞ um j

, then the same argument as at the start of

the second paragraph of the proof of Theorem 1.3.14 shows that, given that the Dαum j
uniformly

converge for 1 ≤ |α| ≤ k − 1, their limits must respectively be Dαu. Thus um j
→ u in C k−1 norm.

Since the um j
and hence u are supported in the bounded set Ω this immediately implies that um j

→ u

in each W k−1,q norm (since
´

Ω
|Dαum j

− Dαu|qdV ≤ vol(Ω)max |Dαum j
− Dαu|q→ 0). �

Now we turn to a Sobolev embedding theorem that applies to spaces W k,p(Rn) with p < n.

Again this follows from a certain inequality for smooth functions. First we consider the rather

specific case of W 1,1(Rn); the general case will be reduced to this one.

LEMMA 1.3.17. For every u ∈ C1
0
(Rn) we have

‖u‖ n
n−1
≤ ‖∇u‖1.

REMARK 1.3.18. While our focus is on the case that n > 1, the statement is still true if n = 1

provided that we interpret n
n−1 =∞, since the assumption that u ∈ C1

0
(R) implies that |u(x)| =��´ x

−∞ u′(t)d t
��≤

´∞
−∞ |u′(t)|d t.
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C

PROOF. It is perhaps instructive to warm up with the case that n = 2, so n
n−1 = 1. In this case

(much like in Remark 1.3.18) for any x = (x1, x2) ∈ R2 we have

|u(x1, x2)|=
����
ˆ x1

−∞

∂ u

∂ x1

(y1, x2)d y1

����≤
ˆ x1

−∞

����
∂ u

∂ x1

(y1, x2)

���� d y1 ≤
ˆ ∞

−∞
|∇u(y1, x2)|d y1,

and similarly

|u(x1, x2)| ≤
ˆ ∞

−∞
|∇u(x1, y2)|d y2.

Let us write

ν0,1(x2) =

ˆ ∞

−∞
|∇u(y1, x2)|d y1 ν0,2(x1) =

ˆ ∞

−∞
|∇u(x1, y2)|d y1,

so the above shows that |u(x1, x2)| ≤ ν0,1(x2) and |u(x1, x2)| ≤ ν0,2(x1) for all (x1, x2) ∈ R2. Hence

|u(x1, x2)|2 ≤ ν0,1(x2)ν0,2(x1). Integrating then yields

‖u‖2
2
=

ˆ

R2

|u(x1, x2)|d x1d x2 ≤
ˆ ∞

−∞

ˆ ∞

−∞
ν0,1(x2)ν0,2(x1)d x1d x2 =

�ˆ ∞

−∞
ν0,1(x2)d x2

��ˆ ∞

∞
ν0,2(x1)d x1

�
.

But inspection of the definitions of ν0,1,ν0,2 shows that the integral of either one of these functions

is equal to ‖∇u‖1. So we have shown (when n = 2) that ‖u‖2
2
≤ ‖∇u‖2

1
, which is precisely the

content of the lemma in this case.

Now we consider an arbitrary n ≥ 2. Let us define some functions as follows, wherebdenotes

omission:

For 0≤ i ≤ n− 2< j ≤ n : νi, j(x i+1, . . . , x̂ j , . . . , xn) =

ˆ

Ri+1

|∇u(y1, . . . , yi , x i+1, . . . , x j−1, y j , x j+1, . . . , xn)|d y1 · · · d yid y j

For 0≤ i ≤ n− 1 : µi(x i+1, . . . , xn) =

ˆ

Ri

|∇u(y1, . . . , yi , x i+1, . . . , xn)|d y1 · · · d yi .

Note that νi,i+1 = µi+1. For notational consistency we also let νn−1,n be the number (function with

no arguments) νn−1,n =
´

Rn |∇u(y1, . . . , yn)|d y1 . . . d yn = ‖∇u‖1.

Now as in the n= 2 case we have, for each j and each x = (x1, . . . , x j , . . . , xn) ∈ Rn,

|u(x1, . . . , x j , . . . , xn)|=
����
ˆ x j

−∞

∂ u

∂ x j

(x1, . . . , x j−1, y j , x j+1, . . . , xn)d y j

����

≤
ˆ ∞

−∞
|∇u(x1, . . . , y j , . . . , xn)|d y j = ν0, j(x1, . . . , x̂ j , . . . , xn).

So

|u(x1, . . . , xn)|
n

n−1 ≤
n∏

j=1

ν0, j(x1, . . . , x̂ j , . . . , xn)
1

n−1 .
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If we integrate the above inequality with respect to x1, then the factor ν0,1(x2, . . . , xn)
1

n−1 comes out

as a constant, so we get
ˆ

R

|u(x1, . . . , xn)|
n

n−1 d x1 ≤ ν0,1(x2, . . . , xn)
1

n−1

ˆ

R

n∏

j=2

ν0, j(x1, . . . , x̂ j , . . . , xn)
1

n−1 d x1

≤ ν0,1(x2, . . . , xn)
1

n−1

n∏

j=2

�ˆ

R

ν0, j(y1, x2, . . . , x̂ j , . . . , xn)d y1

� 1
n−1

= µ1(x2, . . . , xn)
1

n−1

n∏

j=2

ν1, j(x2, . . . , x̂ j , . . . , xn)
1

n−1 .

Here in the second line we use the generalized Hölder inequality11 and in the last line we use the

definitions of the νi, j and µi .

We then continue integrating with respect to the variables x i . We may inductively assume that

1≤ i ≤ n− 2 and that we have shown that
ˆ

Ri

|u(x1, . . . , xn)|
n

n−1 d x1 · · · d x i ≤ µi(x i+1, . . . , xn)
i

n−1

n∏

j=i+1

νi, j(x i+1, . . . , x̂ j , . . . , xn)
1

n−1 .

Now integrate with respect to x i+1. The νi,i+1 term does not depend on this variable and so comes

out as a constant (and is equal to µi+1(x i+2, . . . , xn)
1

n−1 ); the integral of the remaining product is

bounded above via the generalized Hölder inequality just as before: suppressing argument names

we have
ˆ

R

µ
i

n−1

i

n∏

j=i+2

ν
1

n−1

i, j
d x i+1 ≤

�ˆ

R

µid x i+1

� i
n−1

n∏

j=i+2

�ˆ

R

νi, jd x i+1

� 1
n−1

= µ
i

n+1

i+1

n∏

j=i+2

ν
1

n−1

i+1, j
.

Combining this from the factor of µ
1

n−1

i+1
that came from the νi,i+1 term, this shows that

ˆ

Ri+1

|u(x1, . . . , xn)|
n

n−1 d x1 · · · d x i+1 ≤ µi+1(x i+2, . . . , xn)
i+1
n−1

n∏

j=i+2

νi+1, j(x i+2, . . . , x̂ j , . . . , xn)
1

n−1 ,

thus continuing the induction until we arrive at i = n− 1. At this stage the inequality becomes
ˆ

Rn−1

|u(x1, . . . , xn−1, xn)|
n

n−1 d x1 · · · d xn−1 ≤ µn−1(xn)ν
1

n−1

n−1,n

= ‖∇u‖
1

n−1

1

ˆ

Rn−1

|∇u(x1, . . . , xn−1, xn)|d x1 · · · d xn−1.

Integrating a final time with respect to xn then indeed gives

‖u‖ n
n−1
≤ ‖∇u‖

n
n−1

1 .

�

The following is intended to motivate the choice of p∗ in Theorem 1.3.20 and Corollary 1.3.21.

11This inequality says that if finitely many functions fi ∈ Lpi where
∑

i
1
pi
= 1, then

´

��∏
i fi

�� ≤
∏

i ‖ fi‖pi
. To prove

it, rescale the fi to each have Lpi norm equal to one (unless one of the fi is zero a.e. in which case there is nothing to

show) and use the inequality
∏

i ai ≤
∑

i

a
pi
i
pi

for nonnegative real numbers ai . The latter inequality is trivial if some ai = 0,

and otherwise can be proven by putting x i = a
pi

i
and observing that the concavity of the logarithm function implies that∑

i
1
pi

log(x i)≤ log
�∑

i
xi
pi

�
.
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EXERCISE 1.3.19. For λ ∈ R and a nonzero u ∈ C0(R
n) define uλ(x) = u(λx). For any 1≤ p,q <

∞ compute
‖uλ‖q
‖u‖q

and
‖∇uλ‖p
‖∇u‖p

.

Deduce from this that if there is a constant C > 0 such that ‖v‖q ≤ C‖∇v‖p for all v ∈ C∞
0
(Rn) we

must have q =
np

n−p .

That such an inequality indeed holds follows without too much work from Lemma 1.3.17:

THEOREM 1.3.20 (Gagliardo-Nirenberg-Sobolev Inequality). Let 1 ≤ p < n and define p∗ by
1
p∗ =

1
p −

1
n (so p∗ = np

n−p ). Then there is a constant C > 0 such that for all u ∈ C∞
0
(Rn) we have

‖u‖p∗ ≤ C‖∇u‖p.

PROOF. If p = 1 this is immediate from Lemma 1.3.17 (and we can even take C = 1), so assume

p > 1. Define γ =
p∗(n−1)

n =
p(n−1)

n−p . Note that γ > 1 since the assumption that p > 1 implies that

np− p > n− p. So if u ∈ C∞
0
(Rn) then |u|γ ∈ C1

0
(Rn) with |∇|u|γ|= γ|u|γ−1|∇u|.

Also, if q is given by 1
p +

1
q = 1 (so q = p/(p− 1)), then

(γ− 1)q =
p

p− 1

(np− p)− (n− p)

n− p
=

p

p− 1

n(p− 1)

n− p
=

np

n− p
= p∗.

Hence, using Lemma 1.3.17 (applied to |u|γ) and Hölder’s inequality,

�ˆ

Rn

|u|p∗dV

� n−1
n

=

�ˆ

Rn

(|u|γ) n
n−1 dV

� n−1
n

= ‖|u|γ‖ n−1
n
≤
ˆ

Rn

|∇|u|γ| dV

= γ

ˆ

Rn

|u|γ−1|∇u|dV ≤ γ
�ˆ

Rn

|u|(γ−1)qdV

�1/q �ˆ

Rn

|∇u|p
�1/p

≤ C

�ˆ

Rn

|u|p∗dV

� p−1

p

‖∇u‖p

for some constant C . Now
n− 1

n
− p− 1

p
=

1

p
− 1

n
=

1

p∗
,

so dividing both sides of the above by
�
´

Rn |u|p
∗
dV
� p−1

p gives

‖u‖p∗ ≤ C‖∇u‖p,

as desired. �

COROLLARY 1.3.21 (Sobolev embedding W k,p ,→ W k−1,p∗ for p < n). Let u ∈ W k,p(Rn) with

k ≥ 1 and p < n, and define p∗ by 1
p∗ =

1
p −

1
n . Then u ∈ W k−1,p∗(Rn), and there is an inequality

‖u‖k−1,p∗ ≤ C‖u‖k,p where C depends only on k, p, n and not on u.

PROOF. By Corollary 1.3.10 we can find um ∈ C∞
0
(Rn) with ‖um − u‖k,p → 0. Then for all α

with 0 ≤ |α| ≤ k− 1, {Dαum}∞m=1
is Cauchy in W 1,p(Rn), hence also in Lp∗(Rn) by Theorem 1.3.20.

If Dαu
w
= fα where 0≤ |α| ≤ k− 1, we know both that Dαum→ fα in W 1,p (in particular in Lp) and

that Dαum has a limit in Lp∗ ; it follows from this that fα must be equal (almost everywhere) to this

Lp∗ -limit and hence in particular that fα ∈ Lp∗(Rn). This holds for all α with 0 ≤ |α| ≤ k − 1, so

indeed u ∈W k−1,p∗(Rn). Moreover when 0≤ |α| ≤ k− 1 we have

‖ fα‖p∗ = lim
m→∞
‖Dαum‖p∗ ≤ lim

m→∞
C‖um‖1,p = ‖ fα‖1,p

where C is the constant from Theorem 1.3.20, so the estimate ‖u‖k−1,p∗ ≤ C‖u‖k,p follows directly.

�
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The above Sobolev embedding theorems can be combined as follows:

COROLLARY 1.3.22. If l is a positive integer and if u ∈ W k,p(Rn) where k − n/p > l then, after

possibly redefining u on a set of measure zero, u ∈ C l(Rn).

PROOF. Let us first assume (for reasons of convenience that will become clear later) that n
p is

not an integer. Let h be the greatest integer that is less than n/p, so since n/p is not an integer we

have h< n
p < h+1. If h= 0 then n< p and the result is immediate from Theorem 1.3.14 (since for

k, l to be integers with k − n/p > l we must have l ≤ k − 1), so assume that h ≥ 1. We may apply

Corollary 1.3.21 h times to get a sequence of embeddings (writing p0 = p)

W k,p0(Rn) ,→W k−1,p1(Rn) ,→ · · · ,→W k−h,ph(Rn)

where 1
pi+1
= 1

pi
− 1

n and hence 1
ph
= 1

p −
h
n . By the definition of h we have h+1

n > 1
p >

h
n and so 1

n >
1
ph

,

i.e. ph > n. So Theorem 1.3.14 gives an embedding W k−h,ph(Rn) ,→ C k−h−1,1−n/ph(Rn), which

combines with what we have previously done to give an embedding W k,p(Rn) ,→ C k−h−1,1−n/ph(Rn).

So our arbitrary function u ∈W k,p(Rn) is (k−h−1)-times differentiable (after redefinition on a set

of measure zero in order to apply Theorem 1.3.14). The definition of h was such that k − h− 1 is

the largest integer that is smaller than k− n
p , so u is of class C l for any integer l < k− n

p whenever
n
p is not an integer.

If n
p is an integer, the argument in the previous paragraph runs into the inconvenient fact that

we do not have a Sobolev embedding theorem for the “borderline” case of spaces W k,n(Rn). We can

argue around this as follows. If u ∈ W k,p(Rn) and x ∈ Rn then u is of class C l on a neighborhood

of x provided that ζu ∈ C l(Rn) where ζ ∈ C∞
0
(Rn) is smooth and equal to one on a neighborhood

of x . The fact that u ∈W k,p(Rn) implies that ζu ∈W k,p(Rn), for instance by Exercise 1.3.2. But ζu

has compact support, which together with the fact that ζu ∈W k,p(Rn) implies that ζu ∈W k,p′(Rn)

for all p′ < p. Choose p′ < p with l < k − n
p′ and n

p′ not an integer. Then the previous paragraph

shows that ζu ∈ C l(Rn), and hence that u is C l on a neighborhood of x . x ∈ Rn was arbitrary, so

this proves that u ∈ C l(Rn). �

We’ll also need the following compactness result, complementing Theorem 1.3.16:

THEOREM 1.3.23 (Rellich-Kondrachov compactness for p < n). Let p < n, and set p∗ = np

n−p . Fix

a bounded open subset Ω ⊂ Rn, and let {um}∞m=1
be a sequence of functions with support contained in

Ω such that, for some C > 0 independent of m, we have um ∈ W 1,p(Rn) with ‖um‖1,p ≤ C for all m.

Then there is a subsequence {umk
}∞

k=1
which is Cauchy in the Lq norm for all q ∈ [1, p∗).

PROOF. Fix r > 0 and consider the sequence of r-mollifications {ηr ∗ um}∞m=1
. Note that we

have, for each x ∈ Rn,

|ηr∗um(x)| ≤
ˆ

Rn

ηr(x−y)|um(y)|dVy ≤ ‖ηr‖∞
ˆ

Ω

|um|dV ≤ ‖ηr‖∞‖um‖p(vol(Ω))1−1/p ≤ C‖ηr‖∞(vol(Ω))1−1/p

and similarly����
∂ (ηr ∗ um)

∂ x i

����≤
ˆ

Rn

����
∂ ηr

∂ x i

(x − y)

���� |um(y)|dVy ≤ C


∂ ηr

∂ x i


∞
(vol(Ω))1−1/p.

Here of course we use both the assumptions that the um are supported in the bounded subset Ω and

that they obey ‖u‖1,p ≤ C . Consequently, for any fixed r, the sequence of functions {ηr ∗ um}∞m=1
is

uniformly bounded and equicontinuous, so since each ηr ∗um is supported in an r-neighborhood of

u it follows from the Arzelà-Ascoli theorem that we can find a subsequence {umr
k
}∞

k=1
(depending on

r) such that {ηr ∗ umr
k
}∞

k=1
is uniformly Cauchy. If we apply this sequentially to the values r = 1

j for
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j ∈ Z>0, using {u
m

1/ j

k

} as the input (in place of the whole sequence {um}∞m=1
) for the construction

of {u
m

1/( j+1)

k

}∞
k=1

, we can arrange that each {u
m

1/( j+1)

k

}∞
k=1

is a subsequence of {u
m

1/ j

k

}∞
k=1

. Then the

standard diagonal trick of setting mk = m
1/k

k
yields a subsequence {umk

}∞
k=1

of the original sequence

{um}∞m=1
such that, for every j ∈ Z>0, {η1/ j ∗ umk

}∞
k=1

is uniformly Cauchy.

Now let us consider how the ηr ∗ um converge as r → 0 and m is fixed. Recall that ηr(x) =

r−nη(x/r) for a smooth function η supported in B1(0) with
´

B1(0)
ηdV = 1. Suppose that v ∈

C1(Rn). Then we can write

ηr ∗ v(x) =

ˆ

B1(0)

r−nη(z/r)v(x − z)dVz =

ˆ

B1(0)

η(y)v(x − r y)dVy

and so

|ηr ∗ v(x)− v(x)|=
����
ˆ

B1(0)

η(y) (v(x − r y)− v(x)) dVy

����≤
ˆ

B1(0)

η(y)

ˆ 1

0

����
d

d t
(v(x − t r y))

���� d tdVy

≤ r

ˆ 1

0

ˆ

B1(0)

η(y)|∇v(x − t r y)|dVy d t

Integrating over Rn gives

‖ηr∗v−v‖1 ≤ r

ˆ

B1(0)

η(y)

ˆ 1

0

ˆ

Rn

|∇v(x−t r y)|dVx d tdVy = r

ˆ

B1(0)

η(y)

ˆ 1

0

‖∇v‖1d tdVy = r‖∇v‖1.

We would like to apply the above with v = um, which superficially may not be possible because um

may not be C1, but by approximating um by smooth functions supported on a small neighborhood

of Ω and using Young’s inequality, the fact that ‖ηr ∗ v − v‖1 ≤ ‖∇v‖1 for smooth v implies that

‖ηr ∗um−um‖1 ≤ ‖∇um‖1. Now since the um are supported in the bounded setΩwe have ‖∇um‖1 ≤
‖∇um‖p vol(Ω)1−1/p. Moreover our hypothesis gives that ‖∇um‖p ≤ C independently of m, so where

A= C vol(Ω)1−1/p we have shown that

(22) ‖ηr ∗ um − um‖1 ≤ Ar,

so the L1-convergence of ηr ∗ um to um as r → 0 is uniform in m.

We can improve this to uniform-in-m convergence in the Lq norm for any q ∈ [1, p∗) by using a

standard Lp interpolation technique: Note in general that if f ∈ L1(Rn)∩Lp∗(Rn) then for r ∈ [1, p∗]
we have, choosing θ ∈ [0,1] such that θ + 1−θ

p∗ =
1
r and using Hölder’s inequality,

ˆ

Rn

| f |r dV =

ˆ

Rn

| f |θ r | f |(1−θ )r dV ≤
�ˆ

Rn

| f |dV

�θ r �ˆ

Rn

| f |p∗dV

� (1−θ )r
p∗

and so f ∈ L r(Rn) with ‖ f ‖r ≤ ‖ f ‖θ1‖ f ‖1−θp∗ . Applying this to (22) and using Corollary 1.3.21 to

convert our assumed bound on ‖um‖1,p to a bound on ‖um‖p∗ , and then using Young’s inequality to

obtain ‖ηr ∗ um‖p∗ ≤ ‖um‖p∗ , for any q ∈ [1, p∗) we obtain a constant B depending on Ω but not on

r and m, and a constant θ > 0 (given by 1
q = θ +

1−θ
p∗ ) such that

‖ηr ∗ um − um‖q ≤ Brθ .

In other words, for any q < p∗ the convergence of ηr ∗ um to um in Lq norm is uniform in m.

Recall from earlier that we have a subsequence {umk
}∞

k=1
such that, for all j, {η1/ j ∗ umk

}∞
k=1

is

uniformly Cauchy, and hence Cauchy in Lq by the boundedness of the support Ω of the um. Given

ε > 0 and q < p∗ (yielding θ > 0 and B as in the previous paragraph), let us choose j so large that
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B j−θ < ε
3 , and choose K so large that, whenever k, l ≥ K , we have ‖η1/ j ∗ umk

− η1/ j ∗ uml
‖q < ε

3 .

Then for k, l ≥ K we have

‖umk
− uml
‖q ≤ ‖umk

−η1/ j ∗ umk
‖q + ‖η1/ j ∗ umk

−η1/ j ∗ uml
‖q + ‖η1/ j ∗ uml

− uml
‖q < ε,

so the subsequence {umk
}∞

k=1
constructed at the start of the proof is Cauchy in Lq. �

1.4. Hilbert spaces, weak convergence, and W 1,2

We now recall some standard facts about Hilbert spaces, which will lead to a criterion for

membership in W 1,2(Rn) in terms of difference quotients; this will be useful to us in the proof of

the main regularity theorem in the following section.

Recall that a (real) Hilbert space is by definition an inner product space (H, 〈·, ·〉) which is

complete with respect to the metric induced by the inner product. Examples include W k,2(Rn) for

any k ≥ 0, with inner product given by

〈u, v〉=
∑

0≤|α|≤k

ˆ

Rn

(Dαu)(Dαv)dV

where we slightly abuse notation and write Dα for weak derivatives rather than genuine ones. As

usual we define denote the norm induced by the inner product on a Hilbert space by ‖ · ‖ (so

‖x‖=
p
〈x , x〉).

PROPOSITION 1.4.1. Let (H, 〈·, ·〉) be a Hilbert space and let V ≤ H be a proper closed subspace.

Then there is z0 ∈ H such that ‖z0‖= 1 and 〈z0, v〉= 0 for all v ∈ V .

PROOF. Since V is closed and proper we can find z ∈ H such that

d(z, V ) := inf{‖v − z‖|v ∈ V}> 0.

We can then choose a sequence {vm}∞m=1
in V such that ‖vm − z‖ → d(z, V ). We claim that {vm}∞m=1

is a Cauchy sequence. To see this, observe that
 vk + vm

2
− z


2

=
1

4
‖(vk − z) + (vm − z)‖2 = 1

4

�
‖vk − z‖2 + ‖vm − z‖2 + 2〈vk − z, vm − z〉

�

while

‖vk − vm‖2 = ‖(vk − z)− (vm − z)‖2 = ‖vk − z‖2 + ‖vm − z‖2 − 2〈vk − z, vm − z〉.
Adding four times the first equation to the second equation shows that

‖vk − vm‖2 + 4

 vk + vm

2
− z


2

= 2(‖vk − z‖2 + ‖vm − z‖2),

so since
 vk+vm

2 − z
2 ≥ d(z, V )2 we obtain

‖vk − vm‖2 ≤ 2(‖vk − z‖2 + ‖vm − z‖2)− 4d(z, V )2.

Since ‖vk−z‖2→ d(z, V )2 as k→∞ it follows that ‖vk− vm‖2→ 0 as k, m→∞, i.e. that {vm}∞m=1

is a Cauchy sequence.

Since H is complete and V ≤ H is a closed subspace it follows that vk → v for some v ∈ V ,

necessarily with ‖v − z‖ = d(z, V ). We then see that for all w ∈ V we have 〈v − z, w〉 = 0, for

‖v+εw−z‖2 = ‖v−z‖2+2ε〈w, v−z〉+ε2‖w‖2 so if 〈v−z, w〉 6= 0 we could find a small (positive or

negative) ε such that ‖v+ εw− z‖< ‖v− z‖= d(z, V ), contradicting the definition of d(z, V ), This

proves that v− z ∈ V⊥, and clearly we have v− z 6= 0 since we assumed that z /∈ V . Then z0 =
v−z
‖v−z‖

satisfies the required property. �

COROLLARY 1.4.2. If (H, 〈·, ·〉) is a Hilbert space and W ≤ H is a closed subspace then (W⊥)⊥ =W.
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PROOF. It is trivial that W ⊂ (W⊥)⊥. Note that (W⊥)⊥ is clearly closed in H, since it is the

intersection of the kernels of the bounded linear functionals 〈x , ·〉 as x varies through W⊥. So

((W⊥)⊥, 〈·, ·〉) is a Hilbert space. If the inclusion W ⊂ (W⊥)⊥ were proper then we could apply the

preceding proposition with V = W and H = (W⊥)⊥ to get z0 ∈ W⊥ ∩ (W⊥)⊥ with ‖z0‖ = 1. But

this is nonsense since an element of W⊥ ∩ (W⊥)⊥ would be orthogonal to itself and hence would

be zero. �

THEOREM 1.4.3 (Riesz Representation Theorem). Let (H, 〈·, ·〉) be a Hilbert space and letφ : H →
R be a linear map which is bounded in the sense that, for some M ∈ R, |φ(x)| ≤ M‖x‖ for all x ∈ H.

Then there is aφ ∈ H such that φ(x) = 〈aφ , x〉 for all x ∈ H.

charat

PROOF. Ifφ is identically zero we can simply take aφ = 0, so we assume thatφ is not identically

zero. Then since φ is evidently continuous, ker(φ) is a closed subspace of H, which is proper since

φ is not identically zero and so Proposition 1.4.1 gives z0 ∈ H such that ‖z0‖ = 1 and 〈z0, v〉 = 0

for all v ∈ ker(φ). I claim that the theorem is satisfied by aφ = φ(z0)z0. Indeed, notice that, for all

x ∈ H, we have φ(x)z0 −φ(z0)x ∈ ker(φ) by the linearity of φ, and so

0= 〈φ(x)z0 −φ(z0)x , z0〉= φ(x)− 〈φ(z0)z0, x〉
from which the claim follows immediately. �

In general for a Banach space (B,‖·‖) one lets B∗ denote the space of bounded linear functionals

φ : B→ R, and endows B∗ with the operator norm ‖φ‖∗ = sup‖x‖≤1 |φ(x)|. If (H, 〈·, ·〉) is a Hilbert

space (and hence in particular a Banach space) then we have a map H → H∗ defined by x 7→ 〈x , ·〉;
this map is obviously injective and (by the Cauchy-Schwarz inequality) norm-preserving, and then

Theorem 1.4.3 says that the map is an isomorphism of Banach spaces.

For a Banach space B we have one topology on B∗ induced by the operator norm (and in the case

of a Hilbert space this coincides under the isomorphism H ∼= H∗ with the original norm on H), but

there is another topology on B∗ called the weak topology. Here one says that a sequence {φm}∞m=1

converges weakly to φ ∈ B∗ and writes φm *φ if for every x ∈ B it holds that φm(x)→ φ(x). For

example if {em}∞m=1
is an infinite orthonormal sequence in a Hilbert space it is not hard to see that

the linear functionals 〈em, ·〉 converge weakly to the zero functional.

THEOREM 1.4.4. Let B be a Banach space which contains a countable dense subset, and let {φm}∞m=1

be a sequence in B∗ such that we have a uniform bound ‖φm‖∗ ≤ C where C > 0 is independent of m.

Then there is φ ∈ B∗ and a subsequence {φmk
}∞

k=1
of {φm}∞m=1

such that φmk
*φ.

REMARK 1.4.5. In fact the hypothesis that B has a countable dense subset is not needed at

least if one is willing to work with nets instead of sequences, as follows from what is known as

the Banach-Alaoglu theorem [F, Theorem 5.18]. The assumption of a countable dense subset will

hold in the cases that we are interested in, and allows for a simpler proof that does not rely on

Tychonoff’s theorem.

PROOF. The proof is rather similar to the standard proof of the Arzelà-Ascoli theorem. Let

{x i}∞i=1
be a countable dense sequence in B. Let us inductively construct a sequence of subse-

quences of {φm}∞m=1
, denoted {{φi,k}∞k=1

}∞
i=1

, such that {φ1,k(x1)}∞k=1
is convergent (as is possible

since {φm(x1)}∞m=1
is a sequence in the bounded set [−C‖x1‖, C‖x1‖] ⊂ R), and such that, for i ≥ 1,

{φi+1,k}∞k=1
is a subsequence of {φi,k}∞k=1

such that {φi+1,k(x i+1)}∞k=1
is convergent (as is possible

since {φi,k(x i+1)}∞k=1
is a sequence in the bounded set [−C‖x i+1‖, C‖x i+1‖]).

Then by construction, each sequence {φi,k}∞k=1
is, for each j ≤ i, a subsequence of {φ j,k}∞k=1

,

and therefore has the property that φi,k(x j) converges as k→∞ for all j ≤ i.
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Now let φmk
= φk,k. Note that {φk,k}k≥i is a subsequence of {φi,k}∞k=1

, so in particular φk,k(x i)

converges as k→∞ for each i ∈ N.

In fact we claim that φk,k(x) converges as k→∞ for each x ∈ B. Indeed, by the denseness of

{x i} we can find i such that ‖x − x i‖< ε
3C , and then we have

‖φk,k(x)−φl,l(x)‖ ≤ ‖φk,k(x)−φk,k(x i)‖+‖φk,k(x i)−φl,l(x i)‖+‖φl,l(x i)−φl,l(x)‖<
2ε

3
+‖φk,k(x i)−φl,l(x i)‖

where we have used the uniform boundedness hypothesis on the φm. For K so large that k, l ≥
K ⇒ ‖φk,k(x i)−φl,l(x i)‖< ε

3 we will have k, l ≥ K ⇒ ‖φk,k(x)−φl,l(x)‖< ε. So {φk,k(x)}∞k=1
is a

Cauchy sequence for each x ∈ B.

So we can define, for each x ∈ B, φ(x) = limk→∞φk,k(x). Since |φk,k(x)| ≤ C‖x‖ for all k, x

we have |φ(x)| ≤ C‖x‖ for all x . Also φ is linear:

φ(cx + y) = lim
k→∞

φk(cx + y) = lim
k→∞

(cφk,k(x) +φk,k(y)) = cφ(x) + y.

So φ ∈ B∗, and the fact that φk,k(x)→ φ(x) for each x precisely means that φmk
= φk,k *φ. �

Combining this with the isomorphism x 7→ 〈x , ·〉 given by Theorem 1.4.3 we obtain:

COROLLARY 1.4.6. If (H, 〈·, ·〉) is a Hilbert space which contains a countable dense subset and

{xm}∞m=1
is a bounded sequence in H then there is a subsequence xmk

and an element x ∈ H such that

〈xmk
, y〉 → 〈x , y〉 for all y ∈ H.

For example, H = L2(Rn) contains a countable dense subset (for instance one could take the

rational linear combinations of characteristic functions of rectangles with rational coordinates), so

if ‖ fm‖2 ≤ C then there is f ∈ L2(Rn) such that, for some subsequence { fmk
}∞

k=1
,
´

Rn f gdV =

limk→∞
´

Rn fmk
gdV for all g ∈ L2(Rn).

REMARK 1.4.7. A similar statement works with f , fmk
∈ Lp(Rn) and g ∈ Lq(Rn) for p > 1 and

1
p +

1
q = 1, using the identification of Lp(Rn) with the dual of Lq(Rn) ([F, Theorem 6.15]—this is

significantly harder than the p = 2 case which falls out from Theorem 1.4.3, and it does not extend

to the case p = 1 since L1 is not the dual of L∞).

While the foregoing may seem a bit abstract, it yields a useful criterion for the existence of

weak derivatives. We first introduce notation for difference quotients: for i ∈ {1, . . . , n}, |h|> 0, and

u: Rn→ R let us define

Dh
i
u: Rn→ R by Dh

i
u(x) =

u(x + hei)− u(x)

h
.

THEOREM 1.4.8. Let u ∈ L2(Rn) and let C > 0. The following are equivalent:

(i) There is h0 > 0 such that for each h with 0 < |h| < h0 and each i ∈ {1, . . . , n} we have

‖Dh
i
u‖2 ≤ C.

(ii) u ∈W 1,2(Rn), and for each i we have ∂ u
∂ x i

w
= fi where fi ∈ L2(Rn) has ‖ fi‖2 ≤ C.

PROOF. We first prove that (i)⇒(ii). By Corollary 1.4.6 (and the remark immediately there-

after), the assumption that ‖Dh
i
u‖2 ≤ C for h< h0 implies that we can find a sequence hk→ 0 and a

function fi ∈ L2(Rn) such that D
hk

i
u* fi . In particular ‖ fi‖22 = 〈 fi , fi〉= limk→∞〈Dhk

i
u, fi〉 ≤ C‖ fi‖2,

so ‖ fi‖2 ≤ C . We claim that ∂ u
∂ x i

w
= fi .
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To see this, if φ ∈ C∞
0
(Rn), by construction we have 〈 f ,φ〉 = limk→∞〈Dhk

i
u,φ〉. So, changing

variables as appropriate, we have
ˆ

Rn

f φdV = lim
k→∞

ˆ

Rn

�
u(x + hkei)− u(x)

hk

�
φ(x)dVx

= lim
k→∞

ˆ

Rn

u(x)

�
φ(x − hkei)−φ(x)

hk

�
dVx = −

ˆ

Rn

u(x)
∂ φ

∂ x i

(x)dVx

where in the final equality we hae used the Dominated Convergence Theorem, which applies since
φ(x−hkei)−φ(x)

hk
admits a uniform bound by the Lipschitz constant of the (smooth and compactly sup-

ported) function φ. The above formula shows that indeed ∂ u
∂ x i

w
= fi , completing the proof that

(i)⇒(ii).

The reverse inclusion (ii)⇒(i) is more elementary. Suppose first that u ∈ C∞
0
(Rn). Observe

that, using the Schwarz inequality, for any x ∈ Rn,h 6= 0 we have

|u(x + hei)− u(x)|2 =
����
ˆ 1

0

h
∂ u

∂ x i

(x + thei)d t

����
2

≤ h2

�
ˆ 1

0

����
∂ u

∂ x i

(x + thei)

����
2

d t

��
ˆ 1

0

12d t

�
,

i.e.,

|Dh
i
u(x)|2 ≤

ˆ 1

0

����
∂ u

∂ x i

(x + thei)

����
2

d t.

So
ˆ

Rn

|Dh
i
u(x)|2dVx =

ˆ

Rn

ˆ 1

0

����
∂ u

∂ x i

(x + thei)

����
2

d tdVx

=

ˆ 1

0

ˆ

Rn

����
∂ u

∂ x i

(x + thei)

����
2

dVx d t =

ˆ 1

0

ˆ

Rn

����
∂ u

∂ x i

(y)

����
2

dVy d t =


∂ u

∂ x i


2

2

,

where we have simply made the change of variables y = x + thei in the second-to-last equality.

So we have shown that for any u ∈ C∞
0
(Rn) and any h > 0 we have ‖Dh

i
u‖2 ≤

 ∂ u
∂ x i


2
. If now

v ∈W 1,2(Rn), we can find a sequence {um}∞m=1
with ‖um − v‖1,2→ 0. If ∂ v

∂ x i

w
= fi , then we will have ∂ um

∂ x i
− fi


2
→ 0. Meanwhile, for any fixed h > 0, it is immediate from the fact that um → v in

L2 that likewise ‖Dh
i
um − Dh

i
v‖2 → 0. So since ‖Dh

i
um‖2 ≤

 ∂ um

∂ x i


2

it follows that ‖Dh
i
v‖2 ≤ ‖ fi‖2,

completing the proof that (ii)⇒(i). �

REMARK 1.4.9. Using the results mentioned in Remark 1.4.7, the above theorem can equally

well be proven for any p with 1< p <∞.

We close this section by recording a couple of simple facts about difference quotients that will

be used later—these are finitary versions of the product rule and integration by parts.

PROPOSITION 1.4.10. Let f , g : Rn→ R be two functions and h ∈ R \ {0}. Then:

(i) Defining f h(x) = f (x + hei), we have

Dh
i
( f g) = f hDh

i
g + (Dh

i
f )g.

(ii) If f , g ∈ L2(Rn) then
ˆ

Rn

(Dh
i

f )gdV = −
ˆ

Rn

f (D−h
i

g)dV.
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PROOF. (i) follows by simply writing

( f g)(x + hei)− ( f g)(x)

h
= f (x + hei)

g(x + hei)− g(x)

h
+ g(x)

f (x + hei)− f (x)

h
.

For (ii), we have
ˆ

Rn

(Di
h

f )gdV =
1

h

�ˆ

Rn

f (x + hei)g(x)dVx −
ˆ

Rn

f (x)g(x)dVx

�
=

1

h

�ˆ

Rn

f (y)g(y − hei)dVy −
ˆ

Rn

f (x)g(x)dVx

�

= −
ˆ

Rn

f (x)
g(x − he i)− g(x)

−h
dVx = −

ˆ

Rn

f (D−h
i

g)dV.

�

1.5. The main regularity theorem

To prove Theorem 1.1.12 we must show that the equation ∆ω = θ can be solved for a smooth

differential formωwhenever θ is a smooth differential form that lies in the orthogonal complement

of the space of harmonic forms. This will involve two steps: we will argue that the equation has a

weak solution in an appropriate (differential forms-based) version of the Sobolev space W 1,2, and

we will show that any such weak solution is smooth. In this section we develop the PDE theory

necessary for the second step. When written out in local coordinates, the equation∆ω= θ belongs

to a class of linear second-order elliptic equations Lu = f which, as we will see, has the general

feature that if the right-hand side f belongs to the Sobolev space W k,2, then the solution u belongs

to W k+2,2.

Since the differential equations that we study are for local coordinate representations of func-

tions defined on a manifold, the functions involved will be defined on some open subset U ⊂ Rn

rather than all of Rn. So our prior work on Sobolev spaces should be adapted to the context of func-

tions defined only on open subsets of Rn. If U ⊂ Rn is open and u: U → Rn is locally integrable we

can define weak derivatives analogously to before: for f ∈ L1
loc
(U) we say that Dαu

w
= f if and only

if, for every φ ∈ C∞
0
(U), we have

´

U uDαφdV = (−1)|α|
´

U f φdV . There are two natural Sobolev

spaces to consider. We can let

W k,p(U) =

n
u ∈ Lp(U)

���(∀0≤ |α| ≤ k)(∃ fα ∈ Lp(U))(Dαu
w
= fα)

o

and equip W k,p(U) with the norm ‖ · ‖W k,p(U) given by ‖u‖p
W k,p(U)

=
∑

0≤|α|≤k

´

U | fα|pdV if Dαu
w
= fα.

We can also consider the space W
k,p

0 (U) given as the completion of C∞
0
(U) with respect to the

norm ‖ · ‖W k,p(U). So W
k,p

0 (U) ⊂ W k,p(U), but in contrast to the case U = Rn we should not expect

equality—for instance if k > n/p any element of W
k,p

0 (U) extends to a continuous function which

vanishes along ∂ U , whereas elements of W k,p(U) can be large near ∂ U . Meanwhile since C∞
0
(U)

naturally embeds (via extension by zero) into C∞
0
(Rn), and since the norms ‖ · ‖W k,p(U) and ‖ · ‖k,p

correspond under this embedding, we can also see W
k,p

0 (U) as a subset of W k,p(Rn).

It’s easy to see (using Exercise 1.3.2 and Proposition 1.3.8) that if ζ ∈ C∞
0
(U) and if u ∈W k,p(U)

then ζu ∈W
k,p

0 (U).

Let us use the notation V ⋐ U to signify that V, U are open subsets of Rn with V̄ compact

and V̄ ⊂ U . The proof of the main regularity theorem will involve showing that certain elements

g ∈ L2(U) in fact belong to W 1,2(V ) whenever V ⋐ U .

DEFINITION 1.5.1. If V ⋐ U , a V U-cutoff is a function ζ ∈ C∞
0
(U) which is equal to 1 on some

neighborhood of V̄ .
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PROPOSITION 1.5.2. Let V ⋐ U, let ζ be a V U-cutoff, and let g ∈ L2(U). Suppose that there is a

constant C > 0 such that we have
´

U ζ
2|Dh

i
g|2dV ≤ C2 for all i ∈ {1, . . . , n} and all sufficiently small

h > 0. Then g ∈W 1,2(V ), and for some constant B (depending only on ζ, not on g) there is a bound

‖g‖W 1,2(V ) ≤ B(C + ‖g‖L2(U)).

PROOF. Since ζg|V = g|V , we have g ∈W 1,2(V ) iff ζg ∈W 1,2(V ). Note that ζg extends by zero

to a function in L2(Rn), so Theorem 1.4.8 can be applied with u= ζg.

Choose h 6= 0 with |h| so small that for every x ∈ supp(ζ) we have B2h(x) ⊂ U . Consider

the difference quotients Dh
i
(ζg) (where ζg has been extended by zero outside of U). If x fails to

have Bh(x) ⊂ U our hypothesis on h shows that ζ vanishes both at x and at x + hei , so Dh
i
(x) = 0.

Meanwhile if Bh(x) ⊂ U (so in particular g(x +hei) and g(x) are both defined) then by Proposition

1.4.10 we have

Dh
i
(ζg)(x) = gh(x)Dh

i
ζ(x) + ζ(x)Dh

i
g(x)

where gh(x) = g(x + hei). So if A is an upper bound for the Lipschitz constant of ζ (which exists

since ζ is smooth and compactly supported) we have

|Dh
i
(ζg)(x)− ζ(x)Dh

i
g(x)| ≤ A|gh(x)|.

Hence integrating over x (and using translation invariance of the integral) gives
ˆ

U

��Dh
i
(ζg)− ζDh

i
g
��2 dV ≤ A2

ˆ

U

|g|2dV,

i.e. ‖Dh
i
(ζg) − ζDh

i
g‖L2(U) ≤ A‖g‖L2(U). So the L2 bound on ζDh

i
g in the hypothesis gives an L2

bound (independent of sufficiently small h) on Dh
i
(ζg) by C + A‖g‖L2(U). So applying Theorem

1.4.8 implies that ζg ∈ W 1,2(Rn) with ‖ζg‖1,2 ≤ B(C + ‖g‖L2(U)) for an appropriate constant B.

Since ζg coincides with g on V the result follows immediately. �

We will consider the general class of equations, for a function u: U → R where U ⊂ Rn is open,

of the form

(23) −
n∑

i, j=1

∂

∂ x j

�
ai j(x)

∂ u

∂ x i

�
= f ,

where the functions ai j : U → Rn are assumed to be bounded, and to satisfy ai j = a ji and a uniform

ellipticity condition

(24)

n∑

i, j=1

ai j(x)vi v j ≥ θ
n∑

i=1

v2
i

for all x ∈ U , (v1, . . . , vn) ∈ Rn and some θ > 0.

In other words, we are assuming that the matrices A(x) = (ai j(x)) are symmetric and positive

definite, with all eigenvalues bounded below by θ > 0 independently of x . The function f will be

considered as given. The Poisson equation ∆u = f is the special case that A(x) is the identity for

all x .

DEFINITION 1.5.3. A weak solution to (23) on U is a function u ∈W 1,2(U) such that, for every

v ∈W
1,2
0 (U), we have

(25)

n∑

i, j=1

ˆ

U

ai jux i
vx j

dV =

ˆ

U

f vdV.

(Here for g ∈W 1,2(U) we denote by gxk
the weak derivative of g with respect to xk.)
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By considering approximations of v by functions in C∞
0
(U) it’s easy to see that it is equivalent

to just require that (25) hold for v ∈ C∞
0
(U). The motivation for the definition is that, if all func-

tions involved were assumed to be smooth (or even just C1), one could obtain (25) from (23) by

multiplying both sides by v and integrating by parts.

The following theorem is the main step in proving regularity for solutions to the various equa-

tions that appear throughout these notes. The proof will frequently (and sometimes without com-

ment) use the following inequality for real numbers:

(26) For x , y ∈ R, δ > 0, |x y| ≤ δ
2

x2 +
1

2δ
y2.

It is easy to prove this: just use the fact that
�p
δ|x | − 1p

δ
|y|
�2
≥ 0. Typically we will choose δ to

be relatively small, so that |x y| is bounded by a small constant times x2 plus a large constant times

y2.

THEOREM 1.5.4. Assume that the functions ai j : U → R are bounded, Lipschitz, and satisfy ai j =

a ji and (24). Assume also that f ∈ L2(U), and that u ∈W 1,2(U) is a weak solution to (23). Then for

every V ⋐ U we have u ∈W 2,2(V ), and there is a constant C depending on ai j , U , V but not on u or f

such that

(27) ‖u‖W 2,2(V ) ≤ C(‖u‖W 1,2(U) + ‖ f ‖L2(U)).

PROOF. Let ζ ∈ C∞
0
(U) be a V U-cutoff. Since u ∈ W 1,2(U) we have ζu ∈ W

1,2
0 (U). Also, if

h 6= 0 is sufficiently small that B2|h|(x) ⊂ U for all x ∈ supp(ζ), then for each k ∈ {1, . . . , n} we

have both ζ2Dh
k
u ∈W

1,2
0 (U) (after extension by zero at points where x + hek /∈ U , since ζ= 0 at all

such points) and D−h
k
(ζ2Dh

k
u) ∈ W

1,2
0 (U). We will apply (25) with v = −D−h

k
(ζ2Dh

k
u). Proposition

1.4.10(ii) then yields

(28)

n∑

i, j=1

ˆ

U

�
Dh

k
(ai jux i

)
�
(ζ2Dh

k
u)x j

dV = −
ˆ

U

f D−h
k
(ζ2Dh

k
u)dV.

In view of Proposition 1.5.2, it will suffice to prove appropriate upper bounds for the quantity

‖ζDh
k
∇u‖2

L2(U)
=
´

U ζ
2|Dh

k
∇u|2dV .

Let us rewrite and estimate the left-hand side of (28), using the product rule and its finitary

version from Proposition 1.4.10(i) and also using (24). We have, for some constant C depending

on ζ and on the ai j:

n∑

i, j=1

ˆ

U

�
Dh

k
(ai jux i

)
�
(ζ2Dh

k
u)x j

dV =

ˆ

U

 
ζ2

n∑

i, j=1

ah
i j

Dh
k
ux i

Dh
k
ux j

!
dV +

n∑

i, j=1

ˆ

U

�
2ζζx j

Dh
k
(ai jux i

)Dh
k
u+ ζ2(Dh

k
ai j)ux i

Dh
k
ux j

�
dV

≥ θ
ˆ

U

ζ2|Dh
k
∇u|2dV +

n∑

i, j=1

�ˆ

U

2ζx j
(Dk

h
ai j)ux i

ζDh
k
udV +

ˆ

U

2ζah
i j

Dh
k
ux i
ζx j

Dh
k
udV +

ˆ

U

(ζ(Dh
k
ai j)ux i

ζ(Dh
k
ux j
)dV

�

≥ θ‖ζDh
k
∇u‖2

L2(U)
− C

�
‖∇u‖L2(U)‖ζDk

h
u‖L2(U) + ‖ζDk

h
∇u‖L2(U)‖ζx j

Dh
k
u‖L2(U) + ‖∇u‖L2(U)‖ζDh

k
∇u‖L2(U)

�
.

(29)

Recall that h is chosen to be close enough to zero that if x ∈ supp(ζ) then B2|h|(x) ⊂ U . If

χ ∈ C∞
0
(U) is a function which is identically equal to one on a radius-h neighborhood of the

support of ζ, then Dh
k
(χu) will coincide with Dh

k
(u) on the support of ζ; on the other hand χu

extends by zero to a function in W 1,2(Rn), so the implication (ii)⇒(i) in Theorem 1.4.8 gives a

bound ‖Dh
k
(χu)‖2 ≤ ‖χu‖1,2. Now ‖χu‖1,2 ≤ A‖u‖W 1,2(U) for some constant A depending on χ but
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not on u. So the expression ‖ζDh
k
u‖L2(U) that appears in (29) is equal to ‖ζDh

k
(χu)‖L2(U), which is

bounded above by a constant (depending on ζ) times ‖u‖W 1,2(U). A similar remark applies to the

expression ‖ζx j
Dh

k
u‖L2(U) in (29). So (29) and (26) give, for some constant C ′ and all δ > 0:

n∑

i, j=1

ˆ

U

�
Dh

k
(ai jux i

)
�
(ζ2Dh

k
u)x j

dV ≥ θ‖ζDh
k
∇u‖2

L2(U)
− C ′

�
‖u‖2

W 1,2(u)
+ ‖u‖W 1,2(U)‖ζDh

k
∇u‖L2(U)

�

≥ θ‖ζDh
k
∇u‖2

L2(U)
− C ′δ

2
‖ζDh

k
∇u‖2

L2(U)
− C ′

�
1+

1

2δ

�
‖u‖2

W 1,2(U)
.

If we choose δ = θ
C ′ , the first two terms on the right above combine to give θ

2 ‖ζDh
k
∇u‖2

L2(U)
. So

based on (28) we obtain

(30)
θ

2
‖ζDh

k
∇u‖2

L2(U)
≤ −

ˆ

U

f D−h
k
(ζ2Dh

k
u)dV + C ′′‖u‖2

W 1,2(U)

where C ′′ = C ′(1+ 1
2δ ) = C ′(1+ C ′

2θ ).

Now for any h in our allowed range, the function ζ2Dh
k
u= 1

h (ζ
2uh−ζ2u) is a class-W 1,2 function

on U whose support is contained in that of ζ, and hence extends by zero to give a function in

W 1,2(Rn). So Theorem 1.4.8 applies to show that, for all sufficiently small nonzero h,

‖D−h
k
(ζ2Dh

k
u)‖L2(U) ≤


∂

∂ xk

(ζ2Dh
k
u)


L2(U)

.

So by the product rule and our earlier observation that bounded ‖ζDh
k
u‖L2(U) by a constant times

‖u‖W 1,2(U) we obtain, for some constant B,

‖D−h
k
(ζ2Dh

k
u)‖L2(U) ≤ B‖u‖W 1,2(U) + ‖ζ2∇(Dh

k
u)‖L2(U).

For the last term above, note that ζ2 ≤ ζ (since 0 ≤ ζ ≤ 1) and that ∇◦ Dh
k
= Dh

k
◦∇, so this term

is at most our familiar quantity ‖ζDh
k
∇u‖L2(U). So (30), the Schwarz inequality, and (26) give, for

some constant C0 and any ε > 0:

θ

2
‖ζDh

k
∇u‖2

L2(U)
≤ ‖ f ‖L2(U)‖D−h

k
(ζ2Dh

k
u)‖L2(U) + C ′′‖u‖2

W 1,2(U)

≤ ‖ f ‖L2(U)(B‖u‖W 1,2(U) + ‖ζDh
k
∇u‖L2(U)) + C ′′‖u‖2

W 1,2(U)

≤
�

B

2
+

1

2ε

�
‖ f ‖2

L2(U)
+ C0‖u‖2W 1,2(U)

+
ε

2
‖ζDh

k
∇u‖2

L2(U)
.

Choosing ε= θ
2 and rearranging finally gives an inequality

θ

4
‖ζDh

k
∇u‖2

L2(U)
≤ C1(‖u‖2W 1,2(U)

+ ‖ f ‖2
L2(U)
),

with all constants independent of u and of sufficiently small h. So applying Proposition 1.5.2 with

g equal to the various (weak) partial derivatives ux j
of u shows that each ux j

belongs to W 1,2(V ),

with ‖ux j
‖W 1,2(V ) bounded above by a constant times ‖u‖W 1,2(U) + ‖ f ‖L2(U). Thus we indeed have

u ∈W 2,2(V ) with

‖u‖W 2,2(V ) ≤ C̃(‖u‖W 1,2(U) + ‖ f ‖L2(U)).

The constant C̃ depends on the ai j and on the cutoff function ζ (and also on the cutoff function

χ that appeared in the middle of the proof, but this is constructed based on ζ); ζ in turn may be

constructed just based on the pair of sets V and U , so our constant indeed only depends on ai j , U , V

(and not on u and f ). �
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Results such as Theorem 1.5.4 are often stated for a superficially larger class of equations:

(31) −
n∑

i, j=1

∂

∂ x j

�
ai j(x)

∂ u

∂ x i

�
+

n∑

i=1

bi(x)
∂ u

∂ x i

+ c(x)u= f

for given functions ai j bi , c, f . Here u ∈W 1,2(U) is said to be a weak solution of (31) provided that,

for every v ∈W
1,2
0 (U) we have

n∑

i, j=1

ˆ

U

ai jux i
vx j

dV +

n∑

i=1

ˆ

U

bux i
vdV +

ˆ

U

cuvdV =

ˆ

U

f vdV.

However at least under reasonable hypotheses on the coefficient functions bi , c our regularity result

Theorem 1.5.4 formally implies regularity for (31):

COROLLARY 1.5.5. If ai j , bi , c : U → R are bounded functions with each ai j Lipschitz, ai j = a ji ,

and such that (24) holds, and if V ⋐ U, then there is a constant C depending on ai j , bi , c, U , V but not

on u and f such that if u ∈W 1,2(U) and f ∈ L2(U) with u a weak solution to (31), then u ∈W 2,2(V )

and

‖u‖W 2,2(V ) ≤ C(‖u‖W 1,2(V ) + ‖ f ‖L2(V )).

PROOF. Simply note that if u ∈ W 1,2(U) is a weak solution to (31), then if we put g = f −∑n

i=1
biux i
− cu, the boundedness of bi , c implies that g ∈ L2(U), and evidently u is a weak solution

to −
∑

i, j
∂
∂ x j

�
ai j

∂ u
∂ x i

�
= g. Moreover we have ‖g‖L2(U) ≤ ‖ f ‖L2(U) + C ′‖u‖W 1,2(U) for some constant

C ′ depending on bi , c. So applying Theorem 1.5.4 (with f replaced by g) immediately implies the

result. �

Now we wish to show that a solution to an equation like (31) is not just of class W 2,2, but is

of class W k,2 for all k (at least assuming that the coefficient functions ai j , bi , c and the function f

on the right-hand side are all smooth). This can be done simply by noticing that taking a partial

derivative ∂
∂ xm

of both sides of (31) leads to an equation of the same form for ∂ u
∂ xm

. To be formal

about this:

PROPOSITION 1.5.6. Let u ∈ W 1,2(U) be a weak solution of (31), where ai j , bi , c, f : U → R are

as in Theorem 1.5.5 and where we moreover assume that each of ai j , bi , c are of class C2 and that

f ∈ W 1,2(U). Let V ⋐ U. Then each weak derivative g = uxm
of u belongs to W 1,2(V ) and is a weak

solution of the equation

(32) −
n∑

i, j=1

∂

∂ x j

�
ai j(x)

∂ g

∂ x i

�
+

n∑

i=1

bi(x)
∂ g

∂ x i

+ c(x)g = f̃

where ‖ f̃ ‖L2(V ) ≤ B(‖ f ‖W 1,2(U) + ‖u‖W 1,2(U)) for some constant B independent of u, f (but depending

on ai j , bi , c, U , V). Also, if ai j , bi , c are of class C l+2 and if u ∈ W l+2,2(V ) and f ∈ W l+1,2(V ) then

f̃ ∈W l,2(V ) with ‖ f̃ ‖W l,2(V ) ≤ ‖ f ‖W l+1,2(V ) + Ak‖u‖W l+2,2(V ) for some constant Ak indepedent of f and

u.
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PROOF. Corollary 1.5.5 says that u ∈ W 2,2(V ) and hence that uxm
∈ W 1,2(V ). Integrating by

parts (or, perhaps more accurately, using the definition of a weak derivative) and using the assump-

tion that u is a weak solution of (31) we have, for any v ∈ C∞
0
(V ),

n∑

i, j=1

ˆ

V

ai juxm x i
vx j

dV +

n∑

i=1

ˆ

V

biuxm x i
vdV +

ˆ

V

cuxm
vdV

= −
 

n∑

i, j=1

ˆ

V

ux i

∂

∂ xm

�
ai j vx j

�
dV +

ˆ

V

ux i

∂

∂ xm

(bi v) dV +

ˆ

V

u
∂

∂ xm

(cv)dV

!

= −
ˆ

V

 
n∑

i, j=1

ai jux i
vxm x i

+

n∑

i=1

biux i
vxm
+ cuvxm

!
dV −

ˆ

V

 
n∑

i, j=1

∂ ai j

∂ xm

ux i
vx j
+

n∑

i=1

∂ bi

∂ xm

ux i
v +

∂ c

∂ xm

uv

!
dV

= −
ˆ

V

f vxm
dV +

ˆ

V

 
n∑

i, j=1

∂

∂ x j

�
∂ ai j

∂ xm

ux i

�
−

n∑

i=1

∂ bi

∂ x i

ux i
− ∂ c

∂ xm

u

!
vdV

=

ˆ

V

f̃ vdV

where

(33) f̃ =
∂ f

∂ xm

+

n∑

i, j=1

∂

∂ x j

�
∂ ai j

∂ x i

ux i

�
−

n∑

i=1

∂ bi

∂ x i

ux i
− ∂ c

∂ xm

u.

Note that since u ∈W 2,2(V ) and since ai j , bi , c are C2 functions on the compact set V̄ containing V

(so their derivatives up to order two are bounded on V ) the function f̃ in (33) belongs to L2(V ),

with a bound ‖ f̃ ‖L2(V ) ≤ ‖ f ‖W 1,2(V ) + A‖u‖W 2,2(V ) for some constant A depending on ai j , bi , c. So

by (27) we have ‖ f̃ ‖L2(V ) ≤ B(‖ f ‖W 1,2(U) + ‖u‖W 1,2(U)) for an appropriate constant B. Likewise, if

ai j , bi , c are assumed to be of class C k+2 and u ∈ W k+2,2(V ) then the formula for f̃ readily shows

that f̃ ∈W k,2(V ) with ‖ f̃ ‖W k,2(V ) ≤ ‖ f ‖W k+1,2(V ) + Ak‖u‖W k+2,2(V ) for some constant Ak.

Thus we have uxm
∈ W 1,2(V ), f̃ ∈ L2(V ), and our calculation above shows that, for every

v ∈ C∞
0
(V ), we have

n∑

i, j=1

ˆ

V

ai juxm x i
vx j

dV +

n∑

i=1

ˆ

V

buxm x i
vdV +

ˆ

V

cuxm
vdV =

ˆ

V

f̃ vdV.

If instead we just assume that v ∈W
1,2
0 (V ), then by taking a sequence {vr}∞r=1

in C∞
0
(V ) and taking

the limit as r →∞ of the versions of the above equation with v replaced by vr , we obtain that the

same equation holds for v. Thus g = uxm
is indeed a weak solution to (32). �

We can now prove the following, which can be seen as a vast generalization of Weyl’s Lemma

1.2.12 (though with a slightly stronger regularity hypothesis on u).

THEOREM 1.5.7. Let U ⊂ Rn be a bounded open subset, and let ai j , bi , c : U → R be C∞ functions,

with ai j = a ji , such that (24) holds. Suppose that f ∈ W m,2(U) (m ≥ 0), and that u ∈ W 1,2(U) is a

weak solution to

−
∑

i, j=1

∂

∂ x j

�
ai j(x)

∂ u

∂ x i

�
+

n∑

i=1

bi(x)
∂ u

∂ x i

+ c(x)u= f .

Then u ∈W m+2,2(U), and we have a bound

(34) ‖u‖W m+2,2(V ) ≤ Ck(‖u‖W 1,2(U) + ‖ f ‖W m,2(U))
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where Ck is a constant depending on k, ai j , bi , c, V, U but not on f and u. In particular, if f ∈ C∞(U)
then u ∈ C∞(U).

PROOF. Let us abbreviate by L the operator

L = −
n∑

i, j=1

∂

∂ x j

�
ai j

∂

∂ x i

�
+

n∑

i=1

bi

∂

∂ x i

+ c,

so our theorem concerns (weak) solutions to the equation Lu= f .

Let V ⋐ U and choose a sequence of open sets U = V0 ⊃ V1 ⊃ · · · ⊃ Vk ⊃ · · ·Vm+1 = V ,

with each Vi+1 ⋐ Vi . We will show inductively that u ∈ W k+1,2(Vk) with a bound ‖u‖W k+1,2(Vk)
≤

Ck(‖u‖W 1,2(U) + ‖ f ‖W k−1,2(U)) for all 1 ≤ k ≤ m + 1. For k = 1 this is simply Corollary 1.5.5. In

general assume the result proven for a value k ≤ m and choose V ′
k

with Vk+1 ⋐ V ′
k
⋐ Vk. By

sequentially applying Proposition 1.5.6 to derivatives Dαu= (Dβu)xm
with |β |= |α|−1≤ k−1, we

see that each Dαu with |α| ≤ k is, on V ′
k
, a class-W 1,2 weak solution to an equation Lg = fα, where

fα ∈W k−|α|,2(V ′
k
) with

‖ fα‖W k−|α|,2(V ′
k
) ≤ A(‖ f ‖W k,2(V ′

k
) + ‖Dβu‖W k−|α|+2(V ′

k
))

≤ A(‖ f ‖W k,2(Vk)
+ ‖u‖W k+1,2(Vk)

)

for some constant A. But then Corollary 1.5.5 shows that, for all α with |α| = k, we have Dαu ∈
W 2,2(Vk+1), with a bound

‖Dαu‖W 2,2(Vk+1)
≤ C ′(‖ fα‖L2(V ′

k
) + ‖Dαu‖W 1,2(V ′

k
))

≤ C ′′(‖ f ‖W k,2(Vk)
+ ‖u‖W k+1,2(Vk)

)

for appropriate constants C ′, C ′′. This combines with the inductive hypothesis on ‖u‖W k+1,2(Vk)
to

give the desired bound ‖u‖W k+2,2(Vk+1)
≤ Ck(‖u‖W 1,2(U) + ‖ f ‖W k,2(U)). This completes the induction;

the final inductive step (leading to the assertion that the inductive hypothesis holds for k = m+ 1)

gives that u ∈W m+2,2(V ) and that (34) holds.

For the final sentence, the assumption that f ∈ C∞(U) implies that f ∈W k,2(V ) for any V ⋐ U .

So what we have shown establishes that, for all k and all W ⋐ V ⋐ U we have u ∈W k+2,2(W ). This

implies that u is of class C∞ on every subset W with W ⋐ U , and hence on all of U since smoothness

is a local condition. �

REMARK 1.5.8. The fact that Lu= f with f ∈W m,2 is enough to imply that u ∈W m+2,2 (modulo

passing to an arbitrary precompact open subset) is perhaps surprising, since the equation Lu = f

only imposes a condition on a very particular combination of (some of) the second partial derivatives

of u, while (34) controls all of them separately. This nice behavior of “gaining two derivatives”

doesn’t quite work out if one uses the more straightforward spaces C k(U) in place of the Sobolev

spaces W k,2(U): the function u(x , y) = (x2 − y2)
p
− log(x2 + y2) on the open unit disk has ∆u

continuous but isn’t C2.

1.6. Proof of the Hodge theorem

We now finally have enough background on Sobolev spaces and PDE’s to return to the context of

differential forms on a smooth manifold and to prove Theorem 1.1.12. To formulate the argument

we should first define Sobolev spaces of differential forms on a compact smooth manifold M . We will

do this in a somewhat simple-minded way, by summing over suitable coordinate charts. To avoid

various difficulties we will assume that our coordinate charts are taken from an atlas satisfying the

following definition.
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DEFINITION 1.6.1. If M is a smooth manifold, a bounded atlas for M is a finite collectionA =
{φα : Vα→ Rn|α= 1, . . . , N} where:

(i) Each Vα is an open subset of M , with M = ∪N
α=1

Vα;

(ii) Each φα : Vα → Rn is a smooth coordinate chart (i.e., a diffeomorphism to its image,

which is open in Rn);

(iii) Each closure V̄α is compact, and for each α there is an open set Uα with V̄α ⊂ Uα such that

φα extends to a coordinate chart defined on Uα.

It is easy to see that a smooth manifold M admits a bounded atlas if and only if M is compact.

Notice that ifA = {φα : Vα→ Rn} andB = {ψβ : Wβ → Rn} are both bounded atlases for M ,

then each transition function ψβ ◦ φ−1
α : φα(Vα) → ψβ (Wβ ) extends smoothly to a neighborhood

of the compact set φα(Vα), and hence the derivatives of all orders of ψβ ◦ φ−1
α are bounded (on

φα(Vα)). Using the chain rule, it then readily follows that for any k, p there is a constant C such

that, if f ∈ C∞(Vα ∩Wβ ), then

‖ f ◦ψ−1
β ‖W k,p(ψβ (Wβ ))

≤ C‖ f ◦φ−1
α ‖W k,p(φα(Vα))

.

By a straightforward approximation argument, this implies that, for any function f : M → R, we

have f ◦ψ−1
β
∈W k,p(ψβ (Wβ )) if and only if f ◦φ−1

α ∈W k,p(φα(Vα)).

In view of this it makes sense to define Sobolev spaces of differential forms in the following

way. If ω ∈ Ωl(M) and ifA = {φα : Vα→ Rn : α = 1, . . . , N} is a bounded atlas, then we can write,

for each α,

ω|Vα = (φ
−1
α )
∗

 ∑

I=(i1,...,il )

fI ,αd x i1
∧ · · · ∧ d x il

!

where each fI ,α ∈ C∞(φα(Vα)) and the sum is over I = (i1, . . . , il) ∈ {1, . . . , n}l having i1 < · · · < il .

We then define

(35) ‖ω‖k,p,A =

�
N∑

α=1

∑

I

‖ fI ,α‖pW k,p(φα(Vα))

�1/p

.

IfB = {ψβ : Wβ → Rn : β = 1, . . . N ′} is another bounded atlas, and if we write

ω|Wβ
= (ψ−1

β )
∗

 ∑

J=( j1,..., jl )

gJ ,βd x j1
∧ · · · ∧ d x jl

!

then the boundedness of the derivatives of the transition functions ψβ ◦φ−1
α shows that we have

bounds of the form ‖gJ ,β‖W k,p(ψβ (Uα∩Vβ ))
≤ C

∑
I ,α ‖ fI ,α‖W k,p(φα(Uα∩Vβ ))

where C only depends on A
andB . Now since the Uα cover M there is a trivial bound ‖gJ ,β‖W k,p(ψβ (Vβ ))

≤
∑
α ‖gJ ,β‖W k,p(ψβ (Uα∩Vβ ))

,

so we have

‖gJ ,β‖W k,p(ψβ (Vβ ))
≤ C

∑

I ,α

‖ fI ,α‖W k,p(φα(Uα))
.

So summing over (the finitely many) β and J proves:

PROPOSITION 1.6.2. If the norm ‖·‖k,p,A onΩl(M) is defined as in (35), then for any two bounded

atlasesA ,B there is a constant CA ,B such that ‖ω‖k,p,B ≤ CA ,B‖ω‖k,p,A for all ω ∈ Ωl(M).

Of course this proposition is symmetric in A and B , so the norms ‖ · ‖k,p,A and ‖ · ‖k,p,B are

uniformly equivalent. Accordingly we may define:
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DEFINITION 1.6.3. If M is a compact smooth manifold, k, l ∈ N, and 1 ≤ p <∞, we define

W k,p(Ωl(M)) to be the completion of Ωl(M) with respect to the norm ‖ · ‖k,p,A for any bounded

atlasA on M .

Proposition 1.6.2 shows that the space W k,p(Ωl(M)) defined in this way is independent of the

choice of A (since uniformly equivalent norms admit the same Cauchy sequences). The norm

‖ ·‖k,p,A then extends canonically to the completion W k,p(Ωl(M)); different choices of atlasA give

different (but uniformly equivalent) norms.

More concretely, approximation arguments like those used in Proposition 1.3.8 readily show

that an element ω ∈ W k,p(Ωl(M)) can be written in local coordinates with respect to a bounded

atlasA = {φα : Vα→ Rn} as

ω|Vα = (φ
−1
α )
∗

 ∑

I=(i1,...,il )

fI ,αd x i1
∧ · · · ∧ il

!

where now the functions fI ,α just belong to W k,p(φα(Vα)); conversely if ω is a “pointwise differ-

ential form” (i.e. a choice of element of Λl T ∗
x
M for each x ∈ M , initially without any condition

on smoothness with respect to x) that is locally represented in the above way then ω belongs to

W k,p(Ωl(M)).

With this definition, the exterior derivative d : Ωl(M) → Ωl+1(M) (acting on smooth forms)

extends by continuity to an exterior derivative d : W k,p(Ωl(M)) → W k−1,p(Ωl+1(M)), and simi-

larly (given a Riemannian metric on M) the Hodge star operator ⋆ from Section 1.1.4 extends to

an operator ⋆: W k,p(Ωl(M)) → W k,p(Ωn−l(M)). Combining these gives yields the operator d∗ =
(−1)n(l−1)+1 ⋆ d⋆: W k,p(Ωl(M))→ W k−1,p(Ωl(M)), and then the Hodge Laplacian ∆ = d∗d + dd∗,
now viewed as a map W k,p(Ωl(M))→W k−2,2(Ωl(M)). We will now deduce from our main regular-

ity theorem that the (extended) operator ∆ has the property that, roughly, if ∆ω ∈ W m,2(Ωl(M))

then ω ∈ W m+2,2(Ωl(M)); indeed, consistently with Theorem 1.5.7, we will only need to assume

that ω ∈ W 1,2(Ωl(M)) is a weak solution (to be defined below in Definition 1.6.4) to an equation

∆ω = θ with θ ∈W m,2(Ωl(M)) to obtain this conclusion. In particular, in the case that θ ∈ Ωl(M)

(i.e. that θ is a smooth differential form), then it will follow that ω ∈ Ωl(M). This reduces the

problem of finding solutions in Ωl(M) to equations ∆ω = θ to the problem of finding class-W 1,2

weak solutions to this equation.

For the rest of the section we assume that (M , g) is a compact oriented Riemannian manifold.

Fix a chart φ : V → Rn coming from a bounded atlas for M (so that in particular V̄ is compact

and φ extends to a coordinate chart on a neighborhood U of V̄ ). By applying the Gram-Schmidt

procedure (with respect to the Riemannian metric g) to the frame of vector fields { ∂∂ x1
, . . . , ∂

∂ xn
} we

obtain a set {e1, . . . , en} of vector fields on U which, when evaluated at any x ∈ U , give an oriented

orthonormal basis for Tx U . Let {e1, . . . , en} be the dual basis of one-forms, and for I = (i1, . . . , il)

with i1 < · · · < il write eI = ei1 ∧ · · · ∧ eil . Note that for some smooth matrix-valued function

P : U → GL(n;R) we can write e j =
∑n

i=1
Pi jd x i . In particular the derivatives of all orders of P

and of P−1 are bounded on V (since V̄ ⊂ U is compact). By replacing U by a smaller set that still

contains V̄ we may as well also assume that Ū is compact and that P is defined on a neighborhood

of Ū , so that the derivatives of all orders of P and of P−1 are bounded on U . Consequently the

W k,p differential forms on U (resp. on V ) are precisely the expressions
∑

I=(i1,...,il )
fI e

I where each

fI ∈W k,p(U) (resp. fI ∈W k,p(V )).

Based on Proposition 1.2.1, the Hodge Laplacian is given locally on U by

∆

�∑

I

fI e
I

�
=
∑

I

 
−

n∑

j=1

∇e j
(∇e j

fI )

!
eI +

n∑

j=1

∑

I ,J

(∇e j
fI )β

i
I J

eJ +
∑

I ,J

γI J fI e
J .
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Thus if ω,θ ∈ Ωl(M) have ω|U =
∑

I fI e
I and θ |U =

∑
J θJ eJ , by taking the eJ component of the

above expression for each J we see that (∆ω)|U = θ |U if and only if, for all J = ( j1, . . . , jl) with

j1 < · · ·< jl ,

(36)

 
−

n∑

j=1

∇e j
(∇e j

fJ )

!
+

n∑

i=1

∑

I

β i
I J
∇ei

fI +
∑

I ,J

γI J fI = θJ .

Now if we write e j =
∑

j Q i j
∂
∂ x i

(so Q is the inverse transpose of the matrix P in the second-to-

last paragraph) then

−
n∑

j=1

∇e j
(∇e j

f ) = −
∑

i, j,k

Q i j

∂

∂ x i

�
Qk j

∂ fJ

∂ xk

�

= −
∑

i,k

∂

∂ x i

 ∑

j

Q i jQk j

∂ fJ

∂ xk

!
+
∑

i, j,k

∂Q i j

∂ x i

Qk j

∂ fJ

∂ xk

= −
∑

i,k

∂

∂ x i

�
(QQT )ik

∂ fJ

∂ xk

�
+
∑

i, j,k

∂Q i j

∂ x i

Qk j

∂ fJ

∂ xk

Now since at each point x ∈ U , Q(x) is an invertible matrix, it follows that each of the Q(x)Q(x)T

are positive definite, and so (since we have reduced to the case where Ū is compact and Q is defined

on a neighborhood of Ū , yielding a positive lower bound on the lowest eigenvalue of Q(x)Q(x)T )

it follows that the coefficient functions (QQT )ik appearing above satisfy the uniform ellipticity re-

quirement in the hypothesis of Theorem 1.5.7.

DEFINITION 1.6.4. If θ ∈ L2(Ωl(M)) and ω ∈ W 1,2(Ωl(M)), we say that ω is a weak solution

to ∆ω= θ provided that, for all η ∈W 1,2(Ωl(M)), we have

〈dω, dη〉+ 〈d∗ω, d∗η〉= 〈θ ,η〉.
REMARK 1.6.5. If ω ∈W 2,2(Ωl(M)) (so that ∆ω is a well-defined element of L2(Ωl(M))), then

for each η ∈W 1,2(Ωl(M)) we have

〈dω, dη〉+ 〈d∗ω, d∗η〉= 〈d∗dω,η〉+ 〈dd∗ω,η〉= 〈∆ω,η〉,
so ω is a weak solution to ∆ω = θ if and only if 〈∆ω,η〉 = 〈θ ,η〉 for all η ∈W 1,2(Ωl(M)), which

(as one can see by choosing η ∈ Ωl(M) to be L2-close to ∆ω− θ if the latter is nonzero) holds if

and only if ∆ω = θ . Thus a class-W 2,2 weak solution to ∆ω = θ is genuinely a solution to this

partial differential equation.

THEOREM 1.6.6. For any m ≥ 0, let θ ∈ W m,2(Ωl(M)) and let ω ∈ W 1,2(Ωl(M)) be a weak

solution to ∆ω = θ . Then ω ∈ W m+2,2(Ωl(M)) and ∆ω = θ . In particular if θ ∈ Ωl(M) then also

ω ∈ Ωl(M) after possibly redefining ω on a set of measure zero12.

PROOF. Let us cover M by the domains of finitely many charts φα : Vα → Rn, each having

the property that there are open sets Uα,Wα with V̄α ⊂ Uα ⊂ Ūα ⊂Wα where Ūα (hence also V̄α) is

compact andφα extends to a coordinate chart (still denotedφα) defined on all of Wα. For any j ∈ N,

ω ∈W j,2(Ωl(M)) if and only if, writingω|Uα = φ∗α
�∑

I fI ,αeI
�
, we have fI ,α ∈W j,2(φα(Uα)) for each

I and each α, which in turn (using the boundedness of the derivatives of the transition functions

between the atlases {Uα} and {Vα}) holds if and only if fI ,α ∈W j,2(φα(Vα)) for each I and each α.

So it suffices to show inductively that, for each α, if 1≤ k ≤ m+1 and if each fI ,α ∈W k,2(φα(Uα)),

12A set of measure zero in a smooth manifold is by definition a set whose image under each coordinate chart in some

atlas has measure zero in Rn.
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then each fI ,α ∈ W k+1,2(φα(Vα)). We now fix a choice of α and prove this latter statement; for

convenience let us delete α from the notation, writing φ = φα, U = Uα, V = Vα, fI = fI ,α.

We may apply the definition of a weak solution to the form η obtained by setting η|U = φ∗(heJ )

where h ∈W
1,2
0 (φ(U)) is arbitrary, and setting η equal to zero outside of U . Now if γ ∈W 2,2(Ωl(M))

has γ|U = φ∗
�∑

I f̃I eI

�
, with this choice of η we have 〈dγ, dη〉+ 〈d∗γ, d∗η〉= 〈∆γ,η〉, and then by

using (36) and the computation below it we see that for certain smooth functions ai j , bi,I ,J , cI J : U →
R having all derivatives bounded and with ai j satisfying the uniform ellipticity requirement (24),

we have

〈∆γ,η〉=
ˆ

φ(U)

 
−
∑

i, j

∂

∂ x j

�
ai j

∂ f̃J

∂ x i

�
+
∑

i,I

bi,I ,J

∂ f̃I

∂ x i

+
∑

I

cI J f̃I

!
hdV,

so integrating by parts gives

〈dγ, dη〉+ 〈d∗γ, d∗η〉= 〈∆γ,η〉

=

ˆ

φ(U)

 ∑

i, j

ai j

∂ f̃J

∂ x i

∂ h

∂ x j

+
∑

i,I

bi,I ,J

∂ f̃I

∂ x i

h+
∑

I

cI J f̃I h

!
dV(37)

While we deduced the above formula under the assumption that γ ∈W 2,2(Ωl(M)), if we instead just

assume that γ ∈ W 1,2(Ωl(M)) it continues to hold because W 2,2(Ωl(M)) is dense in W 1,2(Ωl(M))

and both sides of (37) are continuous with respect to the W 1,2 topology. Applying this with γ = ω

whereω ∈W 1,2(Ωl(M)) is our given weak solution to∆ω= θ , if we write θ |U = φ∗
�∑

I θI e
I
�

then

since 〈θ ,η〉=
´

φ(U) θJ hdV the fact that 〈dω, dη〉+ 〈d∗ω, d∗η〉= 〈θ ,η〉 shows that

ˆ

φ(U)

 ∑

i, j

ai j

∂ fJ

∂ x i

∂ h

∂ x j

+
∑

i,I

bi,I ,J

∂ fI

∂ x i

h+
∑

I

cI J fI h

!
dV =

ˆ

φ(U)

θJ hdV.

The above holds for an arbitrary choice of multi-index J = ( j1, . . . , jl) and an arbitrary h ∈W
1,2
0 (U),

so, for each J , fJ is a weak solution to the equation

−
∑

i, j

∂

∂ x j

�
ai j

∂ fJ

∂ x i

�
= θJ −

∑

i,I

bi,I ,J

∂ fI

∂ x i

−
∑

I

cI J fI = θJ .

The inductive hypothesis that each fI ∈W k,2(φ(U)), together with the fact that θ ∈W m,2(Ωl(M))

where m + 1 ≥ k, shows that the right-hand side above belongs to W k−1,2(φ(U)), and so since

φ(V ) ⋐ φ(U) we have fJ ∈ W k+1,2(φ(V )) by Theorem 1.5.7. This holds for all J (and moreover

for all charts V as above) completing the proof of the inductive step that if ω ∈W k,2(Ωl(M)) with

k ≤ m+ 1 then ω ∈ W k+1,2(Ωl(M)). Thus any class-W 1,2 weak solution ω to ∆ω = θ belongs to

W m+2,2(Ωl(M)) (and in particular to W 2,2(Ωl(M))).

The additional conclusions in the theorem are easy to prove. Since ω ∈ W 2,2(Ωl(M)), ∆ω is

defined, and Remark 1.6.5 shows that in fact∆ω= θ . If θ ∈ Ωl(M) (i.e., if θ is a smooth differential

form) then θ ∈ W m,2(Ωl(M)) for all m, so by what we have shown we have ω ∈ W m+2,2(Ωl(M))

for all m, and so (after possibly redefining ω on a set of measure zero) ω ∈ Ωl(M)) by Corollary

1.3.22. �

We now begin work on finding weak solutions in the sense of Definition 1.6.4. Define a map

W 1,2(Ωl(M))×W 1,2(Ωl(M))→ R by

B(ω,η) = 〈dω, dη〉+ 〈d∗ω, d∗η〉,
so that a weak solution ω to ∆ω = θ is precisely an element of W 1,2(Ωl(M)) such that B(ω,η) =
〈ω,η〉 for all η ∈W 1,2(Ωl(M)).
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Clearly B is a symmetric bilinear form on W 1,2(Ωl(M)). It will be useful to compare this sym-

metric bilinear form to another one on the same space, namely the inner product 〈·, ·, 〉1,2,A defined

by choosing a bounded atlas {φα : Vα→ Rn|α= 1, . . . , N} and setting

〈ω,η〉1,2,A =
∑

α,I

ˆ

φα(Vα)

�
fI ,αgI ,α + (∇ fI ,α) · (∇gI ,α)

�
dV

if ω,η are written locally as

ω|Vα = φ
∗
α

�∑

I

fI ,αd x i1
∧ · · · ∧ d x il

�
η|Vα = φ

∗
α

�∑

I

gI ,αd x i1
∧ · · · ∧ d x il

�
.

So in particular 〈ω,ω〉1,2,A = ‖ω‖21,2,A where the latter is defined in (35), and so (W 1,2(Ωl(M)), 〈·, ·〉1,2,A )
is a Hilbert space. By writing the definition of B out in local coordinates (as is done for instance

in the proof of Lemma 1.6.7 below)it is not hard to see that B is a bounded bilinear form on this

Hilbert space, in the sense that there is C1 > 0 such that

(38) B(ω,ω)≤ C1〈ω,ω〉1,2,A for all ω ∈W 1,2(Ωl(M)).

In general this inequality cannot be reversed, but the following weaker version of a reversal of (38)

will be very important to us:

LEMMA 1.6.7. There are constants A1,A2 > 0 such that for all ω ∈W 1,2(Ωl(M)) we have

B(ω,ω)≥ A1〈ω,ω〉1,2,A − A2〈ω,ω〉

REMARK 1.6.8. We emphasize that the last term 〈ω,ω〉 is just the standard L2-norm
´

M ω∧⋆ω
that was introduced at the start of these notes; in particular the derivatives of the local coordinate

representations of ω do not appear in local coordinate formulas for 〈ω,ω〉, whereas they do of

course appear in local coordinate formulas for 〈ω,ω〉1,2,A .

PROOF. Fix α and fix an extension of the coordinate chart φα : Vα → R to an open set Uα
containing V̄α, and for I = (i1, . . . , il) let eI = ei1 ∧ · · · ∧ eil be the l-form constructed from an

orthonormal frame on Uα as before. Without loss of generality we assume that the orthonormal

frame is compatible with the orientation, so that φ∗α(e
1 ∧ · · · ∧ en) is a positive top-degree form on

Uα. We will sometimes abuse notation and regard I as a set rather than an ordered tuple, so that i ∈ I

means that i ∈ {i1, . . . , il}. Also recall the notation I◦ for the ordered (n− l)-tuple with underlying

set {1, . . . , n} \ {i1, . . . , il}, and recall that eI ∧ ⋆eI = e1 ∧ · · · ∧ en = ε(I)eI ∧ eI◦ for an appropriate

choice of sign ε(I) ∈ {±1}, while eI ∗ eJ = 0 for I 6= J . These facts readily imply that β ∧ ⋆β is

equal to a nonnegative function times an oriented volume form on M for any β ∈ L2(Ωl(M)); in

particular
´

M β ∧ ⋆β ≥
´

U β ∧ ⋆β for any subset U ⊂ M .

By definition, B(ω,ω) = 〈dω, dω〉+ 〈⋆d ⋆ω,⋆d ⋆ω〉 (since d∗ = (−1)n(l−1)+1 ⋆d⋆). To estimate

the first term, if ω|Vα = φ∗α
�

fI ,αeI
�
, we see that

〈dω, dω〉=
ˆ

M

(dω)∧ ⋆(dω)≥
ˆ

Vα

(dω)∧ ⋆(dω)

=

ˆ

φα(Vα)

�∑

I

�∑

i /∈I

(∇ei
fI ,αei ∧ eI ) + fI ,αd(eI)

��
∧ ⋆

�∑

I

�∑

i /∈I

(∇ei
fI ,αei ∧ eI) + fI ,αd(eI)

��
dV

≥
∑

(i,I):i /∈I

ˆ

φα(Vα)

|∇ei
fI ,α|2e1 ∧ · · · ∧ en − Cα

∑

I ,J

‖∇ fI ,α‖L2(φα(Vα))
‖‖ fJ ,α‖L2(φα(Vα))

− C ′α

∑

I

‖ fI ,α‖2L2(φα(Vα))
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for certain constants Cα, C ′α depending only on the coordinate chart and the basis forms eI (relating

primarily to the various derivatives d(eI), the coefficient functions of which are bounded since they

are smooth and extend to Uα).

As for the other term appearing in B(ω,ω), namely 〈⋆d ⋆ ω,⋆d ⋆ ω〉, first of all note that in

general (since ⋆⋆ = (−1)q(n−q) acting on q forms) ⋆η ∧ ⋆ ⋆ ζ = ζ ∧ ⋆η when ζ and η are forms of

complementary degree, so in fact 〈⋆d ⋆ω,⋆d ⋆ω〉= 〈d ⋆ω, d ⋆ω〉. Now

⋆ω|Vα = φ
∗
α

�∑

I

ε(I) fI ,αeI◦

�
where ε(I) ∈ {±1},

so an identical calculation as above shows that, for certain constants Dα, D′α, we have

〈dω, dω〉 ≥
∑

(i,I):i /∈I◦

ˆ

φα(Vα)

|∇ei
fI ,α|2e1∧· · ·∧en−Dα

∑

I ,J

‖∇ fI ,α‖L2(φα(Vα))
‖‖ fJ ,α‖L2(φα(Vα))

−D′α

∑

I

‖ fI ,α‖2L2(φα(Vα))
.

If we add the two inequalities that we have just obtained, the sum over {(i, I) : i /∈ I} combines with

the sum over {(i, I) : i /∈ I◦} to just give a sum over all possible i and I . This yields (for any choice

of α):

B(ω,ω)≥
∑

I

‖∇ fI ,α‖2L2(φα(Vα))
−(Cα+Dα)

∑

I ,J

‖∇ fI ,α‖L2(φα(Vα))
‖‖ fJ ,α‖L2(φα(Vα))

−(C ′α+D′α)
∑

I

‖ fI ,α‖2L2(φα(Vα))
.

We can now use the same trick that we used throughout the proof of Theorem 1.5.4 to observe that,

for each I

∑

J

‖∇ fI ,α‖L2(φα(Vα))
‖‖ fJ ,α‖L2(φα(Vα))

≤ 1

2(C ′α + D′α)
‖∇ fI ,α‖2L2(φα(Vα))

+
C ′α + D′α

2

�∑

J

‖ fJ ,α‖L2(φα(Vα))

�2

.

It then follows that, for some constant Aα,

(39) B(ω,ω)≥ 1

2

∑

I

‖∇ fI ,α‖2L2(Vα)
− Aα

∑

I

‖ fI ,α‖2L2(Vα)
.

This holds for each of our finitely many charts φα : Vα → Rn. Continuing to denote the total

number of charts in our atlas by N , we have, for some constant C depending on the transition

functions relating the eI to the d x i1
∧ · · · ∧ d x il

,

〈ω,ω〉1,2,A ≤ C
∑

α,I

�
‖∇ fI ,α‖2L2(φα(Vα))

+ ‖ fα‖2L2(φα(Vα))

�

≤ 2NCB(ω,ω) +
∑

α,I

(C + 2Aα)‖ fα‖2L2(φα(Vα))

where the second inequality follows by rearranging (39) and summing over α. The last term on the

right is bounded above by a constant times the standard L2 norm 〈ω,ω〉, and so rearranging the

above inequality proves the result. �

COROLLARY 1.6.9. Ifλ ≥ A2 where A2 is the constant from Lemma 1.6.7, then the map Bλ : W 1,2(Ωl(M))×
W 1,2(Ωl(M))→ R defined by

Bλ(ω,η) = B(ω,η) +λ〈ω,η〉
is an inner product on W 1,2(Ωl(M)), such that for some constant L > 0 we have

L−2〈ω,ω〉1,2,A ≤ Bλ(ω,ω) ≤ L2〈ω,ω〉1,2,A .

In particular Bλ induces on W 1,2(Ωl(M)) a Hilbert space structure with the property that, for ωm,ω ∈
W 1,2(Ωl(M)) we have ωm→ω with respect to Bλ if and only if ωm→ω with respect to 〈·, ·〉1,2,A .
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PROOF. Clearly Bλ is symmetric and bilinear. Combining (38) and Lemma 1.6.7 we have uni-

form estimates

A1〈ω,ω〉1,2,A ≤ Bλ(ω,ω)≤ (C1 +λ)〈ω,ω〉1,2,A .

and in particular Bλ(ω,ω) ≥ 0 with equality only if ω = 0 and the desired estimate holds with

L2 = max{A−1
1

, C1 + λ}. The bounds imply that a sequence is Cauchy (resp. convergent) with

respect with respect to Bλ if and only if it is Cauchy (resp. convergent) with respect to 〈·, ·〉1,2,A , so

since 〈·, ·〉1,2,A makes W 1,2(Ωl(M)) into a Hilbert space the result follows immediately. �

COROLLARY 1.6.10. Let λ = A2 where A2 is the constant from Lemma 1.6.7. Then for each θ ∈
L2(Ωl(M)) there is a uniqueωθ ∈W 1,2(Ωl(M)) such that Bλ(ωθ ,η) = 〈θ ,η〉 for allη ∈W 1,2(Ωl(M)).

Moreover, for some constant C independent of θ , we have a uniform estimate

(40) ‖ωθ‖1,2,A ≤ C‖θ‖L2(Ωl (M)).

PROOF. The Schwarz inequality readily implies an estimate 〈θ ,η〉 ≤ C0‖θ‖0,2,A ‖η‖0,2,A , so

since ‖ · ‖0,2,A ≤ ‖ · ‖1,2,A we see that 〈θ , ·〉 is a bounded linear functional on the Hilbert space

(W 1,2(Ωl(M)), Bλ) having norm at most LC0‖θ‖0,2,A where L is the constant from the previous

corollary. So the Riesz Representation Theorem 1.4.3 shows that there is ωθ ∈ W 1,2(Ωl(M)) such

that Bλ(ω, ·) = 〈θ , ·〉. Clearly there can only be one such ωθ , since for any other choice ω′
θ

we

would have Bλ(ωθ −ω′θ , ·) = 0, forcing ωθ −ω′θ = 0 since Bλ is an inner product. Also,

L−1‖ωθ‖21,2,A ≤ Bλ(ωθ ,ωθ ) = 〈θ ,ωθ 〉 ≤ LC0‖θ‖0,2,A ‖‖ωθ‖1,2,A ,

so (40) holds with C = L2C0. �

In view of the uniqueness of ωθ , the assignment θ 7→ ωθ is clearly linear since Bλ(cωθ1
+

ωθ2
, ·) = 〈cθ1 + θ2, ·〉. Let us now define a map

K : L2(Ωl(M))→ L2(Ωl(M))

θ 7→ λωθ .

The proof of Theorem 1.1.12 will rest on several properties of this map. Note that we treat the

codomain of K as being L2(Ωl(M)) even though by construction we always have Kθ ∈W 1,2(Ωl(M)).

PROPOSITION 1.6.11. The map K : L2(Ωl(M))→ L2(Ωl(M)) is a compact operator in the sense

that if {θm}∞m=1
is a sequence satisfying ‖θm‖0,2,A ≤ C (where C is independent of m) then {Kθm}∞m=1

has a subsequence which converges in L2(Ωl(M)).

PROOF. By construction and (40) the hypothesis implies that for each m we have Kθm ∈W 1,2(Ωl(M))

with ‖Kθm‖ ≤ LC0Cλ. If we fix a partition of unity {χα} subordinate to the cover {Vα} given by

our finite atlas A , this implies a uniform upper bound on the W 1,2 norms of the coefficient func-

tions appearing in the local coordinate representations of the various forms χαKθm; hence Theorem

1.3.23 implies that, for some subsequence {θm j
}∞

j=1
, each of the {χαKθm j

}∞
j=1

converge in L2, and

hence the Kθm j
=
∑
α χαKθm j

converge in L2. �

PROPOSITION 1.6.12. The map K : L2(Ωl(M))→ L2(Ωl(M)) is self-adjoint in the sense that, for

all θ ,φ ∈ L2(Ωl(M)), we have

〈θ , Kφ〉= 〈Kθ ,φ〉.
PROOF. We see that, by the definition of K and the fact that Bλ and 〈·, ·〉 are inner products,

〈θ , Kφ〉= Bλ(λ
−1Kθ , Kφ) = Bλ(λ

−1Kφ, Kθ )

= 〈φ, Kθ 〉= 〈Kθ ,φ〉.
�
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We now connect the operator K to our differential equation ∆ω = θ . By definition, for any

θ ,η ∈ L2(Ωl(M)), we have

〈θ ,η〉= Bλ(λ
−1Kθ ,η)

= λ−1 (〈dKθ , dη〉+ 〈d∗Kθ , d∗η〉) + 〈Kθ ,η〉.

Rearranging this shows that, for any θ ∈ L2(Ωl(M)),

(41) Kθ is a weak solution to ∆(Kθ ) = λ(θ − Kθ ).

In particular it follows from this (and Theorem 1.6.6) that we in fact have Kθ ∈W 2,2(Ωl(M))

for all θ ∈ L2(M).

Let us now consider the operator I − K : L2(Ωl(M))→ L2(Ωl(M)), where I is the identity. It is

an immediate consequence of (41) that

Im(I − K) ⊂ Im(∆ : W 2,2(Ωl(M))→ L2(Ωk(M))).

As for the kernel of I − K , if ω ∈ ker(I − K), i.e. if Kω = ω, then automatically ω ∈W 2,2(Ωl(M)),

and by definition

〈ω, ·〉= Bλ(λ
−1ω, ·) = λ−1〈∆ω, ·〉+ 〈ω, ·〉,

so that ∆ω= 0. Conversely if ∆ω= 0 then Bλ(λ
−1ω, ·) = 〈ω, ·〉 so Kω=ω. Thus

ker(I − K) = ker(∆ : W 2,2(Ωl(M))→ L2(Ωl(M))) =H l(M)

where H l(M) is as defined in (11) and where we have used Theorem 1.6.6 to deduce that any

class-W 2,2 element of ker(∆) is in fact smooth and hence belongs toH l(M).

Theorem 1.1.12 now follows from what we have done together with the following general

proposition:

PROPOSITION 1.6.13. Let H be a Hilbert space, let K : H → H be a self-adjoint compact operator,

and let I be the identity. Then ker(I − K) is finite-dimensional, and Im(I − K) = ker(I − K)⊥.

In fact we’ll prove this proposition based on a still more general lemma, formulated for later

use in other contexts:

LEMMA 1.6.14. Let H0, H1, H2 be three Hilbert spaces with associated norms ‖ ·‖0,‖ ·‖1,‖ ·‖2, and

suppose that D : H0→ H1 and K : H0→ H2 are bounded linear maps such that K is compact and such

that there is C > 0 such that for all x ∈ H0 we have

(42) ‖x‖0 ≤ C(‖Dx‖1 + ‖K x‖2).
Then Im(D) is closed, and ker(D) is finite-dimenisonal.

PROOF OF PROPOSITION 1.6.13, ASSUMING LEMMA 1.6.14. Let H0 = H1 = H2 = H and D =

I−K . Then (42) holds with C = 1 by the triangle inequality. So Lemma 1.6.14 asserts that ker(I−K)

is finite-dimensional and that Im(I − K) is closed. Now since K is self-adjoint we have, for any

x , y ∈ H

〈(I − K)x , y〉= 〈x , (I − K)y〉.
So if z = (I−K)y and x ∈ ker(I−K) then 〈x , z〉= 〈(I−K)x , y〉= 0, proving that Im(I−K) ⊂ ker(I−
K)⊥. To prove the reverse inclusion, first note that if x ∈ Im(I−K)⊥ then the above equation shows

that 〈(I − K)x , y〉 = 0 for all y ∈ H and hence that x ∈ ker(I − K). Thus Im(I − K)⊥ ⊂ ker(I − K),

from which it directly follows that ker(I − K)⊥ ⊂ (Im(I − K)⊥)⊥. But because Im(I − K) is closed,

we have (Im(I − K)⊥)⊥ = Im(I − K) by Corollary 1.4.2. So ker(I − K)⊥ ⊂ Im(I − K). �
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PROOF OF LEMMA 1.6.14. First we prove that ker(D) is finite-dimensional. If this were not the

case, then we could find an infinite orthonormal sequence {xm}∞m=1
in ker(D) ⊂ H0. Since K is a

compact operator and each ‖xm‖0 = 1, it follows that there is a subsequence {xm j
}∞

j=1
such that

{K xm j
}∞

j=1
is Cauchy. But since each xm ∈ ker(D), (42) says that, for each j1, j2, ‖xm j1

− xm j2
‖0 ≤

C‖K xm j1
− K xm j2

‖2, so {xm j
}∞

j=1
is Cauchy. But this is nonsense since the fact that the xm are or-

thonormal shows that ‖xm j1
− xm j2

‖0 =
p

2 for j1 6= j2. So indeed ker(D)must be finite-dimensional.

To prove that Im(D) is closed, let ym ∈ Im(D) with ym → y ∈ H1. We may write ym = Dxm

where xm ∈ ker(D)⊥ by projecting an initial choice of preimage of ym orthogonally to ker(D). If

the norms of the xm are bounded, then some subsequence {xm j
}∞

j=1
has K xm j

convergent, and then

since also Dxm j
→ y it follows from (42) that {xm j

}∞
j=1

is a Cauchy sequence, converging say to

x ∈ H. But then Dx = lim j→∞ Dxm j
= lim j→∞ ym j

= y , proving that y ∈ Im(D) if the norms of

the xm are bounded. On the other hand if the norms of the xm are unbounded then we can find a

subsequence {xm j
}∞

j=1
such that ‖xm j

‖ →∞ and hence D

�
xmj

‖xmj
‖

�
→ 0. Using the compactness of

K , a further subsequence of the
xmj

‖xmj
‖ would then converge to an element z ∈ ker(D), necessarily

with norm 1. But since each xm j
∈ ker(D)⊥ we will also have z ∈ ker(D)⊥, contradicting the obvious

fact that ker(D)∩ ker(D)⊥ is trivial. Thus Im(D) is closed. �

We have thus shown that

H l(M) = ker(I − K) is finite-dimensional

and that

ker(I − K)⊥ = Im(I − K) ⊂ Im(∆ : W 2,2(Ωl(M))→ L2(Ωl(M)).

The Hodge theorem asserts thatH l(M) is finite-dimensional, and that the orthogonal complement

H l(M)⊥ ofH l(M) within the space of smooth forms is equal to the image of the operator ∆ acting

on smooth forms. Now H l(M)⊥ = ker(I − K)⊥ ∩ Ωl(M), so the above shows that H l(M)⊥ ⊂
Im(∆ : W 2,2(Ωl(M))→ L2(Ωl(M)). But Theorem 1.6.6 shows that if∆ω ∈ Ωl(M) thenω ∈ Ωl(M),

so in factH l(M)⊥ ⊂ Im(∆|Ωl (M)). The reverse inclusion is trivial (as already mentioned in Remark

1.1.13) so the proof of the Hodge Theorem is complete.

REMARK 1.6.15. In fact, Lemma 1.6.14 continues to hold if we just assume that H0, H1, H2 are

Banach spaces rather than Hilbert spaces, as will be useful later in the proof of Theorem 3.4.3. The

proof of this is a slight modification of the one given above; the point is that the proof goes through

if we replace references to orthogonal complements and orthogonal projections by appeals to the

following fact: if B is a Banach space and if A≤ B is a closed subspace, then for any x ∈ B \A there

is ax ∈ A such that ‖x − ax‖> 1
2‖x − a‖ for all a ∈ A. It is easy to prove this fact: just use that since

A is closed the quantity inf {‖x − a‖| a ∈ A} is positive.

Given this fact, it’s easy to see that any infinite-dimensional subspace V of a Banach space B

must admit a sequence {vm}∞m=1
with ‖vm‖= 1 and ‖vm− vn‖ ≥ 1/2 for all m, n: inductively, having

chosen v1, . . . , vn ∈ V , apply the previous paragraph to the subspace A spanned by v1, . . . , vn and to

some choice of x ∈ V \Vn, and let vn+1 be an appropriate rescaling of x−ax . Hence in particular an

estimate (42) still implies the finite-dimensionality of ker(D) when the Hi are just Banach spaces,

since the compactness of K shows that the unit ball in ker(D) is sequentially compact.

To prove that D has closed range, we follow the proof in the Hilbert space case almost word-

for-word except that, instead of taking the xm to be in ker(D)⊥ (which in the Banach space case

has no meaning) we take them to have the property that ‖xm‖0 > 1
2‖xm − a‖0 for all a ∈ ker(D).

Just as before, if the xm are bounded then they converge to a preimage of y , while if the ‖xm‖0 are

unbounded then, after passing to a subsequence, the elements zm =
zm

‖zm‖0 have Dzm → 0 and Kzm



54 1. THE HODGE THEOREM AND SOBOLEV SPACES

Cauchy, whence zm → z with Dz = 0, whereas the condition on the xm forces ‖zm − a‖0 > 1/2 for

all a ∈ ker(D), a contradiction.



CHAPTER 2

Hodge theory on complex manifolds

2.1. The Hodge theorem with complex coefficients

The goal in this chapter will be to establish a different version of the Hodge theorem on complex

manifolds; in the case of a Kähler manifold (a complex manifold equipped with a Riemannian metric

that is compatible with the complex structure in a certain sense) this will have a simple relation to

Theorem 1.1.10 and will lead to interesting topological consequences. In Hodge theory on complex

manifolds one works with differential forms with complex coefficients, so in this section we will

introduce the linear algebra needed to do this and show that our earlier formulations of the Hodge

theorem (Theorems 1.1.10 and 1.1.12) extend trivially to complex-coefficient differential forms.

(In this section our manifold will not be assumed to be complex.)

The starting point is the following definition:

DEFINITION 2.1.1. If V is a vector space over R, the complexification of V is the complex vector

space

VC = V ⊗R C = {v1 + iv2|v1, v2 ∈ R}.
Of course, the scalar multiplication for the complex vector space structure on VC is given by

(x+i y)(v1+iv2) = (x v1−yv2)+i(x v2+yv1). An obvious but important point is that complexification

can be seen as a functor from the category of real vector spaces to the category of complex vector

spaces: not only do we obtain a complex vector space VC for every real vector space V , but to each

R-linear map f : V →W we obtain an induced C-linear map fC : VC→WC defined by fC(v1+ iv2) =

f (v1) + i f (v2), and one has identities ( f ◦ g)C = fC ◦ gC and IC = I . Usually I will abuse notation

and just write fC as f unless the redundant notation is likely to cause confusion.

The complexification VC of a real vector space V comes with a R-linear conjugation map v 7→ v̄

defined by v1 + iv2 = v1 − iv2 for v1, v2 ∈ V .

If (·, ·): V × V → R is an inner product on the real vector space V , there is a canonically-

determined (Hermitian) inner product 〈·, ·〉: VC × VC→ C on VC defined by

(43) 〈v1 + iv2, w1 + iw2〉= ((v1, v2) + (w1, w2)) + i ((v2, w1)− (v1, w2))

(our convention is that a Hermitian inner product is complex-linear in its first argument and conjugate-

linear in its second argument). Trivially, if {e1, . . . , en} is an orthonormal basis for (V, (·, ·)) then

{e1, . . . , en} is also an orthonormal basis for
�
VC, 〈·, ·〉

�
. We now make the following simple observa-

tion:

PROPOSITION 2.1.2. Suppose that (V, (·, ·)V ) and (W, (·, ·)W ) are real inner product spaces, and

that A: V → W and A∗ : W → V are linear maps obeying the identity (Av, w)W = (v,A∗w)V for all

v ∈ V, w ∈ W. Then where 〈·, ·〉V and 〈·, ·〉W the Hermitian inner products on VC and WC constructed

using (43), we likewise have 〈ACv, w〉W = 〈v, (A∗)Cw〉V for all v ∈ VC, w ∈WC.

(In other words, the complexification of an adjoint to a real-linear operator is a Hermitian

adjoint to the complexification of that operator.)

55
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PROOF. For v = v1 + iv2 ∈ VC and w= w1 + iw2 ∈WC we have:

〈ACv, w〉W = 〈Av1 + iAv2, w1 + iw2〉W = (Av1, w1)W + (Av2, w2)W + i(Av2, w1)W − i(Av1, w2)W

= (v1,A∗w1)V + i(v2,A∗w1)V + (v2,A∗w2)V − i(v1,A∗w2)V = 〈v1 + iv2,A∗w1〉W − i〈v1 + iv2,A∗w2〉V
= 〈v1 + iv2,A∗(w1 + iw2)〉V = 〈v, (A∗)Cw〉V .

�

2.1.1. Complexifying the Hodge theorem. Now let us assume that M is a compact n-dimensional

oriented Riemannian manifold. We have a Hodge star operator ⋆: Ωk(M)→ Ωn−k(M), which then

complexifies to give an operator ⋆= ⋆C : Ωk(M)C→ Ωn−k(M)C. In (9, we defined an inner product

(·, ·) on Ωk(M) by (α,β) =
´

M α ∧ ⋆β . We can then as usual use (43) to obtain a Hermitian inner

product 〈·, ·〉 on Ωk(M)C by, for α= α1 + iα2,β = β1 + iβ2 ∈ Ωk(M)C,

〈α,β〉= (α1,β1) + i(α2,β1)− i(α1,β2) + (α2,β2)

=

ˆ

M

α1 ∧ ⋆β1 + i

ˆ

M

α2 ∧ ⋆β1 − i

ˆ

M

α1 ∧ ⋆β2 +

ˆ

M

α2 ∧ ⋆β2

=

ˆ

M

(α1 + iα2)∧ ⋆β1 +

ˆ

M

(α1 + iα2)∧ ⋆(−iβ2) =

ˆ

M

(α1 + iα2)∧ ⋆(β1 − iβ2)

=

ˆ

M

α∧ ⋆β̄ .(44)

Now we have en exterior derivative d : Ωk−1(M) → Ωk(M), with adjoint d∗ = (−1)n(k−1)+1 ⋆
d⋆: Ωk(M)→ Ωk−1(M). Proposition 2.1.2 then shows that the complexified map dC : Ωk−1(M)C→
Ω

k(M)C has adjoint (with respect to (44)) given by the complexification d∗
C

of d∗. Trivially, a

complexified form ω = ω1 + iω2 ∈ Ωk(M)C obeys dCω = 0 if and only if dω1 = dω2 = 0, so

ker(dC) = ker(d)C and likewise ker(d∗
C
) = ker(d∗)C. Similarly Im(dC) = Im(d)C since dC is just

given by acting on real and imaginary parts separately by d. In view of this the complex de Rham

cohomology

Hk(M ;C) =
ker(dC : Ωk(M)C→ Ωk+1(M)C)

Im(dC : Ωk−1(M)C→ Ωk(M)C)

is naturally identified with the complexification Hk(M)C of the original de Rham cohomology Hk(M):

indeed the fact that ker(dC) = ker(d)C implies that ω1 + iω2 7→ [ω1] + i[ω2] is a well-defined and

surjective map ker(dC) → Hk(M)C, and the fact that Im(dC) = Im(d)C implies that this map has

kernel exactly equal to Im(dC).

We can then form the complexified Hodge Laplacian ∆C = dCd∗
C
+ d∗
C

dC, and the fact that d∗
C

is

adjoint to dC shows that, for any ω ∈ Ωk(M)C,

〈∆Cω,ω〉 = 〈dCω, dCω〉+ 〈d∗Cω, d∗
C
ω〉

and so just as in the real case we have∆Cω = 0 if and only if dCω = d∗
C
ω = 0. Evidently ker(∆C) =

ker(∆)C =H k(M)C. The Hodge Theorem 1.1.10 shows that the map H k(M)→ Hk(M) given by

ω 7→ [ω] is an isomorphism, so it follows immediately that:

PROPOSITION 2.1.3. If M is a compact oriented Riemannian manifold and ∆ = d∗d + dd∗ is the

Hodge Laplacian, we have isomorphisms

ker(∆C : Ωk(M)C→ Ωk(M)C)
∼= Hk(M ;C)∼= Hk(M)C

defined respectively by ω1 + iω2 7→ [ω1 + iω2] and [ω1 + iω2] 7→ [ω1] + i[ω2].
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2.1.2. More about the complexified Hodge star operator. We now return to the context of

linear algebra. If (V, (·, ·),o) is an oriented n-dimensional inner product space over R, we have

constructed the inner product 〈·, ·〉 on VC via (43), and we have a complexified Hodge star operator

⋆: (ΛkV ∗)C → (Λn−kV ∗)C. The operator ⋆ was designed to have the property that if {e1, . . . , en} is

any oriented basis (over R) for V then ⋆(e1 ∧ · · · ek) = ek+1 ∧ · · · ∧ en. Now if {e1, . . . , en} is a basis

over R for V then it is also a basis over C for VC. It will soon be useful to us to consider the action

of ⋆ on orthonormal bases for VC whose elements do not necessarily belong to V (i.e. which might

have nontrivial “imaginary part”), and we will work out how to do this presently. (One issue here

is that we do not immediately have a notion of what it means for such a basis to be “oriented.”)

First let us consider the domain (ΛkV ∗)C of the complexified Hodge star operator ⋆. By defi-

nition, ΛkV ∗ consists of alternating k-linear maps η : V k → R, while (ΛkV ∗)C consists of elements

η1+iη2 where η1,η2 ∈ ΛkV ∗; equivalently (ΛkV ∗)C consists of k-linear maps η= η1+iη2 : V k→ C.

(Here of course “k-linear” in this context means “k-linear over R” since we are only assuming V to

be a real vector space.)

One could also consider the spaceΛk
C

V ∗
C

, consisting of alternating complex-k-linear mapsη : (VC)
k→

C. This is of course a complex vector space, and since any such η is uniquely determined as soon

as one gives arbitrary values to η(e j1
, . . . , e jk

) for a complex basis {e1, . . . , en} for VC, as ( j1, . . . , jk)

varies over increasing k-tuples in {1, . . . , n}, we have dimCΛ
k
C

V ∗
C
=
�

n

k

�
. Likewise, dimC(Λ

kV ∗)C =

dimRΛ
kV ∗ =

�
n

k

�
. In fact these two spaces are naturally isomorphic: since V ⊂ VC, we have a

restriction map

r : Λk
C

V ∗
C
→ (ΛkV ∗)C

η 7→ η|V k .

If η ∈ Λk
C

V ∗
C

has η|V k = 0 then the complex-k-linearity of η readily implies that η(v1+ iw1, . . . , vk +

iwk) = 0 for all v j , w j ∈ V and hence that η = 0. Thus the restriction map r is an injective linear

map, and hence a linear isomorphism since its domain and codomain have the same dimension.

The inverse is given by extending an arbitrary alternating k-linear η : V k → C to a complex linear

map (VC)
k→ C in the obvious way, e.g. if k = 2 then

(r−1η)(v1 + iw1, v2 + iw2) = η(v1, v2) + iη(v1, w2) + iη(v2, w1)−η(w1, w2).

As a rather special case, for any real vector space W , recalling that Λ1W ∗ = W ∗ we get an

isomorphism r : (WC)
∗C → (W ∗)C (where the superscript ∗C means the complex dual space) given

by restriction of complex-linear maps WC→ C to W ⊂WC.

Recall from (5) that ⋆: ΛkV ∗→ Λn−kV ∗ is given as a composition

(45) Λ
kV ∗

(Λkℓ)−1

// ΛkV
φ // (Λn−kV )∗

ι−1
// Λn−kV ∗

where ℓ: V → V ∗ is given by v 7→ (·, v), where (φα)(β) is the value t ∈ R for which α∧ β = tωV

where ωV is the canonical generator for ΛnV , and where (ιθ )( f1 ∧ · · · ∧ fn−k) = θ ( f1, . . . , fn−k) for

any f1, . . . , fn−k ∈ V . So the complexified operator ⋆= ⋆C : (ΛkV ∗)C→ (Λn−kV ∗)C can be computed

as the composition of the complexifications of the three maps in (45). These complexifications are

perhaps easier to understand in terms of the various restriction isomorphisms r : Λl
C

W ∗
C
→ (ΛlW ∗)C.

(Recall that ΛkV is defined in these notes by using the canonical identification of V with V ∗∗ and

interpreting ΛkV as ΛkV ∗∗, so in particular one special case of the restriction isomorphisms is an
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isomorphism Λk
C

VC→ (ΛkV )C.) So consider the diagram

(46) (ΛkV ∗)C
(Λkℓ)−1

C // (ΛkV )C
φC // ((Λn−kV )∗)C

ι−1
C // (Λn−kV ∗)C

Λ
k
C

V ∗
C

ψ1 //

r

OO

Λ
k
C

VC
ψ2 //

r

OO

((Λn−kV )C)
∗C ψ3 //

r

OO

Λ
n−k
C

V ∗
C

r

OO

where the maps on the bottom row are chosen to make the diagram commute (as is possible in a

unique way since the vertical maps r are all isomorphisms).

Note that the usual formula for wedge product (in terms of a sum over permutations) extends

trivially either to alternating R-multilinear maps V k → C (i.e. to (ΛkV ∗)C) or to alternating C-

multilinear maps (VC)
k→ C (i.e. to Λk

C
V ∗
C

); we use these extensions below.

Continue to denote by ωV the canonical generator for ΛnV associated to our oriented inner

product space (V, (·, ·),o) (given by ωV = e1 ∧ · · · ∧ en for an arbitrary oriented orthornomal basis

for V ). Then ωV includes trivially into (ΛnV )C (with zero imaginary part), and corresponds under

the restriction isomorphism r : Λn
C

VC→ (ΛnV )C to the unique element ωC
V
∈ ΛCVC (i.e. the unique

complex n-linear map ((V ∗)C)
n → C) that restricts to (V ∗)n as ωV . With this preparation, we can

state the following:

PROPOSITION 2.1.4. Let (V, (·, ·),o) be an oriented inner product space, let {e1, . . . , en} be a complex

basis for VC that is orthonormal for the Hermitian inner product (43), and let {e1, . . . , en} be the

complex-dual basis for VC. Assume moreover that e1 ∧ · · · ∧ en =ω
C

V
. Then

(47) ⋆ (r (〈·, ē1〉 ∧ · · · ∧ 〈·, ēk〉)) = r(ek+1 ∧ · · · ∧ en).

REMARK 2.1.5. Note that the maps 〈·, ē j〉: VC→ C are complex-linear; so 〈·, ē1〉 ∧ · · · ∧ 〈·, ēk〉 is

a well-defined element of Λk
C

V ∗
C

and the left-hand side is well-defined. By contrast the maps 〈e j ·〉
are of course not complex-linear. In our applications the ē j will also be members of the basis under

consideration, and so the 〈·, ē j〉 will be dual basis elements.

PROOF. Referring to (46), we are to show that the maps ψ1,ψ2,ψ3 that make that diagram

commute obey ψ3(ψ2(ψ1(〈·, ē1〉 ∧ · · · ∧ 〈·, ēk〉))) = ek+1 ∧ · · · ∧ en.

First of all we claim thatψ1(〈·, ē1〉∧· · ·∧〈·, ēk〉) = e1∧· · ·∧ek, i.e. that (Λkℓ)C(r(e1∧· · ·∧ek)) =

r (〈·, ē1〉 ∧ · · · ∧ 〈·, ēk〉). Now, as usual interpreting various terms by using the identification of V

with V ∗∗,

r(e1 ∧ · · · ∧ ek) = (e1 ∧ · · · ∧ ek)|(V ∗)k
= (e1)|V ∗ ∧ · · · ∧ (ek)|V ∗
= ( f1 + i g1)∧ · · · ∧ ( fk + i gk)

where we write the various e j as e j = f j + i g j where each f j , g j ∈ V = V ∗∗. Hence

(Λkℓ)C(r(e1 ∧ · · · ∧ ek)) = ℓ( f1 + i g1)∧ · · · ∧ ℓ( fk + i gk)

= (ℓ( f1) + iℓ(g1))∧ · · · ∧ (ℓ( fk) + iℓ(gk))

= ((·, f1) + i(·, g1))∧ · · · ∧ ((·, fk) + i(·, gk))

= (〈·, f1 − i g1〉|V )∧ · · · ∧ (〈·, fk − i gk〉|V )
= r (〈·, ē1〉 ∧ · · · ∧ 〈·, ēk〉) ,

confirming the claim.

Next we consider the elementψ2(e1∧· · ·∧ ek) ∈ (Λn−k
C

VC)
∗C . The space Λn−k

C
VC is generated by

elements eJ = e j1
∧ · · · ∧ e jn−k

as J varies over increasing (n− k)-tuples ( j1, . . . , jn−k). Since wedge
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product commutes with restriction of multilinear maps from VC to V , and since all elements of

(ΛnVC)
∗ are multiples of ωC

V
, the values (ψ2(e1 ∧ · · · ∧ ek))(eJ ) are just the complex numbers tJ

satisfying e1 ∧ · · · ∧ ek ∧ eJ = tJω
C

V
. For J 6= {k+1, . . . , n} this value is zero since then jl ∈ {1, . . . , k}

for some l, while the hypothesis of the proposition asserts that e1 ∧ · · · ∧ ek ∧ e(k+1,...,n) =ω
C

V
so that

t(k+1,...,n) = 1. Thus

ψ2(e1 ∧ · · · ∧ ek)(eJ ) =

§
1 J = (k+ 1, . . . , n)

0 otherwise

Now the mapψ3 : (Λn−k
C

V )∗C → Λn−k
C

V ∗
C

in (46) is the inverse of the isomorphism ιC : Λn−k
C

V ∗
C
→

(Λn−k
C

V )∗C defined by letting (ιCθ )( f1 ∧ · · · ∧ fn−k) = θ ( f1, . . . , fn−k) (that ιC is well-defined follows

just as in the discussion of (6)). Indeed, if we set ψ3 = (ι
C)−1 then the right square of (46) will

commute, and since the other maps in (46) are all isomorphisms it follows that ψ3 = (ι
C)−1. But it

is immediate from the definition that, for any increasing (n− k)-tuple J ,

ιC(ek+1 ∧ · · · ∧ en)(eJ ) =

§
1 J = (k+ 1, . . . , n)

0 otherwise
.

Thus ψ3(ψ2(e1 ∧ · · · ∧ ek)) = ek+1 ∧ · · · ∧ en. Together with the calculation at the start of the proof,

this establishes the result. �

Here is a somewhat easier-to-use version of Proposition 2.1.4. Dually to ωV ∈ ΛnV , given an

oriented inner product space V we define volV ∈ ΛnV ∗ ⊂ (ΛnV ∗)C by putting volV = e1 ∧ · · · ∧
en where {e1, . . . , en} is the dual basis to an arbitrary oriented orthonormal basis for V (as with

ωV , this is independent of the choice of such a basis because the relevant basis change matrix has

determinant one). Likewise we let volC
V

be the unique element of Λn
C

V ∗
C

mapping to volV under the

restriction isomorphism r.

COROLLARY 2.1.6. Let (V, (·, ·),o) be an oriented inner product space and let {e1, . . . , en} be a

complex basis for VC that is orthonormal with respect to the Hermitian inner product (43), and let

{e1, . . . , en} be the dual basis for V
∗C
C

. Assume that e1 ∧ · · · ∧ en = αvolC
V

. Then for 0< l < n,

⋆
�
r(e1 ∧ · · · ∧ el)

�
= αr (〈·, ēl+1〉 ∧ · · · ∧ 〈·, ēn〉) .

PROOF. By definition if we take an orthonormal (real) basis { f1, . . . , fn} for V , then this basis is

also an orthonormal basis over C for VC, and volC
V
= f 1 ∧ · · · ∧ f n for the dual basis { f 1, . . . , f n}.

Now the change-of-basis matrix relating our given basis {e1, . . . , en} to { f1, . . . , fn} is unitary, so its

determinant has modulus 1; thus the parameter α in the hypothesis of the corollary obeys |α| = 1.

In particular the basis {e1, . . . , en−1,αen} is still orthonormal, with dual basis {e1, . . . , en−1,α−1en}.
Since 〈·,αen〉= α〈·, ēn〉, this reduces us to the case that α= 1, which we assume from now on.

Thatα= 1 implies that the change-of-basis matrix from the previous paragraph has determinant

1 (as α is the reciprocal of this determinant), and hence that e1 ∧ · · · ∧ en = ω
C

V
. Now apply the

previous proposition with k = n − l to the basis {(−1)l(n−l)el+1, el+2, . . . , en, e1, . . . , el} (the sign is

used to ensure that the wedge product of the elements in this new basis is still equal to ωC
V

) to find

that

(−1)l(n−l) ⋆ (r(〈·, ēl+1〉 ∧ · · · ∧ 〈·ēn〉)) = r(e1 ∧ · · · ∧ el).

Now apply ⋆ to both sides and recall that ⋆⋆ acts on Λl V ∗ by (−1)l(n−l) to obtain the result. �

EXAMPLE 2.1.7. Let V = R2 with its standard inner product and orientation, so that VC = C
2 with

its standard inner product 〈(z1, z2), (w1, w2)〉 = z1w̄1 + z2w̄2. Let θ = ( 1p
2
, ip

2
), so θ̄ = ( 1p

2
,− ip

2
), so

in terms of the standard basis for R2 we have θ = 1p
2
(e1 + ie2) and θ̄ = 1p

2
(e1 − ie2).
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If {φ, φ̄} is the dual basis to {θ , θ̄}, we find that

φ =
1p
2
(e1 − ie2) φ̄ =

1p
2
(e1 + ie2)

and hence that φ ∧ φ̄ = ie1 ∧ e2. Hence Corollary 2.1.6 shows that

⋆(φ) = i〈·, θ̄ 〉= i〈·,θ 〉= iφ.

Similarly since φ̄ ∧φ = −ie1 ∧ e2 one finds ⋆(φ̄) = −iφ̄.

Of course these identities can also be checked directly; however the approach given by Corollary

2.1.6 will significantly simplify similar higher-dimensional computations, as we will see below.

2.2. Complexification and complex structures

DEFINITION 2.2.1. If V is a vector space over R, a complex structure on V is a linear map J : V →
V such that J2 = −I (where I always denotes the identity).

If J is a complex structure on V , then we can view V as a vector space over C using the scalar

multiplication (a+ i b)v = av + J bv. However this is not usually the perspective that we will take.

Instead, we will consider the complexification VC, which is a complex vector space on which we

have an induced complex-linear map J = JC : VC → VC that still satisfies J2 = −I . Evidently the

possible eigenvalues of J are ±i. We denote the corresponding eigenspaces by

V1,0 = ker(i I − J) V0,1 = ker(−i I − J).

Here are some simple facts about these spaces:

PROPOSITION 2.2.2. Let V be an m-dimensional real vector space with a complex structure J : V →
V . Then:

(i) We have a direct sum decomposition of complex vector spaces VC = V1,0 ⊕ V0,1.

(ii) The complex conjugation map ¯: VC → VC restricts to an isomorphism of real vector spaces

V1,0→ V0,1. Hence m is even, and dimC V1,0 = dimC V0,1 =
m
2 .

(iii) We have

V1,0 = {v − iJ v|v ∈ V} V0,1 = {v + iJ v|v ∈ V}.
PROOF. Of course V1,0 and V0,1, being eigenspaces of a complex-linear operator on the complex

vector space VC, are both complex subspaces of VC. Obviously V1,0 ∩ V0,1 = {0} since an element

v ∈ V1,0 ∩ V0,1 would obey iv = J v = −iv. The fact that J : VC→ VC is complex-linear with J2 = −I

immediately implies identities

(48) (i I − J)(i I + J) = (i I + J)(i I − J) = 0,

so for any v ∈ VC the formula

v =
1

2
(I − iJ)v +

1

2
(I + iJ)v = − i

2
(i I + J)v − i

2
(i I − J)v

expresses v as v = v1,0 + v0,1 where v1,0 =
1
2 (v − iJ v) ∈ V1,0 and v0,1 =

1
2 (v + iJ v) ∈ V0,1. So indeed

VC = V1,0 ⊕ V0,1.

For (ii), if v1, v2 ∈ V we see that v1 + iv2 ∈ V1,0 (i.e. J(v1 + iv2) = i(v1 + iv2)) iff J v1 = −v2

and J v2 = v1 (actually the second statement follows from the first and the fact that J2 = −I), while

v1+ iv2 ∈ V0,1 iff J v1 = v2 and J v2 = −v1. Thus v1+ iv2 ∈ V1,0 if and only if v1− iv2 = v1 + iv2 ∈ V0,1.

So since the conjugation map is R-linear and is its own inverse this proves that the conjugation

map sends V1,0 isomorphically (as vector spaces over R) to V0,1. So dimR V1,0 = dimR V0,1. So since
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dimR VC = 2m it follows from (i) that dimR V1,0 = dimR V0,1 = m. So since V1,0 and V0,1 are complex

vector spaces, it follows that m is even and that dimC V1,0 = dimC V0,1 =
m
2 .

Now to prove (iii), the restriction of the map I − iJ : VC → VC to V is clearly injective (since it

acts trivially on real parts), and since I− iJ = −i(i I+J), (48) shows that I− iJ has image contained

in V1,0. So (I − iJ)|V is an injective linear map from V to V1,0, and we have just shown that these

spaces have the same dimension, so indeed V1,0 = {(I − iJ)v|v ∈ V}. Taking complex conjugates

shows that likewise V0,1 = {(I + iJ)v|v ∈ V}. �

If dimR V = m = 2n, let {v1, . . . , vn} be a basis over C for V1,0. Then {v̄1, . . . , v̄n} is evidently a

basis for V0,1, and so we get a basis {v1, v̄1, . . . , vn, v̄n} for VC = V1,0 ⊕ V0,1.

We can then take a dual basis {v1, v̄1, . . . , vn, v̄n} for the dual space V C
C

. Here and elsewhere,

for φ ∈ V
∗C
C

, the complex conjugate φ̄ is defined by

φ̄(v) = φ(v̄) (φ ∈ V
∗C
C

, v ∈ VC).

Under the restriction isomorphism r : V
∗C
C
→ (V ∗)C discussed in the previous section, this conjuga-

tion operator on V
∗C
C

corresponds to the original complex conjugationφ1+iφ2 7→ φ1−iφ2 on (V ∗)C.
(One needs to take the conjugate of the input to φ̄ above in order for φ̄ to be complex-linear.) With

this said, from now on we will implicitly identify V
∗C
C

with (VC)
∗, and likewise Λk

C
V ∗
C

with (ΛkV ∗)C,
omitting the restriction isomorphism r from the notation.

Let

V 1,0 = {φ ∈ V
∗C
C
|φ|V0,1

= 0}, V 0,1 = {φ ∈ V
∗C
C
|φ|V1,0

= 0}.
Evidently our dual basis {v1, v̄1, . . . , vn, v̄n} has v1, . . . , vn ∈ V 1,0 and v̄1, . . . , v̄n ∈ V 0,1. Hence V

∗C
C
=

V 1,0 ⊕ V 0,1.

Similarly, for 0≤ p ≤ k we may consider the subspace Λp,k−pV ∗ of Λk
C

V ∗
C

defined by

Λ
p,k−pV ∗ =

�
φ ∈ Λk

C
V ∗
C

��φ|(V 1,0)r×(V 0,1)k−r = 0 for all r 6= p
	

.

More concretely, given our basis {v1, v̄1, . . . , vn, v̄n} as above, we have, for 0≤ p,q ≤ n,

Λ
p,qV ∗ = span{v i1 ∧ · · · ∧ v ip ∧ v̄ j1 ∧ · · · ∧ v̄ jq |1≤ i1 < · · ·< ip ≤ n, 1≤ j1 < . . .< jq ≤ n}.

From this it is clear that

Λ
k
C

V ∗ =
⊕

p+q=k

Λ
p,qV ∗.

Note that

(49) If ω ∈ Λp,qV ∗ then ω̄ ∈ Λq,pV ∗

as follows from directly from the fact that the conjugation operator onΛk
C

V ∗
C

is given by ω̄(v1, . . . , vk) =

ω(v̄1, . . . , v̄k). Also

(50) If ω ∈ Λp,qV ∗,θ ∈ Λr,sV ∗ then ω∧ θ ∈ Λp+r,q+sV ∗.

Recalling that V can be made into a complex vector space by interpreting J as scalar multiplica-

tion by i, if {e1, . . . , en} is a basis (over C) for this complex vector space then {e1, Je1, . . . , en, Jen} is

a basis over R for V . This induces an orientation o for V , the “complex orientation,” by saying that

{e1, Je1, . . . , en, Jen} is an oriented ordered basis. (This orientation is independent of the choice of

the ei , essentially because GL(n,C) is connected and hence the set of such choices is connected.)

Let us say that an inner product (·, ·) on V is J -compatible if (J v, Jw) = (v, w) for all v, w ∈ V .

Such inner products certainly exist; for instance this will hold if we define (·, ·) by the property that

some specific basis {e1, Je1, . . . , en, Jen} is orthonormal. Conversely, if (·, ·) is a J -compatible inner

product then one can find an orthonormal basis of the form {e1, Je1, . . . , en, Jen}, as follows by an
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easy argument by induction on
dimR V

2 (if (e, e) = 1, then {e, Je} is an orthonormal set, and we may

apply the inductive hypothesis to {e, Je}⊥).

PROPOSITION 2.2.3. Let J be a complex structure on the 2n-dimensional real vector space V , let

(·, ·) be a J-compatible inner product on V , and endow VC with the Hermitian inner product 〈·, ·〉 be

the Hermitian inner product defined by (43). Then the subspaces V1,0, V0,1 ≤ VC are orthogonal to each

other.

PROOF. If v = v1 + iv2 ∈ V1,0 and w = w1 + iw2 ∈ V0,1 (where v1, w1, v2, w2 ∈ V ) then the fact

that J v = iv implies that J v1 = −v2 while the fact that Jw= −iw implies that Jw1 = w2. So

〈v1+iv2, w1+iw2〉= (v1, w1)+(v2, w2)+i(v2, w1)−i(v1, w2) = (v1, w1)+(−J v1, Jw1)−i(J v1, w1)−i(v1, Jw1) = 0

(since in particular (v1, Jw1) = (J v1, J2w1) = −(J v1, w1)). �

PROPOSITION 2.2.4. Let V be a 2n-dimensional vector space over R with a complex structure J

and a J-compatible inner product (·, ·) and the complex orientation. Then the (complexified) Hodge

star operator ⋆: Λk
C

V ∗
C
→ Λ2n−k

C
V ∗
C

has the property that

If ω ∈ Λp,qV ∗ then ⋆ω ∈ Λn−q,n−pV ∗

PROOF. Any element of V ∗ can be written as a linear combination of elements of the form e1 ∧
· · ·∧ep∧ f 1∧· · ·∧ f q where {e1, . . . , en} is an orthonormal basis for V1,0, { f1, . . . , fn} is an orthonormal

basis for V0,1, and {e1, . . . , en} and { f 1, . . . , f n} are the corresponding dual bases. Proposition 2.2.3

then shows that {e1, . . . , en, f1, . . . , fn} is an orthonormal basis for VC, so it follows from Corollary

2.1.6 (continuing to suppress the restriction isomorphism r from the notation) that, for some α ∈ S1,

⋆(e1 ∧ · · · ∧ ep ∧ f 1 ∧ · · · ∧ f q) = α〈·, ēp+1〉 ∧ · · · ∧ 〈·, ēn〉 ∧ 〈·, f̄q+1〉 ∧ · · · ∧ 〈·, f̄n〉.

Now each ē j ∈ V0,1, so by Proposition 2.2.3 〈·, ē j〉 vanishes on V1,0, i.e. belongs to V 0,1. Likewise

each f̄ j ∈ V1,0, so each 〈·, f̄ j〉 ∈ V 1,0. Thus the right-hand side above is a wedge product of n − p

elements of V 0,1 and n− q elements of V 1,0, so it belongs to Λn−q,n−pV ∗. �

If dim V = 2n, the formula (44) motivates consideration of the bilinear pairing

Λ
k
C

V ∗
C
×Λk
C

V ∗
C
→ Λ2n

C
V ∗
C

(α,β) 7→ α∧ ⋆β̄

According to (49),(50), and Proposition 2.2.4, if α ∈ Λp,k−pV ∗ and β ∈ Λr,k−r V ∗ we have ⋆β̄ ∈
Λ

n−r,n−k+r V ∗ and hence α ∧ ⋆β̄ ∈ Λn+p−r,n+r−pV ∗. But since dim V = 2n we have Λn+ j,n− jV ∗ = {0}
unless j = 0, so:

COROLLARY 2.2.5. If α ∈ Λp,k−pV ∗ and β ∈ Λr,k−r V ∗ then α∧ ⋆β̄ = 0 unless p = r.

In other words, the decomposition Λk
C

V ∗
C
= ⊕p+q=kΛ

p,qV ∗ is an orthogonal decomposition with

respect to the pairing (α,β) 7→ α∧ ⋆(β̄).

2.3. Almost complex and complex manifolds

The linear algebra constructions of the previous section can be made differential-geometric by

imposing them on the tangent spaces at each point on a manifold.

DEFINITION 2.3.1. Let M be a smooth manifold.
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• An almost complex structure J on M is a smoothly-varying1 choice, for each m ∈ M , of a

complex structure Jm : TmM → TmM on the real vector space TmM . In this case the pair

(M , J) is called an almost complex manifold

• An almost Hermitian structure on M consists of an almost complex structure J on M

and a Riemannian metric g on M such that, for each m ∈ M and v, w ∈ TmM we have

gm(Jmv, Jmw) = gm(v, w). In this case the triple (M , g, J) is called an almost Hermitian

manifold, and g is said to be compatible with J .

By working locally and then using partitions of unity it is not hard to see that any almost complex

manifold (M , J) admits Riemannian metrics g that are compatible with J . So any almost complex

manifold can, non-canonically, be made into an almost Hermitian manifold.

If (M , J) is an almost complex manifold, then we can form the complexified tangent bundle

(T M)C (with fiber over m given by (TmM)C, and local complex trivializations given by complexifying

the local trivializations for T M—this initial step does not use J), and then we obtain a bundle

endomorphism J of T MC by acting on the fiber over m via the complexified version of Jm. This

leads to a decomposition of subbundles T MC = T1,0M ⊕ T0,1M , with (using Proposition 2.2.2 (iii)

for the second equalities in each line):

T1,0M = {v ∈ (T M)C|J v = iv}= {v − iJ v|v ∈ T M}
T0,1M = {v ∈ (T M)C|J v = −iv}= {v + iJ v|v ∈ T M}

Dually, for any k ∈ N we may consider the complexification Ωk(M)C of the space of k-forms on

M . In view of the restriction isomorphism r from Section 2.1.2, an element ω ∈ Ωk(M)C may be

regarded as a smoothly-varying choice, for every m ∈ M , of an element ωm ∈ Λk
C
(TmM)∗

C
, i.e. as an

alternating complex-multilinear k-form on (TmM)C. Applying the decomposition from Section 2.2

pointwise gives a decomposition

Ω
k(M)C =

⊕

p+q=k

Ω
p,q(M)

where Ωp,q(M) consists of alternating complex-multilinear k-forms which, for each m ∈ M , vanish

on (T1,0M)r
m
× (T1,0M)k−r

m
for all r 6= p.

Suppose now that (M , J , g) is almost Hermitian, and (since Proposition 2.2.2 shows that M

has even dimension) let dim M = 2n. The almost complex structure J induces a smoothly-varying

orientation on the various TmM and hence an orientation on the manifold M ; thus we obtain a

(complexified) Hodge star operator ⋆: Ωk(M)C → Ω2n−k(M)C, and Proposition 2.2.4 shows that ⋆
restricts to Ωp,q(M) as a map ⋆: Ωp,q(M) → Ωn−q,n−p(M). If M is compact, we have a Hermitian

inner product on Ωk(M)C defined by 〈α,β〉 =
´

M α∧ ⋆β̄ . For α ∈ Ωp,k−p(M) and β ∈ Ωr,k−r(M) we

have α∧ ⋆β̄ ∈ Ωn+p−r,n−r+p(M), so it follows that 〈α,β〉= 0 unless p = r. This proves:

PROPOSITION 2.3.2. If (M , J) is an almost complex manifold we have a direct sum decomposition

Ω
k(M)C =

⊕

p+q=k

Ω
p,q(M),

and if (M , J , g) is almost Hermitian then this direct sum decomposition is orthogonal with respect to

the inner product (44) on Ωk(M)C induced by g.

1in the sense that if X is a smooth vector field on M then putting (JX )m = JmXm defines a smooth vector field JX on

M
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The collection of spaces Ωp,q(M) can helpfully be visualized as follows:

Ω
n,n

Ω
n,n−1

Ω
n−1,n

Ω
n,n−2

Ω
n−1,n−1

Ω
n−2,n

. .
. · · · . . .

Ω
n,1 · · · · · Ω

1,n

Ω
n,0

Ω
n−1,1 · · · · · Ω

1,n−1
Ω

0,n

Ω
n−1,0 · · · · · Ω

0,n−1

. . . · · · . .
.

Ω
2,0

Ω
1,1

Ω
0,2

Ω
1,0

Ω
0,1

Ω
0,0

The “height” of Ωp,q in the picture above is the value k = p+q, while the horizontal coordinate

is given by q− p. Complex conjugation restricts as a map Ωp,q → Ωq,p and thus reflects the picture

through the central vertical axis {q− p = 0} while the Hodge star operator Ωp,q → Ωn−q,n−p acts as

reflection through the central horizontal axis {p+ q = n}.
We now turn to differentiation. The space Ω0,0(M) = Ω0(M)C is simply the space of smooth,

complex-valued functions f = f1 + i f2 : M → C where f1, f2 ∈ C∞(M) are real-valued. The dif-

ferentiation operator d : Ω0(M) → Ω1(M) complexifies to an operator d : Ω0,0(M) → Ω1(M)C =

Ω
1,0(M)→ Ω0,1(M), as always by simply requiring d( f1 + i f2) = d f1 + id f2. We can thus uniquely

write

d f = ∂ f + ∂̄ f where∂ f ∈ Ω1,0(M), ∂̄ f ∈ Ω0,1(M).

So we have operators ∂ : Ω0,0(M)→ Ω1,0(M) and ∂̄ : Ω0,0(M)→ Ω0,1(M) with d = ∂ + ∂̄ .

It is often useful to work locally; on some open set U (over which T1,0M and T0,1M admit

trivializations) let us choose local (complexified) vector fields {e1, . . . , en} such that, for each m ∈ U ,

{(e1)m, . . . , (en)m} is a basis for (T1,0M)m. Then the conjugations {(ē1)m, . . . , (ēn)m} likewise form a

basis for each (T0,1M)m, and if {e1, . . . , en, ē1, . . . , ēn} is the corresponding (pointwise) dual basis of

1-forms we will have

(51) ∂ f =
∑

j

(∇e j
f )e j , ∂̄ f =

∑

j

(∇ē j
f )ē j .

One can also produce simple global formulas for ∂ f and ∂̄ f in terms of d f and J : specifically:

∂ f =
1

2
(d f − id f ◦ J), ∂̄ f =

1

2
(d f + id f ◦ J).

Indeed, the right-hand sides above obviously sum to d f , and for v ∈ T M we have

(d f ∓ id f ◦ J)(v ± iJ v) = d f (v)∓ id f (J v)± id f (J v) + d f (J2v) = 0

which in view of Proposition 2.2.2 (iii) shows that the right-hand sides annihilate T0,1M and T1,0M

respectively, and hence belong respectively to Ω1,0(M) and Ω0,1(M). In particular ∂̄ f = 0 if and

only if d f (v) = −id f (J v) for all v ∈ T M , i.e if and only if d f (J v) = id f (v) for all v, which is to say

that, for all m ∈ M , the map (d f )m : TmM → C is complex linear when TmM is made into a complex

vector space using J . Thus the functions f with ∂̄ f = 0 are (under the natural definition) precisely

the holomorphic functions form the almost complex manifold (M , J) to C.
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Now let us consider 1-forms. Suppose thatω ∈ Ω1,0(M), and as above let {e1, . . . , en} be a local

frame for T 1,0M in some open set U , with dual coframe {e1, . . . , en}. We can then write

ω|U =
n∑

j=1

f je
j where f j ∈ Ω0,0(U) = C∞(U ,C)

and so

(52) dω|U =
n∑

j=1

(d f j ∧ e j + f jde j) =

n∑

j=1

∂ f j ∧ e j +

n∑

j=1

∂̄ f j ∧ e j +

n∑

j=1

f jde j .

The first term on the right above evidently lies in Ω2,0(U) and the second term above lies in Ω1,1(U).

However in this level of generality there is not much that we can say about the third term, and in

particular it might have a nontrivial component in Ω2,0(U). Accordingly we now restrict attention to

a context where we can say something, namely where our manifold is complex and not just almost

complex.

DEFINITION 2.3.3. A complex manifold of (complex) dimension n is a smooth manifold M of

(real) dimension 2n equipped with an atlas of coordinate charts {φα : Uα → Cn = R2n} where the

Uα form an open cover of M and all transition functions φβ ◦φ−1
α : φα(Uα ∩ Uβ ) → φβ (Uα ∩ Uβ )

are holomorphic.

Here if U ⊂ Cr is an open subset, a map h: U → Cn is said to be holomorphic if and only if, for

all x ∈ U , the derivative (dh)x (which a priori is a real-linear map from Cr to Cn) is complex-linear.

If your preferred definition of a holomorphic function looks different from this, then you should

check that this is equivalent to your definition.

If M is a complex manifold, it can naturally be viewed as an almost complex manifold in the

following way: for m ∈ M , choose a chart φα : Uα→ Cn from the atlas in Definition 2.3.3 such that

m ∈ Uα, and for v ∈ TmM define Jmv = φ−1
α∗ (iφα∗v). This is independent of the choice of α since for

an alternative choice β the holomorphicity of the transition function says that (letting i denote the

operation of scalar multiplication by i) i◦φβ∗φ−1
α∗ = φβ∗φ

−1
α∗ ◦i and henceφ−1

β∗ ◦i◦φβ∗ = φ−1
α∗ ◦i◦φα∗.

In any coordinate chartφ : U → Cn for a complex manifold, the individual coordinates z1, . . . , zn

of φ define functions z1, . . . , zn : U → C. For j = 1, . . . , n, the very definition of J makes clear that

dz j(J v) = idz j(v) for each v ∈ TmM and m ∈ U (just take the jth component of the equation

φ∗ ◦ J = iφ∗). So {dz1, . . . , dzn} restricts to each m ∈ U as a basis for (T 1,0M)m, and likewise

{dz̄1, . . . , dz̄n} gives a basis for (T 0,1M)m. We now define the complexified vector fields ∂
∂ z j

, ∂
∂ z̄ j

on U by requiring that {dz1, . . . , dzn, dz̄1, . . . , dz̄n} be the dual basis to { ∂∂ z1
, . . . , ∂

∂ zn
, ∂
∂ z̄1

, . . . , ∂
∂ z̄n
}; if

z j = x j + i y j and ∂
∂ x j

, ∂
∂ y j

denote the standard coordinate vector fields for the real coordinate chart

(x1, . . . , xn, y1, . . . , yn), one easily sees that

(53)
∂

∂ z j

=
1

2

�
∂

∂ x j

− i
∂

∂ y j

�
∂

∂ z̄ j

=
1

2

�
∂

∂ x j

+ i
∂

∂ y j

�
.

As a special case of (51), the operators ∂ and ∂̄ on Ω0,0(M) are given locally by

∂ f =

n∑

j=1

∂ f

∂ z j

dz j , ∂̄ f =

n∑

j=1

∂ f

∂ z̄ j

dz̄ j .

The crucial point now is that the one-forms dz j in our coframe are closed (since dz j = d x j + id y j

and d x j and d y j are closed), and so when we compute the exterior derivative of a (1,0)-form as

in (52) the third term in that formula does not appear. More generally, for a tuple I = (i1, . . . , ip)

with i1 < · · · < ip let us write dzI = dzi1
∧ · · · ∧ dzip

and dz̄I = dz̄i1
∧ · · · ∧ dz̄ip

. Each of these forms
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is closed by the Leibniz rule. Then any ω ∈ Ωp,q(M) has restriction to our holomorphic coordinate

chart U given by

ω|U =
∑

#I=p,#J=q

fI J dzI ∧ dz̄J

and so by the Leibniz rule and the fact that each d(dzI) = d(dz̄J ) = 0,

(54) dω|U =
∑

#I=p,#J=q

(∂ fI J )∧ dzI ∧ dz̄J +
∑

#I=p,#J=q

(∂̄ fI J )∧ dzI ∧ dz̄J .

COROLLARY 2.3.4. Let M be an n-dimensional complex manifold. Then there are linear oper-

ators ∂ , ∂̄ on ⊕n
k=0
Ω

k(M)C such that d = ∂ + ∂̄ and such that ∂ restricts to Ωp,q(M) as a map

∂ : Ωp,q(M)→ Ωp+1,q(M), while ∂̄ restricts to Ωp,q(M) as a map ∂̄ : Ωp,q(M)→ Ωp,q+1(M). Moreover

we have identities

∂ 2 = 0, ∂ ∂̄ + ∂̄ ∂ = 0, ∂̄ 2 = 0.

PROOF. In the context of (54), each term (∂ fI J ) ∧ dzI ∧ dz̄J belongs to Ωp+1,q(U), and each

term (∂̄ fI J ) ∧ dzI ∧ dz̄J belongs to Ωp,q+1(U). Since M is covered by coordinate charts U such as

those used in (54), this shows that d(Ωp,q(M)) ⊂ Ωp+1,q(M) ⊕ Ωp,q+1(M). So we can (and must)

simply define ∂ and ∂̄ to be, respectively, the first and second components of d with respect to this

splitting.

To see that the identities at the end of the proposition are satisfied, note that if ω ∈ Ωp,q(M)

then

0= ddω= (∂ + ∂̄ )(∂ω+ ∂̄ ω) = ∂ ∂ω+ (∂ ∂̄ + ∂̄ ∂ )ω+ ∂̄ ∂̄ ω.

Now ∂ ∂ω ∈ Ωp+2,q(M), (∂ ∂̄ + ∂̄ ∂ )ω ∈ Ωp+1,q+1(M), and ∂̄ ∂̄ ω ∈ Ωp,q+2(M), so since these three

spaces are complementary the fact that ddω = 0 implies that all three of ∂ ∂ω, (∂ ∂̄ + ∂̄ ∂ )ω, ∂̄ ∂̄ ω
must be zero. �

We emphasize that if (M , J) were only almost complex we would not be able to conclude that

d(Ω1,0(M)) ⊂ Ω2,0(M)⊕Ω1,1(M). In fact, the famous Newlander-Nirenberg theorem can be phrased

as saying that this latter condition holds if and only if there exists a complex manifold structure on

M with J as its associated almost complex structure.

Since the operator ∂̄ on forms from Corollary 2.3.4 satisfies ∂̄ 2 = 0, we can make the following

definition:

DEFINITION 2.3.5. If M is a complex manifold and p,q ∈ N, the (p,q)-Dolbeault cohomology is

the complex vector space

H
p,q

∂̄
(M) =

ker(∂̄ : Ωp,q(M)→ Ωp,q+1(M))

Im(∂̄ : Ωp,q−1(M)→ Ωp,q(M))
.

The Hodge numbers of a complex manifold (M , J) are the numbers hp,q(M) given by

hp,q(M) = dimC H
p,q

∂̄
(M).

Of course, we could do a similar thing with the operator ∂ , giving groups H
p,q

∂
(M), but this

would not give any new information since it is easy to check that there is an identity ∂ω = ∂̄ ω̄
yielding an isomorphism H

p,q

∂
(M)∼= H

q,p

∂̄
(M).

I will mention in passing that, analogously to the de Rham theorem identifying de Rham co-

homology with (for instance) Čech cohomology with coefficients in the constant sheaf R, there is a

Dolbeault theorem identifying H
p,q

∂̄
(M) with the cohomology Hq(M ,Ω

p

hol
) where Ω

p

hol
is the sheaf of

holomorphic p-forms on M (so local sections are given in our language by (p, 0)-forms ω satisfying

∂̄ ω= 0).
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2.4. The Dolbeault Laplacians

Let M be a compact complex manifold of complex dimension n with associated almost complex

structure J , and suppose moreover that M is equipped with a Riemannian metric g that is compatible

with J . (In this case we call (M , J , g) a Hermitian manifold, dropping the modifier “almost” since J

arises form a genuine complex manifold structure.) By (10) and Proposition 2.1.2, the complexified

exterior derivative d : Ωk(M)C → Ωk+1(M)C has an adjoint d∗ : Ωk+1(M)C → Ωk(M)C with respect

to the inner product 〈α,β〉=
´

M α∧ ⋆β̄ , given by d∗ = − ⋆ d⋆. (The sign is simpler than in previous

formulas because M automatically has even real dimension.) In view of Proposition 2.2.4 and

Corollary 2.3.4, the action of d∗ on any Ωp,q(M) is given by

d∗ = − ⋆ ∂ ⋆− ⋆ ∂̄ ⋆ where − ⋆∂ ⋆: Ωp,q(M)→ Ωp,q−1(M) and − ⋆∂̄ ⋆: Ωp,q(M)→ Ωp−1,q(M).

PROPOSITION 2.4.1. If we set ∂̄ ∗ = − ⋆ ∂ ⋆ and ∂ ∗ = − ⋆ ∂̄ ⋆, then for all α ∈ Ωk−1(M)C and

β ∈ Ωk(M)C we have

〈∂̄ α,β〉= 〈α, ∂̄ ∗β〉 〈∂ α,β〉= 〈α,∂ ∗β〉.
PROOF. We will prove the first equation; the second follows by an identical argument (or just by

complex conjugation of the first). By the sesquilinearity of 〈·, ·〉 it suffices to prove the statements

in the case that α ∈ Ωp,k−1−p(M) and β ∈ Ωr,k−r(M) for some p, r. By Proposition 2.3.2, both

sides of the equation 〈∂̄ α,β〉 = 〈α, ∂̄ ∗β〉 will then automatically be zero if p 6= r. If p = r, note

that ∂ α ∈ Ωp+1,k−1−p(M) is orthogonal to β ∈ Ωp,k−p(M), and likewise ⋆∂̄ ⋆ β ∈ Ωp−1,k−p(M) is

orthogonal to α ∈ Ωp,k−1−p(M). Hence

〈∂̄ α,β〉= 〈dα,β〉= 〈α, d∗β〉= 〈α,− ⋆ ∂ ⋆ β〉,
as desired. �

Motivated by this, we can form the Dolbeault Laplacians

�∂̄ = ∂̄
∗∂̄ + ∂̄ ∂̄ ∗, �∂ = ∂

∗∂ + ∂ ∂ ∗.

By construction, each ∂̄ ∗ restricts as a map Ωp,q+1(M) → Ωp,q(M) and each ∂ restricts as a map

Ω
p+1,q(M)→ Ωp,q(M), so �∂̄ and �∂ both restrict as endomorphisms of Ωp,q(M).

Just as with the original Hodge Laplacian, the calculation

〈�∂̄α,α〉= 〈∂̄ ∗∂̄ α,α〉+ 〈∂̄ ∂̄ ∗α, 〉= 〈∂̄ α, ∂̄ α〉+ 〈∂̄ ∗α, ∂̄ ∗α〉
implies that ker(�∂̄ ) = ker(∂̄ )∩ ker(∂̄ ∗). In particular if α ∈ Ωp,q(M) lies in ker(�∂̄ ) then α deter-

mines a class [α] in the Dolbeault cohomology H
p,q

∂̄
(M) = ker(∂̄ )/ Im(∂̄ ), and the complex version

of the Hodge theorem asserts that this is an isomorphism. The proof of this will rely on much the

same analysis as that of the ordinary Hodge Laplacian ∆, as we will establish that �∂̄ is a very sim-

ilar operator to ∆, and indeed is simply directly proportional to (the complexification of) ∆ under

an additional assumption on the metric. Explaining this will require the following digression.

2.4.1. The fundamental 2-form and the Kähler condition.

DEFINITION 2.4.2. The fundamental 2-form of a Hermitian manifold (M , J , g) is the element

ω ∈ Ω2(M) defined by

ω(v, w) = g(J v, w).

(Note that ω is indeed alternating, since the J -compatibility and symmetry of g show that

ω(w, v) = g(JJw, J v) = −g(w, J v) = −ω(v, w).) Of course Ω2(M) sits inside its complexification

Ω
2(M)C, all elements of which extend (via the restriction isomorphisms Λ2

C
T ∗

m
MC
∼= (Λ2T ∗

m
M)C)

uniquely to complex-bilinear alternating 2-forms on each of the complexified tangent spaces TmMC;
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we will continue to denote this complexified form by ω. Denoting by 〈·, ·〉 the Hermitian inner

products on the TmMC induced by the Riemannian metric g together with (43), we evidently have

ω(v, w) = 〈J v, w̄〉 for v, w ∈ TmMC.

So it follows that if U is an open set and {e1, . . . , en} is an orthonormal frame of vector fields for

T1,0M |U (i.e., for each m ∈ U {(e1)m, . . . , (en)m} is an orthonormal basis for (T1,0M)m with respect

to 〈·, ·〉), with dual coframe {e1, . . . , en}, then

(55) ω|U = i

n∑

j=1

e j ∧ ē j .

In particular ω ∈ Ω1,1(U). For an alternative description, if (z1, . . . , zn): U → Cn is a local holo-

morphic coordinate chart for (M , J) and if we define functions h jk : U → C by h jk =
¬
∂
∂ z j

, ∂
∂ zk

¶
(so

hk j = h̄ jk) then

(56) ω|U = i
∑

j,k

h jkdz j ∧ dz̄k.

(Elsewhere in the literature you may see a similar formula but with i
2 in place of i; the explanation

is that our h jk is one-half of what many authors use: if g is the standard Euclidean metric on Cn

our definition gives h jk =
1
2δ jk.)

DEFINITION 2.4.3. A Hermitian manifold (M , J , g) is said to be a Kähler manifold if its associ-

ated fundamental 2-form ω satisfies dω= 0.

As mentioned in the footnote in Section 1.2.1, a general construction in Riemannian geometry

(“exponential coordinates”) allows one to choose a coordinate chart around any point in terms of

which the Riemannian metric agrees with the standard Euclidean metric up to second order near

the chosen point. If the Riemannian manifold also carries a complex structure, this construction

cannot always be made compatible with that structure. One interpretation of the Kähler criterion

is that it is precisely what is required for such “complex exponential coordinates” to exist.

PROPOSITION 2.4.4. A Hermitian manifold (M , J , g) is Kähler if and only if for each point m ∈ M

there is a holomorphic coordinate chart φ = (z1, . . . , zn): U → Cn for M such that φ(m) = ~0 and a

constant C such that, for each j, k ∈ {1, . . . , n} and x ∈ U,
����
�
∂

∂ z j

,
∂

∂ zk

�

x

− 1

2
δ jk

����≤ C‖φ(x)‖2.

PROOF. Throughout the proof we denote h jk(x) =
¬
∂
∂ z j

, ∂
∂ zk

¶
x

for any given local holomorphic

chart (z1, . . . , zn): U → Cn for M . The reverse implication is straightforward: its hypothesis implies

that for any m ∈ M we can find a local holomorphic chart for which (dh jk)m = 0, and so differ-

entiating (56) shows that the fundamental 2-form ω satisfies (dω)m = 0. But m is arbitrary, so

dω= 0.

Conversely suppose that dω = 0. By postcomposing an arbitrary coordinate chart with a suit-

able complex-linear map (namely the basis change matrix corresponding to applying the Gram-

Schmidt process to the basis { ∂∂ z j
} for T1,0Mm associated to an initial coordinate chart), we can find

a local holomorphic chart (z1, . . . , zn): U → Cn mapping m to ~0 for which h jk(m) =
1
2δ jk. Our task

then is to modify this to a different local coordinate chart that additionally has the property that
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(dh jk)m = 0. We will take the coordinates of this chart to be given by

(57) w j = z j +
∑

kl

a jklzkzl

for some complex numbers a jkl to be determined; any such choice will evidently have (dw j)m =

(dz j)m and hence 〈 ∂∂ w j
, ∂
∂ wk
〉m = 1

2δ jk. The chart will have the desired property provided that

i

2

n∑

j=1

dw j ∧ dw̄ j =
∑

j,k

�
h jk +O(‖~z‖2)

�
dz j ∧ dz̄k,

where we use the standard notation O(‖~z‖2) for a generic quantity that is bounded above by a

constant times
∑

j |z j |2 (indeed, one has 〈 ∂∂ w j
, ∂
∂ wk
〉 = ω(−i ∂

∂ w j
, ∂
∂ w̄k
) and by (56) the indicated

condition implies that ω(−i ∂
∂ w j

, ∂
∂ w̄k
) = 1

2δ jk +O(‖~z‖2) = 1
2δ jk +O(‖~w‖2)).

Now for w j as in (57), one finds

i

2

∑

j

dw j ∧ dw̄ j =
∑

j,k

�
1

2
δ j,k +

∑

l

(akl j + ak jl)zl +
∑

l

(ā jlk + ā jkl)z̄l

�
dz j ∧ dz̄k.

So the desired property holds provided that

∂ h jk

∂ zl

= akl j + ak jl

∂ h jk

∂ z̄l

= ā jlk + ā jkl for all j, k, l;

in fact the second set of equations follows from the first by complex conjugation since h jk = h̄k j .

So we just need to check that we can choose complex numbers a jkl such that
∂ h jk

∂ zl
= akl j + ak jl ; the

relevant obstruction here is that this would require
∂ h jk

∂ zl
to be equal to

∂ hlk

∂ z j
. But

∂ h jk

∂ zl
− ∂ hlk

∂ z j
is the

coefficient of dzl∧dz j∧dz̄k in dω, so the assumption that (M , J , g) is Kähler implies that
∂ h jk

∂ zl
=
∂ hlk

∂ z j
.

So we can satisfy the requirement by setting ak jl =
1
2

∂ h jk

∂ zl
= 1

2

∂ hlk

∂ z j
and defining the w j as in (57). �

COROLLARY 2.4.5. Let (M , J , g) be a Kähler manifold. Then for any m ∈ M there is a neighborhood

U of m and an orthonormal frame of vector fields {e1, . . . , en} for T1,0M |U such that the dual coframe

{e1, . . . , en} satisfies (de j)m = 0 for each j.

PROOF. Let (z1, . . . , zn): U → Cn be a coordinate chart as in Proposition 2.4.4 and apply the

Gram-Schmidt process pointwise to the frame { ∂∂ z1
, . . . ∂

∂ zn
} to obtain {e1, . . . , en}. The fact that

〈 ∂∂ z j
, ∂
∂ zk
〉 = 1

2δ jk is easily seen to imply that, for each j, e j =
p

2 ∂
∂ z j
+O(‖~z‖2), and hence also that

e j = dz j +O(‖~z‖2). But then (since the coordinate chart maps m to the origin) (de j)m = (ddz j)m =

0. �

2.4.2. Interior and exterior products. Here are two simple types of operations on the (com-

plex, for definiteness) exterior algebra of a vector space:

DEFINITION 2.4.6. Let W be a vector space over C, let v ∈W , and let α ∈W ∗. We define:

• The interior product with v to be the operation ιv : Λk
C

W ∗→ Λk−1
C

W ∗ given by

(ιvθ )(w1, . . . , wk−1) = θ (v, w1, . . . , wk−1).

• The exterior product with α to be the operation εα : Λk
C

W ∗→ Λk+1
C

W ∗ given by

εαθ = α∧ θ .
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PROPOSITION 2.4.7. Let {v1, . . . , vm} be a basis for the complex vector space W, with dual basis

{v1, . . . , vm}. Then

εv j ιvk
+ ιvk

εv j =

§
I j = k

0 j 6= k.

PROOF. For L = (l1, . . . , lr) let us write vL = v l1 ∧ · · · ∧ v lr . It suffices to consider the action of

εv j ιvk
+ ιvk

εv j on elements of the form vL or vk ∧ vL where we always assume that k /∈ {l1, . . . , lr}.
We have ιvk

vL = 0, while ιvk
(vk ∧ vL) = vL . For j 6= k we see that

(εv j ιvk
+ ιvk

εv j )(vL) = 0+ 0= 0,

while

(εv j ιvk
+ ιvk

εv j )(vk ∧ vL) = v j ∧ vL + ιvk
(v j ∧ vk ∧ vL) = v j ∧ vL − v j ∧ vL = 0.

Meanwhile

(εvk ιvk
+ ιvk

εvk)(vL) = 0+ ιvk
(vk ∧ vL) = vL

and

(εvk ιvk
+ ιvk

εvk)(vk ∧ vL) = vk ∧ vL + 0

so εvk ιvk
+ ιvk

εvk is the identity. �

Now let us assume that our complex vector space W is the complexification W = VC of an

oriented real inner product space (V, (·, ·),o), so that we have an induced Hermitian inner product

〈·, ·〉 on W and a complexified Hodge star operator ⋆: Λk
C

W ∗→ Λm−k
C

W ∗.

PROPOSITION 2.4.8. For each v ∈ VC we have ⋆ ◦ ιv = (−1)k−1ε〈·,v̄〉 ◦ ⋆ as maps defined on Λk
C

V ∗
C

.

PROOF. Both sides are complex linear in v, and both of the maps are linear, so it suffices to

consider the effects of the maps on wedge products v1 ∧ · · · ∧ vk where the v j are the dual basis

elements to an orthonormal basis {v1, . . . , vm} having v1 ∧ · · · ∧ vm = ω
C

V
, and where v is equal to

either v1 or to vk+1.

If v = vk+1, then ιv(v
1 ∧ · · · ∧ vk) = 0 while

⋆(v1 ∧ · · · ∧ vk) = 〈·, v̄〉 ∧ · · · ∧ 〈·, v̄m〉
and hence ε〈·,v̄〉(⋆(v

1 ∧ · · · ∧ vk)) = 0. So in this case both maps in the proposition evaluate as zero

on our element.

If v = v1, then

⋆ ◦ ιv(v1 ∧ · · · ∧ vk) = ⋆(v2 ∧ · · · ∧ vk)

= (−1)k−1〈·, v̄1〉 ∧ 〈·, v̄k+1〉 ∧ · · · 〈·, v̄m〉
= (−1)k−1ε〈·,v̄〉 ⋆ (v

1 ∧ · · · ∧ vk).

Here in the second equality we have used Corollary 2.1.6 and the fact that

v2 ∧ · · · ∧ vk ∧ v1 ∧ vk+1 ∧ · · · ∧ vm = (−1)k−1v1 ∧ · · · ∧ vm = (−1)k−1ωC
V

.

�

COROLLARY 2.4.9. If (V, (·, ·),o) is an even-dimensional oriented inner product space and if {v1, . . . , vm}
is an orthonormal basis for VC with dual basis {v1, . . . , vm}, then

⋆εv1⋆= ιv̄1
.

PROOF. Applying the preceding proposition with v = v̄1 (and hence 〈·, v̄〉 = v1) gives εv1⋆ =

(−1)k−1 ⋆ιv̄1
as functions on Λk

C
V ∗
C

. So since (using the even-dimensionality of V ) ⋆⋆ acts as (−1)k−1

on Λk−1
C

V ∗
C

, the result follows by applying ⋆ to both sides. �
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2.4.3. The Kähler identities. As we will see in this section, the Kähler condition on a Her-

mitian manifold (M , J , g) leads to certain surprising identities involving the fundamental 2-form ω

and the operators ∂ ,∂ ∗, ∂̄ , ∂̄ ∗; we will also see that in the non-Kähler case these identities still hold

“modulo lower-order terms.”

For the next several paragraphs, assume that we have an open subset U ⊂ M and an orthonor-

mal frame {e1, . . . , en} for T1,0M |U ; thus ω|U = i
∑

j e j ∧ ē j . For m ∈ U , we will say that this frame

is adapted at m if (de j)m = 0 for all j. So Corollary 2.4.5 asserts that, if M is Kähler, then for each

m ∈ M there exists a neighborhood U of m and an orthonormal frame for T1,0M |U which is adapted

at m.

We will write eI = ei1 ∧ · · · ∧ eip and ēJ = ē j1 ∧ · · · ∧ ē jq for tuples I = (i1, . . . , ip), J = ( j1, . . . , jq).

Here is a seemingly technical but hopefully conceptually-simple definition.

DEFINITION 2.4.10. For any natural numbers k, l, a zeroth-order operator T : Ωk(U)C→ Ωl(U)C
is a linear map for which there exist smooth functions pI JK L on U such that T is given by the formula

T

�∑

I ,J

fI J eI ∧ ēJ

�
=
∑

I ,J ,K ,L

pI JK L fI J eK ∧ ēL .

For m ∈ U , we say that a zeroth-order operator T vanishes at m if the functions pI JK L all obey

pI JK L(m) = 0 (or equivalently, if (Tα)m = 0 for all α ∈ Ωk(U)C).

Similarly, a first-order operator T : Ωk(U)C → Ωl(U)C is a linear map for which there exist

smooth functions pI JK L ,qI JK L,r , q̃I JK L,r on U such that T is given by the formula

T

�∑

I ,J

fI J eI ∧ ēJ

�
=
∑

I ,J ,K ,L

�
qI JK L,r∇er

fI J + q̃I JK L,r∇ēr
fI J + pI ,J ,K ,L fI J

�
eK ∧ ēL .

For j = 1, . . . , n let us define operators ∂ j , ∂̄ j : Ω
k(U)C→ Ωk(U)C by:

∂ j

�∑

I ,J

fI J eI ∧ ēJ

�
=
∑

I ,J

(∇e j
fI J )e

I ∧ ēJ , ∂̄ j

�∑

I ,J

fI J eI ∧ ēJ

�
=
∑

I ,J

(∇ē j
fI J )e

I ∧ ēJ .

So both ∂ j and ∂̄ j are first-order operators. Note also that

∂ ( f eI ∧ ēJ ) =
∑

j

∂ j(εe j ( f eI ∧ ēJ )) + f ∂ (eI ∧ ēJ ),

and similarly for ∂̄ . Hence ∂ −
∑

j ∂ j ◦ εe j and ∂̄ −
∑

j ∂̄ j ◦ εē j are zeroth order operators, and these

operators vanish at m if the frame {e1, . . . , en} is adapted at m.

Note that the operators ∂ j commute with any operator that both is linear over C∞(M ,C) and

sends each eI ∧ ēJ to ceK ∧ ēL for some c ∈ C and multi-indices K , L. Such operators include the

Hodge star operator (by Corollary 2.1.6, since 〈·, ēi〉 = ēi and 〈·, ei〉 = ei) and also the exterior

products εe j
,εē j

and the interior products ιe j
, ιē j

. From this we can quickly observe:

PROPOSITION 2.4.11. The operators ∂̄ ∗ : Ωp,q(U)→ Ωp,q−1(U) and ∂ ∗ : Ωp,q(U)→ Ωp−1,q(U) are

given by

∂̄ ∗ = −
∑

j

(∂ j ◦ ιē j
) + T, ∂ ∗ = −

∑

j

∂̄ j ◦ ιe j
+ T ′

where T and T ′ are zeroth-order operators. Moreover T and T ′ both vanish at m if the frame {e1, . . . , en}
is adapted at m.
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PROOF. We have ∂̄ ∗ = − ⋆ ∂ ⋆, and we have shown above that ∂ differs from
∑

j ∂ j ◦ εe j by a

zeroth order operator. So the result for ∂̄ ∗ follows directly from the facts that ⋆∂ j = ∂ j⋆ and that,

by Corollary 2.4.9, ⋆ ◦ εe j ◦ ⋆= ιē j
. The argument for ∂ ∗ = − ⋆ ∂̄ ⋆ is identical. �

THEOREM 2.4.12 (Kähler identities). Define an operator L : Ωk(U)C → Ωk+2(U)C by L(α) =

ω∧α. Then

L∂̄ ∗ − ∂̄ ∗L = −i∂ − S L∂ ∗ − ∂ ∗L = i∂̄ − S′

where S,S′ are zeroth-order operators. Moreover if (M , J , g) is Kähler then S = S′ = 0.

PROOF. By (55) we have L = i
∑

k εek ◦ εēk , which in particular implies that L commutes with

the operators ∂ j , ∂̄ j . Let T, T ′ be the zeroth-order operators from Proposition 2.4.11. We then have,

using Proposition 2.4.7 in the second and third equalities:

L ◦ (∂̄ ∗ − T )− (∂̄ ∗ − T ) ◦ L = −i

 ∑

j,k

�
εek
εēk
∂ jιē j
− ∂ jιē j

εek
εēk

�
!
= −i

∑

j,k

∂ j ◦
�
εek
εēk
ιē j
+ εek

ιē j
εēk

�

= −i
∑

j,k

∂ jεek
δ jk I = −i

∑

j

∂ jεe j

(where δ jk is the Kronecker symbol). This right-hand side differs from −i∂ by a zeroth-order op-

erator which vanishes at m if our frame is adapted at m. So since −LT + T L is likewise a zeroth

order operator which vanishes at m if our frame is adapted at m, this proves that the difference

S = −i∂ ∗ − (L∂̄ ∗ − ∂̄ ∗L) is zeroth-order operator which vanishes at m if our frame is adapted at m.

To see that S = 0 if (M , J , g) is Kähler, we have shown that, for any α ∈ Ωk(U)C and any m ∈ U

we have (L∂̄ ∗α− ∂̄ ∗Lα)m = (−i∂ α)m+(Sα)m, and moreover if we choose a frame which is adapted

at m (as is possible by Corollary 2.4.5) then (Sα)m = 0. But the terms (L∂̄ ∗α−∂̄ ∗Lα)m and (−i∂ α)m
are independent of which frame we choose, and so by choosing an adapted frame we learn that in

fact (L∂̄ ∗α− ∂̄ ∗Lα)m = (−i∂ α)m. This holds for all m, so indeed L∂̄ ∗ − ∂̄ ∗α = −i∂ in the Kähler

case.

This completes the proof of the statements concerning the operators ∂̄ ∗ and S; the statements

concerning ∂ ∗ and S′ may be proven either by an identical argument or by taking the complex

conjugate of the identities that we have already proven. �

We can now work more globally. Let us say that a C-linear map T : Ωk(M)C → Ωl(M)C is

a zeroth-order operator (resp. a first-order operator) if there is a cover of M by open sets U

equipped with local orthonormal frames for T1,0M |U such that whenever supp(α) ⊂ U we also have

supp(Tα) ⊂ U , and such that there is a zeroth-order (resp. first-order) operator TU : Ωk(U)C →
Ω

l(U)C such that (Tα)|U = TUα whenever supp(α) ⊂ U . (In other words, a first-order operator is

one which is locally given by the action of a first-order partial differential operator on the coefficient

functions of a k-form, and likewise for a zeroth-order operator.) It is easy to see that the compo-

sition of two zeroth-order operators is a zeroth-order operator, and likewise the composition of a

first-order operator and a zeroth-order operator (in either order) is a first-order operator. Note that

in our convention a zeroth-order operator is a special case of a first-order operator (so perhaps we

should say “at most first-order” instead of “first-order”). Theorem 2.4.12 then immediately implies:

COROLLARY 2.4.13. Defining L : Ωk(M)C → Ωk+2(M)C we have ∂ = i(L∂̄ ∗ − ∂̄ ∗L) + S and ∂̄ =
−i(L∂ ∗ − ∂ ∗L) + S′ where S,S′ are zeroth-order operators. If (M , J , g) is Kähler then S = S′ = 0.

Recall our Laplacians

∆C = d∗d + dd∗, �∂̄ = ∂̄
∗∂̄ + ∂̄ ∂̄ ∗, �∂ = ∂

∗∂ + ∂ ∂ ∗.
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The Kähler identities show that these operators are closely related:

THEOREM 2.4.14. If (M , J , g) is a Hermitian manifold, there are first-order operators T, T ′ such

that

�∂̄ =
1

2
∆C + T and �∂ =

1

2
∆C + T ′.

Moreover if (M , J , g) is Kähler then T = T ′ = 0 and so �∂̄ = �∂ =
1
2∆C.

PROOF. With notation as in Corollary 2.4.13, we have:

�∂̄ = ∂̄
∗∂̄ + ∂̄ ∂̄ ∗ = −i

�
∂̄ ∗(L∂ ∗ − ∂ ∗L) + (L∂ ∗ − ∂ ∗L)∂̄ ∗

�
+ (∂̄ ∗S′ + S′∂̄ ∗)

= i
�
∂̄ ∗∂ ∗L − ∂̄ ∗L∂ ∗ + ∂ ∗L∂̄ ∗ − L∂ ∗∂̄ ∗

�
+ (∂̄ ∗S′ + S′∂̄ ∗).

Similarly

�∂ = ∂
∗∂ + ∂ ∂ ∗ = i

�
∂ ∗(L∂̄ ∗ − ∂̄ ∗L) + (L∂̄ ∗ − ∂̄ ∗L)∂ ∗

�
+ (∂ ∗S + S∂ ∗)

= i
�
−∂ ∗∂̄ ∗L − ∂̄ ∗L∂ ∗ + ∂ ∗L∂̄ ∗ + L∂̄ ∗∂ ∗

�
+ (∂ ∗S + S∂ ∗).

Now the fact that ∂ ∂̄ + ∂̄ ∂ = 0 implies that ∂̄ ∗∂ ∗ = −∂ ∗∂̄ ∗, so the expressions multiplying i in the

above formulas for �∂ ,�∂̄ are equal to each other. Thus:

�∂̄ −�∂ = (∂̄ ∗S′ + S′∂̄ ∗)− (∂ ∗S + S∂ ∗) is a first-order operator, and �∂̄ = �∂ if (M , J , g) is Kähler.

To compare �∂ and �∂̄ to ∆C, note that

∆C = (∂ + ∂̄ )
∗(∂ + ∂̄ ) + (∂ + ∂̄ )(∂ + ∂̄ )∗

= �∂ +�∂̄ + (∂
∗∂̄ + ∂̄ ∂ ∗) + (∂̄ ∗∂ + ∂ ∂̄ ∗).

Now using Corollary 2.4.13 again,

∂ ∗∂̄ + ∂̄ ∂ ∗ = −i (∂ ∗(L∂ ∗ − ∂ ∗L) + (L∂ ∗ − ∂ ∗L)∂ ∗) + (∂ ∗S′ + S′∂ ∗)

= ∂ ∗S′ + S′∂ ∗

since ∂ ∗∂ ∗ = 0. So ∂ ∗∂̄ + ∂̄ ∂ ∗ is a first-order operator, and is zero in the Kähler case. An essentially

identical calculation shows that ∂̄ ∗∂ +∂ ∂̄ ∗ is a first-order operator that vanishes in the Kähler case.

Thus ∆C − �∂̄ − �∂ is a first-order operator that vanishes in the case that (M , J , g) is Kähler.

Together with the fact that �∂̄ −�∂ is a first-order operator that vanishes in the case that (M , J , g)

is Kähler this proves the result. �

2.5. The complex Hodge Theorem

Theorem 2.4.14 allows us to prove statements for the Dolbeault Laplacians �∂ and �∂̄ along

exactly the same lines as we proved them for the Hodge Laplacian ∆, leading to versions of the

Hodge theorem for �∂ and �∂̄ . We now proceed through the relevant arguments; the basic point

here is that the precise nature of the first order part of ∆ was irrelevant to our proof of Theorem

1.1.12. The fact that 2�∂̄ and 2�∂ each differ from ther complexification ∆C of ∆ by first-order

operators implies that, for any θ ∈ Ωk(U)C, either of the equations 2�∂α = θ or 2�∂̄α = θ may

be written in local coordinates in the form (36). So if we define a weak solution to �∂̄α = θ to

be a class-W 1,2 complexified form α satisfying 〈∂̄ α, ∂̄ η〉+ 〈∂̄ ∗α, ∂̄ ∗η〉 = 〈θ ,η〉 for all η, it follows

exactly as in Theorem 1.6.6 that, if θ is of class W m,2, then any weak solution to �∂̄α= θ is of class

W m+2,2. A similar statement applies to solutions to �∂α= θ .

If one now defines B∂̄ (α,β) = 〈∂̄ α, ∂̄ β〉 + 〈∂̄ ∗α, ∂̄ ∗β〉, just as in Lemma 1.6.7 we obtain a

bound B∂̄ (α,α) ≥ A1‖α‖1,2 − A2〈α,α〉 where A1,A2 > 0, in view of which setting Bλ
∂̄
(α,β) =

B∂̄ (α,β) + λ〈α,β〉 for any λ ≥ A2 defines an inner product on W 1,2(Ωp,q(M)) which is uniformly
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equivalent to the usual inner product. So just as in Corollary 1.6.10 the (complex version of the)

Riesz Representation theorem gives, for any θ ∈ L2(Ωp,q(M)), a unique solutionαθ ∈W 1,2(Ωp,q(M))

to the equation Bλ
∂̄
(αθ , ·) = 〈θ , ·〉. As in (41), if we set Kθ = λαθ then K : L2(Ωp,q(M)) →

L2(Ωp,q(M)) is a compact, self-adjoint operator such that Kθ is a weak solution to the equation

�∂̄ (Kθ ) = λ(θ − Kθ ). Consequently Im(I − K) ⊂ Im(�∂̄ : W 2,2(Ωp,q(M)) → L2(Ωp,q(M))) and

ker(I − K) = ker(�∂̄ : W 2,2(Ωp,q(M))→ L2(Ωp,q(M))).

So Proposition 1.6.13 shows that ker(�∂̄ : W 2,2(Ωp,q(M))→ L2(Ωp,q(M))) is finite-dimensional

and that its L2-orthogonal complement is contained in Im(�∂̄ : W 2,2(Ωp,q(M)) → L2(Ωp,q(M)).

Hence for any (smooth) element θ ∈ Ωp,q(M) which is L2-orthogonal to ker(�∂̄ : Ωp,q(M) →
Ω

p,q(M)) there is a class-W 2,2 solution α to �∂̄α = θ . But as noted earlier such a solution must

be of class W m+2,2 for all m and hence is smooth. Thus, analogously to Theorem 1.1.12:

THEOREM 2.5.1. If (M , J , g) is a compact Hermitian manifold then for any p,q let H p,q

∂̄
(M) =

ker(�∂̄ : Ωp,q(M)→ Ωp,q(M)). ThenH p,q

∂̄
(M) is finite-dimensional, and

H p,q

∂̄
(M)⊥ ⊂ Im(�∂̄ : Ωp,q(M)→ Ωp,q(M)).

As with Theorem 1.1.12 the reverse inequality is trivial: if α ∈ Ωp,q(M) and θ ∈ ker(�∂ ) then

〈�∂̄α,φ〉 = 〈α,�∂̄φ〉 = 0. One can then deduce the analogue of Theorem 1.1.10 along exactly the

same lines as was done in Section 1.1.4: elements φ of H p,q

∂̄
(M) obey 〈∂̄ φ, ∂̄ φ〉+ 〈∂̄ ∗φ, ∂̄ ∗φ〉 =

〈(∂̄ ∗∂̄ + ∂̄ ∂̄ ∗)φ,φ〉= 0 and hence ∂̄ φ = ∂̄ ∗φ = 0, so we obtain

Im(∂̄ )⊕ Im(∂̄ ∗) ⊂H p,q

∂̄
(M)⊥ = Im(∂̄ ∗∂̄ + ∂̄ ∂̄ ∗) ⊂ Im(∂̄ )⊕ Im(∂̄ ∗),

so H p,q

∂̄
(M)⊥ = Im(∂̄ )⊕ Im(∂̄ ∗) and we have an orthogonal direct sum decomposition Ωp,q(M) =

H p,q

∂̄
(M)⊕ Im(∂̄ )⊕ Im(∂̄ ∗), with ker(∂̄ ) =H p,q

∂̄
(M)⊕ Im(∂̄ ). Hence:

THEOREM 2.5.2 (∂̄ version of the Hodge theorem). Let (M , J , g) be a compact Hermitian mani-

fold. Then the map

H p,q

∂̄
(M)→ H

p,q

∂̄
(M) =

ker(∂̄ : Ωp,q(M)→ Ωp,q+1(M))

Im(∂̄ : Ωp,q−1(M)→ Ωp,q(M)

α 7→ [α]

is an isomorphism. In particular H
p,q

∂̄
(M) is finite-dimensional.

Of course, the exact same arguments show that we likewise have an isomorphism between

H p,q

∂
(M) = ker(�∂ ) and H

p,q

∂
(M) = ker∂

Im∂ .

One consequence of this is an analogue of Poincaré duality which is a special case of Serre dual-

ity from algebraic geometry. Recall that complex conjugation gives a conjugate linear isomorphism

from H
p,q

∂̄
(M) to H

q,p

∂
(M). Meanwhile, recalling that ∂ ∗ = − ⋆ ∂̄ ⋆ and ∂̄ ∗ = − ⋆ ∂ ⋆, one sees that

�∂̄ = −(⋆∂ ⋆ ∂̄ + ∂̄ ⋆ ∂ ⋆), �∂ = −(⋆∂̄ ⋆ ∂ + ∂ ⋆ ∂̄ ⋆).

From this one finds that �∂ (⋆α) = ⋆(�∂̄α) for any α (since ⋆⋆ acts on k-forms as (−1)k on our

complex—and hence even-real-dimensional—manifold). Thus ⋆ defines an isomorphism H
p,q

∂̄
(M)→

H
n−q,n−p

∂
(M). Combined with the conjugation isomorphism mentioned earlier we obtain:

COROLLARY 2.5.3 (Serre duality). If (M , J) is a compact complex manifold there is a conjugate-

linear isomorphism H
p,q

∂̄
(M)∼= H

n−p,n−q

∂̄
(M).
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Theorem 2.5.2 and Corollary 2.5.3 hold regardless of whether the compact Hermitian manifold

(M , J , g) is Kähler; however in the Kähler case matters simplify significantly and we obtain other

interesting results. For the rest of this section assume that (M , J , g) is a compact Kähler manifold.

We then have ∆C = 2�∂ = 2�∂̄ , so taking the kernels of these operators gives (for k = p+ q),

(58) H k(M)C ∩Ωp,q(M) =H p,q

∂
(M) =H p,q

∂̄
(M) if (M , J , g) is Kähler.

So Theorem 2.5.2 and its analogue for H
p,q

∂
give an isomorphisms H

p,q

∂̄
(M) ∼= H

p,q

∂
(M). Together

with the conjugate-linear isomorphism H
p,q

∂̄
(M)→ H

q,p

∂
(M) and the Serre duality isomorphism of

Corollary 2.5.3, this shows that the Hodge numbers of Definition 2.3.5 satisfy a four-fold symmetry

hp,q(M) = hq,p(M) = hn−p,n−q(M) = hn−q,n−p(M) if (M , J , g) is Kähler.

More interestingly, in the Kähler case there is a very straightforward relation between the Dolbeault

and de Rham cohomologies.2 Indeed, the fact that ∆C = 2�∂̄ shows that the map ∆C : Ωk(M)C→
Ω

k(M)C restricts, for any p,q with p + q = k, to a map ∆C : Ωp,q(M)→ Ωp,q(M). In view of this,

the decomposition Ωk(M)C = ⊕p+q=kΩ
p,q(M) yields a decomposition

ker(∆C : Ωk(M)C→ Ωk(M)C) =
⊕

p+q=k

H k(M)C ∩Ωp,q(M),

and so by (58), Proposition 2.1.3, and Theorem 2.5.2 we obtain:

THEOREM 2.5.4. If (M , J , g) is a compact Kähler manifold there is an isomorphism

Hk(M ;C) =
⊕

p+q=k

H
p,q

∂̄
(M).

Thus the Betti numbers bk of M are related to the Hodge numbers by

bk(M) =
∑

p+q=k

hp,q(M) if (M , J , g) is Kähler.

COROLLARY 2.5.5. If (M , J , g) is a compact Kähler manifold then, the odd-degree Betti numbers

b2 j+1(M) of M are even.

PROOF. Recalling the conjugation symmetry hp,q = hq,p, we see that

b2 j+1(M) =

2 j+1∑

p=0

hp,2 j+1−p(M) =

j∑

p=0

(hp,2 j+1−p(M) + h2 j+1−p,p(M)) = 2

j∑

p=0

hp,2 j+1−p(M).

�

Let us also mention another, simpler, topological consequence of the Kähler condition. If

(M , J , g) is a compact Kähler manifold, then its fundamental 2-form ω is closed, and is given lo-

cally by ω|U = i
∑n

j=1
ek ∧ ēk where {ek} is the dual basis to an orthonormal frame {e1, . . . , en} for

T1,0M |U . Consequently ωn|U = inn!e1 ∧ ē1 ∧ · · · ∧ ēn ∧ ēn; in particular ωn is nowhere-vanishing

(and is also real, since ω ∈ Ω2(M) ⊂ Ω2(M)C). Thus ωn induces an orientation on M , and (using

this orientation to define integration of 2n-forms)
´

M ω
n > 0. Stokes’ theorem then shows that ωn

is not exact. But since ω is closed, we have a cohomology class [ω] ∈ H2(M), and the cup product

in de Rham cohomology is given by wedge product, so that [ω]n = [ωn]. Thus:

2More generally, in the non-Kähler case one can use the notion of the spectral sequence of a filtered complex to obtain

a spectral sequence from the Dolbeault to the de Rham cohomology, but this is not sufficient to calculate one in terms of the

other unless one has additional information
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COROLLARY 2.5.6. If (M , J , g) is a compact n-complex-dimensional Kähler manifold then there is

a ∈ H2(M) such that an 6= 0. In particular H2(M) 6= {0}

For instance this shows that smooth manifolds such as S2n or S2 × S2n can never be made into

Kähler manifolds for n≥ 2.

There are a variety of other interesting topological consequences of the Kähler condition that

are beyond the scope of these notes; for instance the “Hard Lefschetz Theorem” (see [GH, p. 122])

asserts that the class a = [ω] from Corollary 2.5.6 has the property that, for each i ∈ {0, . . . , n}, the

map

Hn−i(M)→ Hn+i(M)

c 7→ aic

is an isomorphism. The paper [DGMS] contains some additional topological results on Kähler man-

ifolds from the viewpoint of rational homotopy theory.

We close this chapter on a more concrete note by considering some examples of complex man-

ifolds which do or do not admit Kähler structures.

EXAMPLE 2.5.7. If n= 1 and (M , J) is a compact complex 1-manifold (so its real dimension is 2),

then for any choice of J-compatible metric g it will hold that (M , J , g) is Kähler, for the trivial reason

that the fundamental 2-form ω, like any 2-form on a 2-manifold, is closed. Now a compact smooth

2-manifold M can be made complex if and only if it is orientable (the forward implication is trivial; for

the backward implication, choose a Riemannian metric and define an almost complex structure J by the

property that for each unit vector v ∈ TmM the pair {v, J v} is an oriented orthonormal basis for TmM,

then use the Newlander-Nirenberg theorem—which is a bit easier to prove in two real dimensions, see

[MS1, Theorem 4.16]—to see that J is induced by a complex manifold structure on M). So the fact

that complex 1-manifolds can always be made Kähler is, via Corollaries 2.5.5 and 2.5.6, consistent

with the fact that every compact orientable surface has H2 6= {0} and dim H1 even, as is familiar from

the classification of surfaces. Indeed one could even say that we have given a proof of this latter fact

that is independent of the classification of surfaces, though admittedly significantly simpler proofs than

this are possible.

EXAMPLE 2.5.8. Moving up one dimension, consider the “Hopf surface,” defined topologically as a

quotient space

H =
C

2 \ {~0}
~z ∼ 2~z

.

It is easy to give a complex-2-manifold atlas for H: note that the quotient projection p : C2 \ {~0} → H

restricts to either {~z ∈ C2|1 < |~z| < 2} or to {~z ∈ C2| 23 < |~z| <
4
3} as an embedding of an open subset;

let U0, U1 ⊂ H be the respective images of these embeddings and let φ0 : U0 → {1 < |~z| < 2} and

φ1 : U1 → { 2
3 < |~z| <

4
3} be the inverses of the embeddings. Then H = U0 ∪ U1, while φ0(U0 ∩ U1) =

{1< |~z|< 4
3}∪ {

4
3 < |~z|< 2} and φ1(U0∩U1) = {1< ~z < 4

3}∪ {
2
3 < |~z|< 1}. The transition function

φ0◦φ−1
1

restricts to {1< ~z < 4
3} as the identity and to { 2

3 < |~z|< 1} as multiplication by 2, so φ0◦φ−1
1

is holomorphic and we have indeed presented an atlas making H a complex-two-manifold.

Now there is an obvious diffeomorphism F : S3 × S1 → H: we can view S1 as
[1,2]

1∼2 and S3 as the

unit sphere in C2, and define F(~z, r) = p(r~z) where again p : C2 \ {~0} → H is the projection. So H is

an example of a complex manifold that cannot be given the structure of a Kähler manifold: indeed we

have b1(H) = b1(S
1 × S3) = 1 and b2(H) = b2(S

1 × S3) = 0, so H violates both Corollary 2.5.5 and

Corollary 2.5.6.
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EXAMPLE 2.5.9. Consider the complex projective space

CPn =
C

n+1 \ {~0}
~z ∼ λ~z for λ ∈ C∗ =

S2n+1

~z ∼ eiθ ~z for eiθ ∈ S1
.

Denote by p : Cn+1 \ {~0} → CPn and π: S2n+1 → CPn the quotient projections. One can define a

complex manifold atlas on CPn by covering it with open sets Uk = p({~z ∈ Cn+1|zk 6= 0}), and defining

charts φk : CPn→ Cn by

φk([z0 : . . . : zn]) =

�
z0

zk

, . . . ,
zk−1

zk

,
zk+1

zk

, . . . ,
zn

zk

�
.

It’s easy to see that the transition functions φ j ◦φ−1
k

have components given by rational functions of

the zl , and so are holomorphic.

The Fubini-Study metric is, roughly speaking, the Riemannian metric induced on CPn using the

quotient map π: S2n+1 → CPn and the standard metric on S2n+1 (this makes sense because the maps

~z 7→ eiθ ~z are isometries). More precisely, let 〈·, ·〉 be the standard inner product on Cn+1 (which we

freely identify with T~zC
n+1 for any ~z ∈ Cn+1), so Re〈·, ·〉 is just the (real) dot product. Then, for

~z ∈ S2n+1 we have T~zS
2n+1 = {~w ∈ Cn+1|Re〈~z, ~w〉= 0}.

Now the linearization (π∗)~z : T~zS
2n+1→ T[~z]CPn is surjective and has image spanned by J~z where

J is the standard complex structure on Cn. This leads to an identification of T[~z]CPn with the (real)

orthogonal complement of {J~z} inside T~zS2n+1, i.e. with the real orthogonal complement of {~z, J~z} in

C
n+1, i.e. with the complex orthogonal complement of ~z in Cn+1. Thus we have an identification

(59) T[~z]CPn ∼= {~w ∈ Cn+1|〈~w, ~z〉= 0}.
Notice that the set on the right-hand side above is unchanged if we replace ~z by eiθ ~z, i.e. it only depends

on the element [~z] of CPn and not on the choice of preimage ~z ∈ S2n+1.

Under this identification, it is not hard to see that the (almost) complex structure J on CPn given

by simply acting on the complex subspace T~zCPn = {~w ∈ Cn+1|〈~w, ~z〉 = 0} of Cn+1 by multiplication

by i is the same as the complex structure induced by our coordinate atlas for CPn. For instance, one

can see this by noting first that the projection p : Cn+1 \ {~0} → CPn is holomorphic and then that the

linearization of this projection at any ~z ∈ S2n+1 maps any element of {~w ∈ Cn+1|〈~w, ~z〉= 0} to itself.

We can now define the Fubini-Study metric g by simply putting g(~v, ~w) = Re〈~v, ~w〉 for ~v, ~w ∈
T~zCPn = {~w ∈ Cn+1|〈~w, ~z〉= 0} ≤ Cn+1. Thus the corresponding fundamental 2-form on CPn is given

byω(~v, ~w) = Re〈J~v, ~w〉. Part (b) of the exercise after this example will confirm that this form is closed.

Assuming this result, we obtain a wealth of examples of Kähler manifolds by taking an arbitrary

complex submanifold of CPn (for instance, one could use the vanishing locus of a collection of homo-

geneous polynomials, provided that this locus is smooth), and endowing it with the restriction of the

Fubini-Study metric; the Kähler condition is satisfied because the restriction of a closed form is closed.

EXERCISE 2.5.10. Throughout this exercise p,π,ω are as in Example 2.5.9

(a) Show that π∗ω is the restriction to S2n+1 of the two-formω0(~v, ~w) = Re〈J~v, ~w〉 on Cn+1. (This

is not completely trivial, because you have to account for the direction in T~zS
2n+1 that is annihilated

by π∗.)
(b) Show that π∗ω is exact, and deduce from this that ω is closed.

(c) Show that p∗ω = i
2∂ ∂̄ log

�∑n

j=0
|z j |2

�
. (It will help think of p as the composition p = π ◦ r

where r : Cn+1 \ {~0} → S2n+1 is the radial projection, so that p∗ω = r∗(π∗ω), and also to find a

convenient α such that dα = π∗ω and work with α instead of ω.) Deduce that, where φ0 : U0 → Cn

is the local coordinate chart described at the start of Example 2.5.9, ω|U0
may be expressed in this

coordinate chart as i
2∂ ∂̄ log

�
1+

∑n

j=1
|z j |2

�
.





CHAPTER 3

Pseudoholomorphic curves

3.1. Introducing the nonlinear Cauchy-Riemann equation

We now turn to a different geometrically-interesting elliptic PDE:

DEFINITION 3.1.1. Let (Σ, j) and (M , J) be almost complex manifolds. A differentiable map

u: Σ→ M is said to be (J , j)-holomorphic (or just J -holomorphic if j is understood) provided that,

for all p ∈ Σ, we have the following equality of linear maps TpΣ→ Tu(p)M :

(60) u∗ ◦ j = J ◦ u∗.

In other words, when we use the almost complex structures j and J to view TpΣ and Tu(p)M

as complex vector spaces, we are asking for the derivative of u at each p ∈ Σ to be complex-linear

and not just real-linear. The equation (60) will be called the Cauchy-Riemann equation. (As should

soon be clear, if Σ and M are both open subsets of C it is equivalent to the usual Cauchy-Riemann

equation for a holomorphic map).

We will focus entirely on the case that the (real) dimension of Σ is 2, and in applications a

standard example of (Σ, j) (such as CP1 with its standard complex structure) will be specified. The

Newlander-Nirenberg Theorem guarantees quite generally that j will then be an integrable complex

structure, in the sense that Σ has the structure of a complex 1-manifold (a “curve” as in the title

of the chapter) with j the almost complex structure induced by the complex manifold structure.

As for M , Proposition 2.2.2 shows that the real dimension of M is an even number, say 2n, but if

n≥ 2 we generally cannot expect that J will arise from a complex manifold structure on M , as the

following exercise shows. A “holomorphic curve” would be a map from a complex one-manifold

to another complex manifold (or perhaps the image of that map); the prefix “pseudo” in the term

“pseudoholomorphic curve” alludes to the fact that the codomains of our maps are typically not

complex manifolds.

EXERCISE 3.1.2. Construct an almost complex structure J on R4 such that, in terms of the decom-

positions Ωk(R4)C = ⊕p+q=kΩ
p,q(R4) induced by J, the restriction of d to Ω1,0(R4) does not have image

contained in Ω2,0(R4) ⊕ Ω1,1(R4). Hence by Corollary 2.3.4 there does not exist a complex manifold

structure on R4 with J as its induced almost complex structure. (Suggestion: Since it’s not obvious

how to write down a large family of matrices whose square is −I , a good way of constructing an almost

complex structure is to choose a suitable complex basis {e1, e2} for the space that you intend to be T1,0R
4

at each point (and then T0,1R
4 is obliged to be the complex conjugate of T1,0R

4 and J is determined by

these data). Your basis will probably need to vary from point to point; do this in such a way that that

the corresponding dual basis element e1 obeys de1 /∈ Ω2,0(R4)⊕Ω1,1(R4).)

Accordingly if p ∈ Σwe can choose a complex coordinate chart z = s+ i t : U → C, mapping z to

0 (where s, t are real-valued). That j is the almost complex structure induced by these coordinates

means that j∂s = ∂t and j∂t = −∂s (where we use notation such as ∂s as an abbreviation for the

coordinate vector field ∂
∂ s ). So applying both sides of (60) to ∂s yields the equation ∂ u

∂ t = J ∂ u
∂ s , while

applying both sides to ∂t yields − ∂ u
∂ s = J ∂ u

∂ t . In fact these latter two equations are equivalent, as can

79
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be seen by applying J to both sides of either of them and using that J2 = −I . So in terms of a local

complex coordinate s+ i t on Σ, the Cauchy-Riemann equation is equivalent to the equation

∂ u

∂ s
+ J
∂ u

∂ t
= 0.

Let us now introduce local coordinates on M near u(p) for p ∈ Σ. Note first of all that there

exist bases for Tu(p)Σ having the form {v1, J v1, . . . , vn, J vn}; to prove this quickly from prior results,

based on Proposition 2.2.2 we may take a basis for (T0,1M)p having the form {v1+ iw1, . . . , vn+ iwn}
where each vk, wk ∈ Tu(p)M ⊂ Tu(p)MC, and then taking real and imaginary parts of the equation

J(vk + iwk) = −i(vk + iwk) shows that J vk = wk and Jwk = −vk; moreover it’s not hard to see

from the various parts of Proposition 2.2.2 that {v1, w1, . . . , vn, wn} spans V . We can then take a

neighborhood V of u(p) and a local coordinate chart ~z = (~x , ~y): V → R2n mapping u(p) to ~0 and

whose derivative at u(p) maps {v1, J v1, . . . , vn, J vn} to the standard basis {∂x1
,∂y1

, . . . ,∂xn
,∂yn
} for

(the tangent space to) R2n = {(~x , ~y)|~x , ~y ∈ Rn}. Now identifying R2n with Cn via (~x , ~y) 7→ ~x + i ~y,

the standard complex structure on Cn (given by componentwise multiplication by i) is the linear

map J0 : R2n → R2n defined by J0∂xk
= ∂yk

and J0∂yk
= −∂xk

. Thus our coordinate chart identifies

J |Tu(p)M
with the standard complex structure J0 on R2n. However, at other points x ∈ V , we must

expect that the coordinate chart ~z : V → M will identify J |Tx M with some other complex structure

from R2n; the most we can say is that this complex structure will vary smoothly with x .

So using both the complex coordinate chart z = s+ i t : U → C to identify a neighborhood of p

with a neighborhood of 0 ∈ C , and the above coordinate chart ~z : V → Cn to identify a neighborhood

of u(p) with a neighborhood W := ~z(V ) of ~0 ∈ Cn, the Cauchy-Riemann equation becomes

(61)
∂ u

∂ s
+ J(u(z))

∂ u

∂ t
= 0

where J : W → EndR(C
n) is a smooth function with J(~0) = J0 and J(~z)2 = −I for all ~z ∈ W .

We emphasize that the appearance of the term J(u(z)) makes this local version of the equation

nonlinear. (If J were constant the local version would be linear, though from a global standpoint

our equation (60) cannot considered to be linear for the simple reason that there is no vector space

structure on the set of maps from a surface Σ into a manifold M .)

It is useful to rephrase this equation in term of the operators ∂z =
∂
∂ z and ∂z̄ =

∂
∂ z̄ from (53).

Adapting these to functions with image in Cn rather than C by simply working component by com-

ponent, and recalling that J0 just denotes componentwise multiplication by i, for u: C → Cn we

have

∂zu=
1

2

�
∂ u

∂ s
− J0

∂ u

∂ t

�
∂z̄u=

1

2

�
∂ u

∂ s
+ J0

∂ u

∂ t

�
.

Hence
∂ u

∂ s
= ∂zu+ ∂z̄u,

∂ u

∂ t
= J−1

0
(−∂zu+ ∂z̄u) = J0(∂zu− ∂z̄u),

and
∂ u

∂ s
+ J(u(z))

∂ u

∂ t
= (I − J(u(z))J0)∂z̄u+ (I + J(u(z))J0)∂zu.

Now we have chosen coordinates so that u(0) = ~0 and J(~0) = J0, so when the right-hand side above

is evaluated at z = 0 the term (I − J(u(z))J0) simplifies to I − J2
0
= 2I and the term (I + J(u(z))J0)

becomes zero. Since J and u are continuous, it follows that, at least after shrinking to a smaller

coordinate chart, I−J(u(z))J0 will be invertible throughout our coordinate chart. So (after possibly

shrinking our open sets V and W ) we may define

q(~z) = (I − J(~z)J0)
−1(I + J(~z)J0),
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and then q : W → EndR(C
n) is a smooth function with q(~0) = 0, and (61) is equivalent to the

equation

(62) ∂z̄u+ q(u(z))∂zu= 0.

Since q is small near our origin of coordinates (and is identically zero in the case that J(~z) is iden-

tically equal to J0), we might think of this locally as a nonlinear perturbation of the usual Cauchy-

Riemann equation ∂z̄u= 0.

3.2. Some properties of the linear Cauchy-Riemann operator

Nonlinear equations such as (62) are generally more difficult to analyze than linear ones; it will

help us to have some background about the linear Cauchy-Riemann operator ∂z̄ acting on functions

from C to C. So consider the equation ∂z̄u= f where we regard f as known. The following shows

that, if u is compactly supported, we can reconstruct u from f .

PROPOSITION 3.2.1. Let u ∈ C1
0
(C;C). Then for all z0 ∈ C, we have

u(z0) =
1

2πi

ˆ

C

∂z̄u

z − z0

dz ∧ dz̄.

(In particular the integral on the right exists.)

PROOF. Since u is continuous, taking the average value of u on small circles around z0 gives

(63) u(z0) = lim
ε→0

1

2π

ˆ

∂ Bε(z0)

u(z0 + εeiφ)dφ.

If ρ,φ are polar coordinates relative to z0, so that ∂ Bε(z0) = {ρ = ε} and the usual coordinate on

C is given by z = z0+ρeiφ , we have an equation of complexified one-forms dz = eiφdρ+ iρeiφdφ,

so since dρ|∂ Bε(z0)
= 0 and ρeiφ = z − z0 we have dφ|∂ Bε(z0)

= dz
i(z−z0)

���
∂ Bε(z0)

. So (63) gives

u(z0) =
1

2πi
lim
ε→0

ˆ

∂ Bε(z0)

u(z)

z − z0

dz

= − 1

2πi
lim
ε→0

ˆ

C\Bε(z0)

d

�
u(z)

z − z0

dz

�

= − 1

2πi
lim
ε→0

ˆ

C\Bε(z0)

∂z̄u

z − z0

dz̄ ∧ dz.

Here in the second equation we have used Stokes’ theorem (which applies despite the noncom-

pactness of C since u is compactly supported; the sign arises because the boundary orientation

for ∂ (C \ Bε(z0)) is opposite to the boundary orientation for Bε(z0)) and the third equation uses

the quotient rule and the fact that d(z − z0) ∧ dz = 0. So the Proposition follows provided that

limε→0

´

C\Bε(z0)

∂z̄u

z−z0
dz ∧ dz̄ exists (for then

´

C

∂z̄u

z−z0
dz ∧ dz̄ would, essentially by definition, be equal

to this limit). We have assumed that u is C1 and compactly supported, so ∂z̄u is bounded and com-

pactly supported. So it suffices to check that
´

Bε(z0)

��� 1
z−z0

��� dA→ 0 as ε → 0. But converting to the

polar coordinates ρ,φ centered at z0, this integral is equal to
´ 2π

0

´ ε

0
1
ρρdφdρ = 2πε, so it indeed

converges to zero. �

Let us define φ : C \ {0} → C by

φ(w) =
1

πw
.
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Since dz ∧ dz̄ = −2ids∧ d t we find from Proposition 3.2.1 that a compactly supported C1 function

u: C→ C satisfies

u(z0) =

ˆ

C

φ(z0 − z)∂z̄u(z)dA= (φ ∗ ∂z̄u)(z0)

where ∗ denotes convolution. As in the proof of Proposition 3.2.1, we note that
´

BR(0)
|φ|dA =

´ 2π

0

´ R

0
1
πr rdrdθ = 2R, so φ is locally integrable; thus φ ∗ f is a well-defined function for any

f ∈ C0(C;C). On the other hand the same computation (sending R→∞) shows thatφ /∈ L1(C;C).

For f ∈ C0(C;C) let us define

P f = φ ∗ f ,

so P f ∈ C(C;C) (by Proposition 1.2.4) but generally we cannot expect P f to be compactly sup-

ported even though f is. It follows from Proposition 1.2.5 that if f ∈ C1
0
(C;C) then also P f ∈

C1(C;C), and that

(64) ∂z P f = P∂z f , ∂z̄ P f = P∂z̄ f .

But by Proposition 3.2.1, in this case P∂z̄ f = f . Thus:

PROPOSITION 3.2.2. For f ∈ C1
0
(C;C), the function P f = φ ∗ f is a solution to the equation

∂z̄u= f .

We would now like to generalize this to the case that f ∈ Lp(Ω;C) for some bounded domain

Ω ⊂ C (where p <∞); note that C1
0
(Ω;C) is dense in Lp(Ω;C). For any f ∈ C1

0
(Ω;C) we may

extend f by zero to be defined on all of C, then apply the operator P to obtain P f ∈ C1(C;C), and

finally restrict P f to Ω. We will mildly abuse notation and still write the resulting operator from

C1
0
(Ω;C) to C1(Ω;C) as P.

LEMMA 3.2.3. For any bounded domain Ω and any p <∞, the above operator P : C1
0
(Ω;C)→

C1(Ω;C) extends to a bounded linear operator P : Lp(Ω;C)→ Lp(Ω;C).

PROOF. Since C1
0
(Ω;C) is dense in Lp(Ω;C), it suffices to show that there is a constant CΩ such

that we have a bound ‖P f ‖Lp(Ω;C) ≤ CΩ‖ f ‖Lp(Ω;C) for all f ∈ C1
0
(Ω). Since P f = φ ∗ f this almost

follows from Young’s inequality ‖g ∗ f ‖Lp(C;C) ≤ ‖g‖L1(C;C)‖ f ‖Lp(C;C), except for the issue that our

function φ is only locally integrable and not in L1. But since our domain is bounded we can work

around this as follows. Choose R > 0 so that Ω ⊂ BR(0), and notice that, if z0 ∈ Ω, then we have

(via the change of variables w= z0 − z)

P f (z0) =

ˆ

C

φ(z0 − z) f (z)dAz =

ˆ

C

φ(w) f (z0 − w)dAw,

and the term f (z0 − w) vanishes for all w outside the doubled ball B2R(0) (since if w /∈ B2R(0)

and z0 ∈ Ω ⊂ BR(0) then z0 −w /∈ BR(0)). Hence the integral on the right above is unchanged if we

replaceφ by χφ where χ is any compactly supported continuous function that equals 1 everywhere

in B2R(0). (Note that we can choose χ to depend only on Ω (or really only on R) and not on f .).

Since φ is locally integrable, we will then have χφ ∈ L1(C;C) with P f |Ω = ((χφ) ∗ f )|
Ω

. So

Young’s inequality gives ‖P f ‖Lp(Ω;C) ≤ ‖(χφ) ∗ f ‖Lp(C;C) ≤ ‖χφ‖L1(C;C)‖ f ‖Lp(C;C) and the desired

bound holds with CΩ = ‖χφ‖L1(C;C). �

We can thus attempt to generalize Proposition 3.2.2 to this extended operator P, thus consid-

ering the equation ∂z̄u = f where f ∈ Lp(Ω;C). As usual when we work with partial differential

equations and Lp spaces, it works best to consider weak solutions to this equation, according to the

following definition.
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DEFINITION 3.2.4. If u, f are locally integrable functions on a bounded domain Ω ⊂ C, we say

that u is a weak solution to ∂z̄u= f and write ∂z̄u
w
= f provided that, for all g ∈ C∞

0
(C;C), we have

ˆ

Ω

u∂z̄ gdA= −
ˆ

Ω

f gdA.

(As usual, the motivation for this definition is that integration by parts shows that, in the case

that u is continuously differentiable, the left-hand side above would be equal to −
´

Ω
(∂z̄u)gdA, and

so in this case ∂z̄u
w
= f if and only if ∂z̄u= f .)

PROPOSITION 3.2.5. Let Ω ⊂ C be a bounded domain and let p <∞. For any f ∈ Lp(Ω;C) we

have ∂z̄(P f )
w
= f .

PROOF. Choose a sequence { fn} of functions in C1
0
(Ω;C) such that fn→ f in Lp. By Proposition

3.2.2, for each n we have ∂z̄(P fn) = fn, and so ∂z̄(P fn)
w
= fn.

Now P fn→ P f in Lp and fn→ f in Lp, so (using Hölder’s inequality, for instance), one therefore

finds for every g ∈ C∞
0
(Ω;C),

ˆ

Ω

(P f )∂z̄ gdA= lim
n→∞

ˆ

Ω

(P fn)∂z̄ gdA= − lim
n→∞

ˆ

Ω

fn gdA= −
ˆ

Ω

f gdA,

as desired. �

If f ∈ W m,2(Ω;C) where m ≥ 1 and if ∂z̄u
w
= f (for instance we could take u = P f ), then

applying ∂z to both sides of the equation ∂z̄u= f gives ∂z∂z̄u= ∂z f ; note moreover that

∂z∂z̄ =
1

4

�
∂

∂ s
− i
∂

∂ t

��
∂

∂ s
+ i
∂

∂ t

�
=

1

4

�
∂ 2

∂ s2
+
∂ 2

∂ t2

�
.

So since ∂z f ∈ W m−1,2(Ω;C) with ‖∂z f ‖W m−1,2(Ω;C) ≤ ‖ f ‖W m,2(Ω;C) our Regularity Theorem 1.5.7

applies to show that, for any Ω′ ⋐ Ω, there is a constant C such that u ∈ W m+1,2(Ω′;C) with

‖u‖W m+1,2(Ω′;C) ≤ C(‖u‖W 1,2(Ω;C) + ‖ f ‖W m,2(Ω;C)). The above required the right-hand side f of the

equation ∂z̄u
w
= f to be at least class W 1,2 (since we needed to apply ∂z̄u to f before applying the

main regularity theorem), but by a separate argument we can (at least if we choose the specific

solution u= P f ) require f to be only L2. The following (perhaps somewhat surprising) lemma will

be helpful here:

LEMMA 3.2.6. If h ∈ C2
0
(C;C) then ‖∂zh‖L2 = ‖∂z̄h‖L2 =

1
2‖∇h‖L2 .

PROOF. We have

‖∂z̄h‖2L2 =
1

4

ˆ

C

�
∂ h

∂ s
+ i
∂ h

∂ t

��
∂ h

∂ s
− i
∂ h

∂ t

�
dA =

1

4

�
ˆ

C

�����
∂ h

∂ s

����
2

+

����
∂ h

∂ t

����
2�

dA+ i

ˆ

C

�
∂ h

∂ t

∂ h

∂ s
− ∂ h

∂ s

∂ h

∂ t

��
dA.

Since h is compactly supported, the last integral may be converted via integration by parts to
´

C

�
−h ∂ 2h

∂ t∂ s + h ∂ 2h
∂ s∂ t

�
dA= 0, and so indeed ‖∂z̄h‖2L2 =

1
4‖∇h‖2

L2 .

The statement that ‖∂zh‖L2 =
1
2‖∇h‖L2 can be proven by an essentially identical argument by

changing some signs in the above calculation; alternatively one can just note that ∂zh= ∂z̄ h̄ and so

applying what we have already proven to h̄ shows that ‖∂zh‖L2 =
1
2‖∇h̄‖L2 =

1
2‖∇h‖L2 . �

Motivated in part by this, let us define an operator T : C∞
0
(C;C)→ C∞(C;C) by T = ∂z ◦ P.

Thus, for any u ∈ C∞
0
(C;C) we have:

T∂z̄u= ∂z P∂z̄u= ∂zu.
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So Proposition 3.2.6 shows that, if f ∈ C∞
0
(C;C) has the property that f = ∂z̄u for some u ∈

C∞
0
(C;C), then ‖T f ‖L2 = ‖∂zu‖L2 = ‖∂z̄u‖L2 = ‖ f ‖L2 . In fact with only slightly more work one can

show that the same identity holds without the assumption that f = ∂z̄u for a compactly supported

u. (Actually this generalization isn’t strictly necessary for our purposes since we will ultimately only

apply T to functions of the form ∂z̄u where u is compactly supported; I am including the following

mainly as a not-too-hard-to-prove version of Theorem 3.2.8.)

PROPOSITION 3.2.7. For any f ∈ C∞
0
(C;C) we have ‖T f ‖L2 = ‖ f ‖L2 . Hence T extends to an

isometry of L2(C;C).

PROOF. The trick is to evaluate the following exterior derivative:

d
�
P f T f dz̄ + f̄ P f dz

�
=
�
∂z P f T f + P f ∂z T f − ∂z̄ f̄ P f − f̄ ∂z̄ P f

�
dz ∧ dz̄

=
�
|T f |2 + P f ∂z̄ T f − ∂z f P f − | f |2

�
dz ∧ dz̄.

Now ∂z̄ T f = ∂z̄∂z P f = ∂z f since ∂z̄ P f = f , so the middle two terms above cancel and we obtain

(65) |T f |2dz ∧ dz̄ = | f |2dz ∧ dz̄ + d
�
P f T f dz̄ + f̄ P f dz

�
.

Now the definition of P makes clear that there is a constant C (depending on f ) such that |P f (z)|<
C
|z| , and then since T f = P∂z f a similar estimate holds for T f . So if R is so large that the support

of f is contained in the interior of BR(0), we will have by Stokes’ theorem
ˆ

BR(0)

d
�
P f T f dz̄ + f̄ P f

�
=

ˆ

∂ BR(0)

P f T f dz̄ ≤ 2πCR

R2
.

So integrating 65 over BR(0) and then taking the limit as R→∞ proves the result. �

In fact, the following theorem whose proof is beyond the scope of these notes (see [A, Section

V.D] for one proof) shows that the above result extends to other values of p. We will later find

it useful to take p > 2, since (in the context of pseudoholomorphic curves) in this case all W 1,p

functions are continuous.

THEOREM 3.2.8 (Calderón-Zygmund Theorem). Let 1< p <∞. Then there is Cp > 0 such that,

for all f ∈ C∞
0
(C;C) we have ‖T f ‖Lp ≤ Cp‖ f ‖Lp . Thus T extends to a bounded linear operator on

Lp(C;C).

This leads to the following regularity theorem, analogous to Theorem 1.5.7.

THEOREM 3.2.9. Let 1 < p <∞, let f ∈ W m,p(Ω;C) for a bounded domain Ω (where m ≥ 0),

and let u ∈ Lp(Ω) obey ∂z̄u
w
= f . Then for all Ω′ ⋐ Ω we have u ∈W m+1,p(Ω′;C), with a bound

(66) ‖u‖W m+1,p(Ω′;C) ≤ C(‖u‖Lp(Ω;C) + ‖ f ‖W m,p(Ω;C))

where C depends only on m, p and not on u.

PROOF. Note first that if u ∈W k,p(Ω;C) where k ≤ m then ∂z̄(D
αu)

w
= Dα f . So by induction on

m (and by replacing u with appropriate Dαu) it suffices to prove the result in the case that m = 0,

so that f ,u ∈ Lp(Ω;C) with ∂z̄u
w
= f and we wish to show that u ∈W 1,p(Ω′;C).

Choose a cutoff function χ ∈ C∞
0
(Ω;C) with χ |Ω′ = 1. Then χu is an Lp function supported in

Ω with ∂z̄(χu)
w
= g where we define g = χ f + (∂z̄χ)u. Note that g ∈ Lp(Ω;C) and there is a bound

‖g‖Lp(Ω;C) ≤ A(‖u‖Lp(Ω;C) + ‖ f ‖Lp(Ω;C)) where A depends only on the cutoff function χ .

Since χ has support compactly contained withinΩ, for large n the mollifications vn = η1/n∗(χu)

will be smooth and supported withinΩ and, by Theorem 1.2.10, will converge in Lp to χu. Moreover
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by Proposition 1.3.5 we will have ∂z̄ vn = η1/n ∗ g; thus ∂z̄ vn → g in Lp. Note that, since the vn are

compactly supported, we have P∂z̄ vn = vn, and hence Lemma 3.2.3 shows that P g = χu.

By Theorem 3.2.8, we find that

‖vn − vm‖W 1,p(Ω;C) ≤ ‖vn − vm‖Lp(Ω;C) + 2(‖∂z̄(vn − vm)‖Lp(Ω;C) + ‖∂z(vn − vm)‖Lp(Ω;C))

≤ ‖vn − vm‖Lp(Ω;C) + 2(Cp + 1)‖∂z̄(vn − vm)‖Lp(Ω;C)

and so since {vn}∞n=1
and {∂z̄ vn}∞n=1

both converge in Lp it follows that {vn}∞n=1
is Cauchy in W 1,p(Ω;C)

and hence that its Lp-limit χu in fact lies in W 1,p(Ω;C). So u ∈W 1,p(Ω′;C), and

‖u‖W 1,p(Ω′;C) ≤ ‖χu‖W 1,p(Ω;C) ≤ ‖u‖Lp(Ω;C) + 2(‖∂z̄(χu)‖Lp(Ω;C) + ‖∂z(χu)‖Lp(Ω;C))

≤ ‖u‖Lp(Ω;C) + 2(Cp + 1)‖g‖W 1,p(Ω;C) ≤ ‖u‖Lp(Ω;C) + 2(Cp + 1)A(‖u‖Lp(Ω;C) + ‖ f ‖Lp(Ω;C))

where we have used that ∂z̄(χu)
w
= g and that T g = ∂z P g = ∂z(χu). �

3.3. Regularity for the nonlinear Cauchy-Riemann equation

Having learned more about the linear operator ∂z̄ , we now return to the local version of the

nonlinear Cauchy-Riemann equation, which we rewrote in (62) as

∂z̄u+ q(u(z))∂zu= 0

where we have chosen coordinates so that u: D→ Cn obeys u(0) = ~0 and that q ∈ C∞(Cn, EndR(C
n))

obeys q(~0) = 0. (Since for now we will just be concerned with local behavior, we will assume the

domain of u to be a disk D centered at the origin.) The goal of this section is to show that any

class-W 1,p solution to this equation is in fact smooth; we will assume that p > 2, since by Morrey’s

inequality this forces u to be continuous. To be a bit more specific about the strategy, we will show

that if u ∈ W k,p(D;Cn) solves (62) then there is a smaller disk D′ centered at the origin such that

u ∈W k+1,p(D′;Cn). By induction (and Theorem 1.3.14) this will show that u is smooth at the ori-

gin, and then since we could have chosen an arbitrary point as the origin by a suitable coordinate

change it will show that u is globally smooth.

We will use the properties of the operator T from the previous section (extended to Cn-valued

functions by working component by component). First of all we modify the problem to one involving

a compactly supported function defined on all ofC, by our usual device of choosing a cutoff function

χ ∈ C∞
0
(D, [0,1]) which is identically equal to 1 on some subdisk centered at the origin, and then

considering the function χu. Assuming that u satisfies (62), χu evidently satisfies the equation

(67) ∂z̄(χu) + (q ◦ u)∂z(χu) = (∂z̄χ)u+ (∂zχ)(q ◦ u)u.

This equation holds at all points of D; moreover since ∂z̄(χu),∂z(χu),∂z̄χ ,∂zχ are all supported

in the interior of D, each term on either side of the equation naturally extends by zero to all of

C. To work in a context where this is a little more explicit, choose another cutoff function η ∈
C∞

0
(D; [0,1]) such that η is identically equal to 1 on the support of χ . If we let v = χu, w = ηu,

both v, w lie in W
k,p

0 (D;Cn) (and hence extend by zero to functions in W k,p(C;Cn)) and (67) gives

(68) ∂z̄ v + (q ◦w)∂z v = (∂z̄χ)w+ (∂zχ)(q ◦ w)w.

(Indeed, we have u = w on the support of χ , and each term in (67) in which u appears vanishes

outside the support of χ , so such terms are unaffected by replacing u by w.) In view of this, our

desired regularity statement for u will follow if we show that there is a subdisk centered at 0 on

which a function v obeying (68) is of class W k+1,p, where we assume that v, w ∈W k+1,p(C;Cn) with

v(0) = w(0) = 0 and q is as before.
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The left hand side of (68) can be rewritten as (I + (q ◦ u)T )∂z̄ v, and the key will be to show

that the right-hand side of (68) lies in W k,p, and to reduce to a case where the operator I +(q◦w)T
is (or can be arranged to be) invertible on W k,p.

We will need results about the behavior of Sobolev norms under multiplication and composition;

here is where the assumption that p > 2 makes things relatively simple.

PROPOSITION 3.3.1. Let p > n and k ≥ 1. There is a constant C such that if f , g ∈ C∞
0
(Rn)

then ‖ f g‖k,p ≤ C‖ f ‖k,p‖g‖k,p. Consequently if f , g ∈W k,p(Rn) then f g ∈W k,p(Rn) with ‖ f g‖k,p ≤
C‖ f ‖k,p‖g‖k,p.

PROOF. Let f , g ∈ C∞
0
(Rn). Morrey’s inequality (Theorem 1.3.11) shows that, for any multi-

index α with |α| ≤ k − 1, we have (for a constant A independent of f ) max |Dα f | ≤ A‖Dα f ‖1,p ≤
A‖ f ‖k,p and likewise max |Dαg| ≤ A‖g‖k,p. Now if |α| ≤ k, then

Dα( f g) =
∑

β+γ=α

(Dβ f )(Dγg)

where (since k ≥ 1, so |α|< 2k) each term in the sum has either (or both) |β | ≤ k−1 or |γ| ≤ k−1.

Terms with |β | ≤ k − 1 obey ‖(Dβ f )(Dγg)‖p ≤ max |Dβ f |‖g‖k,p ≤ A‖ f ‖k,p‖g‖k,p, and terms with

|γ| ≤ k−1 likewise obey ‖(Dβ f )(Dγg)‖p ≤ A‖ f ‖k,p‖g‖k,p. So for each |α| ≤ k we have ‖Dα( f g)‖p ≤
A
∑
β+γ=α ‖ f ‖k,p‖g‖k,p, and so indeed ‖ f g‖k,p ≤ C‖ f ‖k,p‖g‖k,p for appropriate C .

To prove the last sentence we use the usual approach of approximating f , g in W k,p norm by

sequences { fm}, {gm}. What we have already done, together with the triangle inequality, gives an

estimate

‖ fl gl − fm gm‖k,p ≤ C‖ fl‖k,p‖gl − gm‖k,p + C‖gm‖k,p‖ fl − fm‖k,p

and so proves that { fm gm}∞m=1
is Cauchy in W k,p, and so its limit, namely f g, belongs to W k,p(Rn),

with ‖ f g‖k,p ≤ limm→∞ C‖ fm‖k,p‖gm‖k,p = C‖ f ‖k,p‖g‖k,p. �

PROPOSITION 3.3.2. Let Ω ⊂ Rn be a bounded domain, let k ≥ 0 and p > n, and let g : Rm → R
be a compactly supported C k+1 function. Then for each u ∈W

k,p

0 (Ω;Rm) it holds that g ◦u ∈W k,p(Ω).

Moreover if g(~0) = 0 and if {ul}∞l=1
is a sequence with ul → 0 in W k,p(Ω;Rm) then g ◦ ul → 0 in

W k,p(Ω).

PROOF. To see that the result holds for k = 0, note that the fact that g is compactly supported

and C1 implies that it is Lipschitz (with Lipschitz constant given by the maximum value of ‖∇g‖),
so we have a bound of the form |g(~x) − g(~0)| ≤ A‖~x‖ and hence |(g ◦ u)(z)| ≤ A|u(z)| + |g(~0)|
for all z ∈ Rn. So since Ω is bounded we obtain that g ◦ u ∈ Lp(Ω) with a bound ‖g ◦ u‖Lp(Ω) ≤
A‖u‖Lp(Ω) + |g(~0)|vol(Ω)1/p. This suffices to establish the k = 0 case of the proposition.

Let us now consider the case that k = 1. First of all we will show that the chain rule formula
∂ (g◦u)
∂ x i

=
∑

r

�
∂ g

∂ x r
◦ u
�
∂ ur

∂ x i
continues to be valid (in the sense of weak derivatives) in the present case

where u is of class W
1,p

0 and g is compactly supported and C2. Indeed if we take a sequence of

compactly supported smooth functions {u(ℓ)} with u(ℓ) → u in W 1,p, the fact that
∂ g

∂ x r
is Lipschitz

yields, as in the previous paragraph, a uniform bound

 ∂ g

∂ x r
◦ u(ℓ) − ∂ g

∂ x r
◦ u


∞
≤ A‖u(ℓ) − u‖∞ ≤

B‖u(ℓ)−u‖W 1,p(Ω) for constants A, B, where the second inequality uses Theorem 1.3.11. So since also
∂ u(ℓ)

∂ x i
→ ∂ u

∂ x i
in Lp, it follows that

∂ (g ◦ u(ℓ))

∂ x i

=
∑

r

�
∂ g

∂ x r

◦ u(ℓ)
r

�
∂ u(ℓ)

r

∂ x i

→
∑

r

�
∂ g

∂ x r

◦ u

�
∂ ur

∂ x i

in Lp,
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by the general (easily-verified) fact that the product of a uniformly convergent sequence and an

Lp-convergent sequence is Lp-convergent. So the usual argument with Hölder’s inequality (used

e.g. in the proof of Proposition 1.3.9) shows that the weak derivative of g ◦ u with respect to x i

exists and is equal to
∑

r

�
∂ g

∂ x r
◦ u
�
∂ ur

∂ x i
.

With this chain rule in hand, we see that for any u ∈ W
1,p

0 (Ω;Rm),
∂ (g◦u)
∂ x i

=
∑

r

�
∂ g

∂ x r
◦ u
�
∂ ur

∂ x i

is a sum of finitely many terms each of which is a product of a bounded function
∂ g

∂ x r
◦ u with an

Lp function
∂ ur

∂ x i
and hence is of class Lp, with Lp norm converging to zero for any sequence of u

whose W 1,p norms converge to zero (since in this case the
∂ g

∂ x r
◦u terms remain uniformly bounded

by the compact support of g, while the
∂ ur

∂ x i
terms Lp-converge to zero). Combined with what we

have already done in the k = 0 case this proves the k = 1 case of the proposition.

Now let K ≥ 2 and assume that we have proven the result for all k < K . Given any u ∈
W K ,p(Ω;Rm) we have g ◦ u ∈ Lp(Ω), with g ◦ u→ 0 in Lp as u→ 0 in Lp provided that g(~0) = 0,

by the k = 0 case of the proposition. So it suffices to show that
∂ (g◦u)
∂ x i
∈ W K−1,p(Ω), with norm

converging to zero as u → 0 in W K ,p. But as we have already shown (in the proof of the k = 1

case),
∂ (g◦u)
∂ x i

=
∑

r

�
∂ g

∂ x r
◦ u
�
∂ ur

∂ x i
. By the inductive hypothesis we have

∂ g

∂ x r
◦ u ∈W K−1,p(Ω) while by

assumption we have
∂ ur

∂ x i
∈ W K−1,p. Since K − 1 ≥ 1 and p > n, we can now appeal to Proposition

3.3.1 to see that the product of these terms belongs to W K−1,p(Ω), and converges to zero as u→ 0

in W K ,p (as this causes
∂ ur

∂ x i
→ 0 in W K−1,p). �

We can now make the key argument leading to the regularity of solutions to the nonlinear

Cauchy-Riemann equation.

PROPOSITION 3.3.3. Fix a disk D ⊂ C centered at 0 and a C k+1 function q : Cn→ EndR(C
n) with

q(~0) = 0, and let k ≥ 1 and p > 2. Then there is ε > 0 such that for any functions v, w ∈W
k,p

0 (D;Cn)

with ‖w‖k,p < ε such that ∂z̄ v + (q ◦w)∂z v ∈W
k,p

0 (D;Cn) we have v ∈W k+1,p(D;Cn).

PROOF. The Calderón-Zygmund operator T appearing in Theorem 3.2.8 obeys T Dα = DαT for

every multi-index α, so by Theorem 3.2.8 T maps W k,p(C;Cn) to itself, with an estimate ‖T f ‖k,p ≤
Cp‖ f ‖k,p. Note that since k ≥ 1 an estimate ‖w‖k,p < 1 leads to a uniform bound |w(z)| ≤ R, so as

long as we choose ε < 1 the function q ◦ w is unchanged if we modify q to some function q̃ = βq

where β is a compactly supported smooth function equal to 1 on the ball of radius R. So Proposition

3.3.2 implies that (all matrix elements of) q ◦ w will be of class W k,p, and moreover that for any

δ > 0 we can choose ε > 0 sufficiently small that if ‖w‖k,p < ε then each of these matrix elements

has W k,p norm less than δ. So using Proposition 3.3.1, for sufficiently small ε, it will hold that for

all f ∈W k,p(C;Cn) we have ‖(q ◦w)T f ‖k,p ≤ 1
2‖ f ‖k,p. If A: W k,p(C;Cn)→W k,p(C;Cn) is defined

by Af = (q ◦ w)T f , for any v ∈W
k,p

0 (D;Cn) ⊂W k,p(Cn) we have A∂z̄ v = (q ◦ w)T∂z̄ v = (q ◦ w)∂z v.

But, for ‖w‖k,p < ε, we have shown that the operator A on W k,p(C;Cn) has operator norm at most
1
2 ; hence the operator I + A is invertible, with inverse (I + A)−1 =

∑∞
j=0
(−A) j . (That the right

hand side converges to a well-defined operator on W k,p(C;Cn) is a corollary of the completeness of

W k,p(C;Cn).)

So if ∂z̄ v + (q ◦ w)∂z v = h ∈ W
k,p

0 (D;Cn) ⊂ W k,p(C;Cn), then (provided that ‖w‖k,p < ε)

∂z̄ v = (I + A)−1h ∈ W k,p(C;Cn). But then Theorem 3.2.9 (applied to a set Ω such that D ⋐ Ω)

proves that v ∈W k+1,p(D;Cn). �

By implementing the procedure described at the start of the section, we find:



88 3. PSEUDOHOLOMORPHIC CURVES

COROLLARY 3.3.4. Fix disks D′ ⋐ D ⊂ C centered at 0 and a C k+1 function q : Cn → EndR(C
n)

with q(~0) = 0, and let k ≥ 1 and p > 2. Then there is δ > 0 such that if u ∈ W k,p(D;Cn) satisfies

‖u‖k,p < δ and ∂z̄u+ (q ◦ u)∂zu= 0 then u ∈W k+1,p(D′;Cn).

PROOF. As suggested at the start of the section, if we let χ be a smooth cutoff function supported

in the interior of D and equal to 1 on D′, and if we let η be a smooth cutoff function supported

in the interior of D and equal to 1 on the support of χ , then the equation ∂z̄u + (q ◦ u)∂zu = 0

implies that ∂z̄ v + (q ◦ w)∂zw = (∂zχ)w + (∂zχ)(q ◦ w)w where we put v = χu, w = ηu. Now

Propoisition 3.3.1 implies that v, w ∈W
k,p

0 (D;C), and we in particular have ‖w‖k,p ≤ ‖η‖k,p‖u‖k,p,

so taking δ to be sufficiently small and requiring that ‖u‖k,p < δ implies that ‖w‖k,p < ε where ε

is the constant from Proposition 3.3.3. Since Propositions 3.3.1 and 3.3.2 (together with the same

argument in the proof of Proposition 3.3.3 involving replacing q by a compactly supported q̃) show

that (∂zχ)w+(∂zχ)(q ◦w)w ∈W
k,p

0 (D;Cn), the previous proposition shows that v ∈W k+1,p(D;Cn).

This implies the corollary since u coincides with v on D′. �

All that remains to do now is remove the hypothesis that ‖u‖k,p < δ in Corollary 3.3.4. This

involves using a renormalization trick which requires passage to a significantly smaller disk D0 and

also (again) requires p > 2.

PROPOSITION 3.3.5. Let D ⊂ C be a disk centered at the origin, let k ≥ 1 and p > 2, let q : Cn→
EndR(C

n) be a C k+1 function with q(~0) = 0, and let u ∈W k,p(D;Cn) satisfy u(0) = 0 and ∂z̄u+ (q ◦
u)∂zu= 0. Then there is a disk D0 ⋐ D centered at the origin such that u ∈W k+1,p(D0;Cn).

PROOF. For each positive integer m define um : D→ Cn by um(z) = u(z/m). So for all z ∈ C we

have

∂z̄um(z) + (q ◦ um)(z)∂zum(z) =
1

m
∂z̄u(z/m) +

1

m
q(u(z/m))∂zu(z/m) = 0,

i.e. um satisfies the same equation that we have assumed to be satisfied by u. I claim that um → 0

(in W k,p(D;Cn)-norm) as m→∞. Indeed, we find that
ˆ

D

|Dαum(z)|pdVz =

ˆ

D

��m−|α|Dαu(z/m)
��p dVz =

ˆ

1
m D

mn−p|α||Dαu(w)|dVw ≤ mn−p|α|‖u‖W k,p(D;Cn)

where 1
m D is the disk centered at the origin with radius 1

m times the radius of D. Since we assume

that p > n, this proves that Dαum → 0 in Lp for |α| ≥ 1. This argument does not work for α = 0,

but in this case Theorem 1.3.14 (together with our hypothesis that u(0) = 0) shows that, for z ∈ D,

|um(z)| = |u(z/m)| ≤
�� z

m

��1−2/p
, so since D has finite radius um → 0 uniformly, and hence also in

Lp(D;Cn). Thus indeed um→ 0 in W k,p(D;Cn).

Thus we can find m0 such that ‖um0
‖W k,p(D;C) ≤ δ where δ is the constant from Corollary 3.3.4.

So um0
∈ W k+1,p(D;Cn). But from the definition of um0

it is clear that the statement that um0
∈

W k+1,p(D;Cn) is equivalent to the statement that u ∈ W k+1,p( 1
m0

D;Cn). So the result holds with

D0 =
1

m0
D. �

We now rephrase this in more global language, along the lines of the start of the chapter. To

formulate this we should introduce language for Sobolev spaces of functions between manifolds. If

Σ, M are smooth manifolds, a natural definition for a Sobolev space W
k,p

loc
(Σ; M) would be as the

space of functions f : Σ→ M such that for each p ∈ Σ there exist local coordinate charts around p

and f (p) in terms of which f is given by a class W k,p function; ifΣ is compact we would just call this

W k,p(Σ; M), deleting the loc (for noncompact manifolds there would be a more subtle question of

convergence of various integrals to consider in defining W k,p). Provided that p > dimΣ, it is easy to

see using Proposition 3.3.2 (and an analogous but easier version of it for compositions u ◦ g rather



3.4. DIFFERENTIAL TOPOLOGY OF ∂̄J 89

than g◦u) that the question of whether a function is locally of class W k,p in this sense is independent

of which coordinate charts are used, provided at least that they are taken from a bounded atlas as

in Definition 1.6.1.

For the following we will slightly generalize the class of almost complex structures we consider,

allowing an almost complex structure J on M to be just C k for some k (as a map of smooth manifolds

T M → T M) instead of being smooth.

THEOREM 3.3.6. Let (Σ, j) be a compact complex 2-manifold, and let M be a smooth manifold

equipped with a C k almost complex structure J where k ≥ 2. If u: Σ→ M is a class-W 1,p map obeying

the Cauchy-Riemann equation u∗ ◦ j = J ◦ u∗, then u ∈ W k,p(Σ; M). In particular, if J is a smooth

almost complex structure then u ∈ C∞(Σ, M).

PROOF. As discussed at the start of the chapter, given any x ∈ Σ we may choose a holomorphic

coordinate chart U around x (mapping x to 0) and a smooth coordinate chart V around u(x)

(mapping u(x) to ~0) in terms of which J |Tu(x)M
is given by the standard almost complex structure

J0. Moreover defining (on possibly a smaller coordinate chart than V ) q(~z) = (I − J(~z)J0)
−1(I +

J(~z)J0), q will be a C k function with q(~0) = 0, and u will be represented in a subchart1 of U by a

function satisfying ∂z̄u+q(u(z))∂zu= 0. Applying Proposition 3.3.5 inductively gives a still-smaller

coordinate chart around x on which u is of class W k,p. Since this can be done around every point

x ∈ Σ we have indeed proven that u ∈W k,p(Σ; M). �

3.4. Differential topology of ∂̄J

Given a compact complex curve (Σ, j) and an almost complex 2n-manifold (M , J) we now

intend to study (perhaps under additional conditions on J to be indicated later) geometric properties

of the “moduli space” of solutions u: Σ→ M to the Cauchy-Riemann equation u∗ ◦ j = J ◦u∗. Using

that J2 = −I , this equation is equivalent to

∂̄J u :=
1

2
(u∗ + J ◦ u∗ ◦ j) = 0.

We thus propose to think of the moduli space of J -holomorphic curves as something like the zero-

level set of a function, namely ∂̄J , defined on the space W k,p(Σ, M) of class-W k,p maps u: Σ→ M .

Ideally, this zero-level set would be a manifold.

We will understand this (somewhat sketchily; see [MS2] for many more details) from the view-

point of differential topology on Banach manifolds. By definition, a Banach manifold is a second-

countable Hausdorff space X with an atlas of coordinate charts φα : Uα → Eα where the Uα form

an open cover of X and the Eα are Banach spaces, with transition functions φβ ◦φ−1
α being smooth

maps between open subsets of the Banach spaces Eα, Eβ . Here one says a map F between open

subsets of Banach spaces Eα, Eβ is differentiable at a point x in its domain provided that there is a

bounded linear operator DF(x) with limh→0
F(x+h)−F(x)−DF(x)h

‖h‖ = 0, that F is twice-differentiable if

the map x 7→ DF(x) (with codomain the Banach space of bounded linear operators from Eα to Eβ)

is differentiable, and so on to define smoothness.

Our first contention is that (at least for p > 2) the space W k,p(Σ, M) (as defined in the previous

section) is in fact a Banach manifold. To show this it suffices to, for all u ∈W k,p(Σ, M), find a Banach

space Tu and a homeomorphismΦu from a neighborhood Bu of the origin in Tu to a neighborhoodUu

of u, in such a way that the transition functions Φv ◦Φ−1
u

are smooth. The Banach space Tu will then

be identified with the tangent space to W k,p(Σ, M) at u, and should be thought of as parametrizing

ways to perturb u within W k,p(Σ, M).

1Note that since u ∈W 1,p(Σ, M) where p > 2, u is automatically continuous, so it maps a sufficiently small neighbor-

hood of x into the region where I − J(~z)J0 is invertible.
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Such a perturbation should involve, for each z ∈ Σ, a choice of perturbation of the point u(z) ∈
M , which is to say a tangent vector ξ(z) ∈ Tu(z)M . This is conveniently expressed in terms of the

pullback bundle u∗T M = {(z, v)|v ∈ Tu(z)M}, which fits into the commutative diagram

u∗T M //

��

T M

��
Σ

u // M

(where the maps out of u∗T M are the projections to either factor and the map T M → M is the

bundle projection). So u∗T M → Σ is a vector bundle, with fiber over z naturally identified with

Tu(z)M , and our perturbation ξ of u may be viewed as a section of u∗T M (i.e. ξ: Σ→ u∗T M with

π ◦ ξ= IΣ where π: u∗T M → Σ is the bundle projection).

To actually define the Banach manifold chart Φu around u we need to have a way of converting

an “infinitesimal perturbation” ξ as in the previous paragraph into a new map Φu(ξ): Σ→ M . For

this it suffices to have a way, for each z ∈ Σ, of converting the tangent vector ξ(z) ∈ Tu(z)M into a

new point in M (which would be the value of the map Φu(ξ) at z). If M were R2n we would simply

use vector addition—our new point would be u(z) + ξ(z). On a general manifold M there is of

course no notion of vector addition, but Riemannian geometry provides a substitute appropriate for

our purposes. So let us choose a J -compatible Riemannian metric g on M . As is explained in any

Riemannian geometry book (e.g. [dC]), for each x ∈ M and each sufficiently short (as measured

by g) v ∈ Tx M , there is a unique geodesic γx ,v : [0,1]→ M with γx ,v(0) = x and γ′
x ,v
(0) = v. So

denoting byN ⊂ T M the set of pairs (x , v) which are “sufficiently short” in this sense, we obtain an

“exponential map” exp: N → M defined by exp(x , v) = γx ,v(1). So as long as our section ξ of u∗T M

is pointwise-small enough that (u(z),ξ(z)) ∈ N for each z, we can define a map Φu(ξ): Σ→ M by

(Φu(ξ)) (z) = exp(u(z),ξ(z)).
Of course the section ξ of u∗T M should be chosen in such a way that the resulting map Φu(ξ)

still lies in W k,p(Σ, M). The appropriate condition, probably not surprisingly (in view of the case

M = R2n in which case Φu(ξ) = u+ξ), is that ξ should itself be of class W k,p, viewed as a section of

u∗T M (i.e. a particular kind of map between the manifolds Σ and u∗T M , so the discussion above

Theorem 3.3.6 suffices to define what it means for ξ to be of class W k,p). The space of class W k,p

sections of u∗T M (which from now on we will just denote by W k,p(u∗T M)) is indeed a Banach

space: it is a vector space since sections of a vector bundle can be added and scalar multiplied in

the obvious way, and the most natural way to put a norm on it is to, for j ≤ k, use the Levi-Civita

connection associated to the Riemannian metric g to make sense of the jth-order derivative ∇ jξ
as a j-linear bundle bundle map T M⊕ j → T M and then use g to measure the norm of this bundle

map. Since we always assume k ≥ 1 and p > 2, Morrey’s inequality implies that if ξ ∈W k,p(u∗T M)

has sufficiently small W k,p norm then we will have (u(z),ξ(z)) ∈ N for all z ∈ Σ. So for all ξ in a

sufficiently small neighborhood Bu of zero in W k,p(u∗T M), the map Φu(ξ): Σ→ M is well-defined

and belongs to W k,p(Σ, M). We omit the proofs (based, somewhat tediously, on standard properties

of the exponential map) that Φu : Bu → W k,p(Σ, M) is an embedding of an open subset, and that

the transition functions Φv ◦Φ−1
u

are smooth.

The upshot of the above discussion is that W k,p(Σ, M) is indeed a Banach manifold, with tangent

space at u given by TuW k,p(Σ, M) = W k,p(u∗T M) (the space of class W k,p sections of the bundle

u∗T M → Σ). We wish to think of ∂̄J as a function on this Banach manifold; if this function has zero

as a regular value we would then conclude (by a Banach-manifold version of the implicit function

theorem, which is proven in just the same way as the usual implicit function theorem) that our

moduli space of J -holomorphic curves (solutions to ∂̄J u= 0) is a smooth manifold.
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If we are to think of ∂̄J as a function defined on the space W k,p(Σ, M) and ask whether it

has zero as a regular value, we should first understand what the codomain of ∂̄J is. For any u ∈
W k,p(Σ, M) we have defined ∂̄J u = 1

2 (u∗ + J ◦ u∗ ◦ j). Thus ∂̄J u gives, for each z ∈ Σ, a linear map

(∂̄J u)z : TzΣ → Tu(z)M . Now as before we can think of Tu(z)M as the fiber (u∗T M)z of the vector

bundle u∗T M → Σ. So ∂̄J u is a section of the bundle over Σ whose fiber over z consists of linear

maps TzΣ→ (u∗T M)z; this latter bundle is denoted Hom(TΣ,u∗T M). More specifically, it’s easy to

see from the formula for ∂̄J u that (∂̄J u) ◦ j = 1
2 (u∗ ◦ j − J ◦ u∗) = −J ◦ (∂̄J u), so if we view TΣ and

u∗T M as complex vector bundles using the structures j and J , respectively, then ∂̄J u is a section of

the bundle Hom(TΣ,u∗T M) whose fiber over z consists of conjugate-linear maps TzΣ→ (u∗T M)z .

Moreover the assumption that u ∈ W k,p(Σ, M) readily implies that ∂̄J u is a class W k−1,p section of

this latter bundle. Thus,

For u ∈W k,p(Σ, M), we have ∂̄J u ∈W k−1,p
�
Hom(TΣ,u∗T M)

�
.

A mild difficulty is that the set in which we have located ∂̄J u depends on u. This is because, from a

global perspective, ∂̄J is better seen not as a function whose zero-level set consists of J -holomorphic

curves, but rather as a section of a vector bundle, whose intersection with the zero section consists

of J -holomorphic curves.

We thus introduce a (Banach) vector bundle E k−1,p → W k,p(Σ, M), such that the fiber E k−1,p
u

over u is equal to W k−1,p
�
Hom(TΣ,u∗T M)

�
. So set-theoretically

E k−1,p =
⋃

u∈W k,p(Σ,M)

{u} ×W k−1,p
�
Hom(TΣ,u∗T M)

�
.

For this to actually be a vector bundle it should admit local trivializations, i.e. around each u ∈
W k,p(Σ, M) there should be a neighborhoodU such that the restriction E k−1,p|U is diffeomorphic in

fiberwise-linear fashion to the trivial bundleU ×E k−1,p
u

. This entails identifying, for each v ∈ U , the

fiber E k−1,p
v

= W k−1,p
�
Hom(TΣ, v∗T M)

�
with E k−1,p

u
= W k−1,p

�
Hom(TΣ,u∗T M)

�
. Provided that

we chooseU sufficiently small, this can again be done by a construction with geodesics. Pointwise,

the identification in question is a matter of setting up a correspondence between conjugate-linear

maps TzΣ → Tu(z)M and conjugate-linear maps TzΣ → Tv(z)M . If the neighborhood U is taken

small enough, then for all z ∈ Σ the points u(z) and v(z) will be sufficiently small enough that

(with respect to our fixed J -compatible metric) there is a unique geodesic γ with γ(0) = u(z) and

γ(1) = v(z). Given any affine connection (see [dC, Chapter 2]) ∇̃ on M , the path γ determines an

parallel-transport isomorphism P ∇̃γ : Tv(z)M → Tu(z)M . If we choose ∇̃ so that ∇̃J = 0 (specifically,

if ∇ is the Levi-Civita connection let us set ∇̃vX = 1
2 (∇vX − J∇v(JX ))) then P ∇̃γ will be a complex-

linear map, and so the correspondence α 7→ P ∇̃γ ◦ α sets up an isomorphism between conjugate-

linear maps TzΣ → Tv(z)M and conjugate-linear maps TzΣ → Tu(z)M . Allowing z to vary through

Σ in this construction gives an isomorphism E k−1,p
v
∼= E k−1,p

u
for any v ∈ U , and then allowing v to

vary through U gives the desired local trivialization for the Banach vector bundle E k−1,p.

Accordingly, we obtain a section ∂̄
J
→ W k,p(Σ, M) → E k−1,p given by u 7→ (u, ∂̄J u). The

moduli space of J -holomorphic curves is then give as the intersection of the image of ∂̄
J

with

the zero section of E k−1,p, and by the implicit function theorem this moduli space will be a mani-

fold provided that ∂̄
J

is transverse to the zero section Z . Here transversality means that, for each

u with ∂̄J u = 0, and some Banach-space complement Fu to T(u,0)Z in T(u,0)E k−1,p, with projection

πu : T(u,0)E k−1,p = T(u,0)Z⊕Fu→ Fu, the composition of πu with the derivative of ∂̄
J

at u is surjective

(with a bounded right inverse). In our context the obvious choice of a Banach-space complement

Fu to the zero section at (u, 0) is the fiber E k−1,p
u

. Moreover, our local trivializations for the bundle
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E k−1,p give, for a neighborhood U of u, an identification of E k−1,p|U with the product U ×E k−1,p
u

,

under which the section ∂̄
J

is identified with the map v 7→ (v,P ∇̃∂̄J v). Here P ∇̃ is the iden-

tification of Hom(TΣ, v∗T M) with Hom(TΣ,u∗T M) given by parallel translation along geodesics

with respect to the connection ∇̃ of the previous paragraph. Thus the transversality condition (at

a given u satisfying ∂̄J u = 0) is equivalent to the condition that the map v 7→ P ∇̃∂̄J v from U to

E k−1,p
u

=W k−1,p
�
Hom(TΣ,u∗T M)

�
has linearization at u which is surjective, with a bounded right

inverse.

PROPOSITION 3.4.1. For u ∈W k,p(Σ, M), the derivative of the mapP ∇̃∂̄J : U →W k−1,p
�
Hom(TΣ,u∗T M)

�

is the map Du : W k,p(u∗T M) → W k−1,p
�
Hom(TΣ,u∗T M)

�
defined by, for ξ ∈ W k,p(u∗T M) and

v ∈ TzΣ,

(69) (Duξ)z(v) =
1

2

�
∇vξ+ J(u(z))∇ jvξ

�
+

1

2
(∇ξ(z)J)(∂J u)z( jv).

(Here ∇ is the pullback of the Levi-Civita connection on M to u∗T M, and (∂J u)z(v) =
1
2 (u∗v− Ju∗ jv),

so that if ∂̄J u= 0 then ∂J u= du.)

PROOF. Let ξ ∈W k,p(u∗T M) and v ∈ TzΣ be given. For small t define γt to be the geodesic with

γt(0) = z and γ′
t
(0) = tξ(z), so that we have a parallel transport mapP ∇̃γt

: Texpu(z)(tξ(z))
M → Tu(z)M

given by the Hermitian connection ∇̃. As before define the map Φu(tξ): Σ → M by Φu(tξ)(z) =

expu(z)(tξ(z)); thus t 7→ Φu(tξ) defines an arc in W k,p(Σ, M) whose velocity at t = 0 is pre-

cisely ξ ∈ W k,p(u∗T M) = TuW k,p(Σ, M), and so the derivative of P ∇̃∂̄J at u in the direction ξ

is d
d t

��
t=0
P ∇̃∂̄J (Φu(tξ)). So writing Duξ for this derivative, we have

(Duξ)z(v) =
1

2

�
d

d t

����
t=0

P ∇̃γt

�
Φu(tξ)∗v + J(expu(z)(tξ(z)))Φu(tξ)∗ jv

��

=
1

2

�
d

d t

����
t=0

P ∇̃γt
(Φu(tξ)∗v) + J(u(z))

d

d t

����
t=0

P ∇̃γt
(Φu(tξ)∗ jv)

�
.(70)

Here we use the fact that ∇̃J = 0 so that ∇̃-parallel transport preserves J ; thusP ∇̃γt
J(expu(z)(tξ(z))) =

J(u(z))P ∇̃γt
.

Choose an arcη : (−δ,δ)→ Σwithη(0) = z andη′(0) = v, and define Γ (s, t) = expu(η(s))(tξ(η(s))).

Thus Φu(tξ)∗v =
d
ds

��
s=0
Γ (s, t), which gives a vector field along the curve t 7→ Φu(tξ(z)), and

d
d t

��
t=0
P ∇̃γt
Φu(tξ)∗v is the derivative D∇̃

d t

�
d
ds

��
s=0
Γ (s, t)

�
t=0

of this vector field along the curve with

respect to our Hermitian connection ∇̃. If we instead used the Levi-Civita connection ∇ to define

parallel transport P ∇γt
, we would likewise have d

d t

��
t=0
P ∇γt
Φu(tξ)∗v =

D∇

d t

�
d
ds

��
s=0
Γ (s, t))

�
t=0

. Now

by [dC, Lemma 3.3.4], the Levi-Civita connection has the symmetry property that

D∇

d t

�
d

ds

����
s=0

Γ (s, t))

�

t=0

=
D∇

ds

�
d

d t

����
t=0

Γ (s, t))

�

s=0

.

But the right-hand side above is just the time-zero derivative (with respect to ∇) of the vector field

ξ along the curve u ◦η; since η′(0) = v this is precisely (by definition) ∇vξ.

We have thus shown that d
d t

��
t=0
P ∇γt
Φu(tξ)∗v =∇vξ. The object that we are actually interested

in uses the Hermitian connection ∇̃ to define parallel transport instead of the Levi-Civita connection

∇, but these are related in a simple way. Namely, for any vector field X and tangent vector w on M
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we have by definition

∇wX − ∇̃wX =
1

2
(∇wX + J∇w(JX )) =

1

2

�
∇wX + J2∇wX + J(∇wJ)X

�
=

1

2
J(∇wJ)X ,

which implies that, for any vector field X along the curve t 7→ expu(z)(tξ(z)), one has

d

d t

����
t=0

�
P ∇̃γt
−P ∇γt

�
X (t) = −1

2
J(∇ξ(z)J)X (0).

In particular we obtain

(71)
d

d t

����
t=0

P ∇γt
Φu(tξ)∗v =∇vξ−

1

2
(J∇ξ(z)J)(u∗v)

for v ∈ TzΣ. This applies equally well with v replaced by jv, so together with (70) we get

(Duξ)z(v) =
1

2

�
(∇vξ−

1

2
J(u(z))(∇ξ(z)J)(u∗v)) + J(u(z))(∇ jvξ−

1

2
J(u(z))(∇ξ(z)J)(u∗ jv))

�

=
1

2

�
∇vξ+ J(u(z))∇ jvξ

�
+

1

4
((∇ξ(z)J)(u∗ jv + Ju∗v))

(where we have used that ∇ξ(z)J anticommutes with J since ∇ξ(z)(J2) = 0. Since u∗ j + Ju∗ =
(u∗ − Ju∗ j) ◦ j = 2(∂J u) ◦ j this is precisely the desired formula. �

We will see that the operator Du from Proposition 3.4.1 is an example of the following class of

operators between Banach spaces. (Recall in general that the cokernel of a linear map L : E→ F is

by definition the quotient vector space F
Im L .)

DEFINITION 3.4.2. Let E, F be two Banach spaces. A bounded linear map L : E → F is said to

be a Fredholm operator provided that Im L is a closed subspace of F , and ker L and coker L are

both finite-dimensional.

THEOREM 3.4.3. Let k ≥ 1 and p > 2. If u ∈W k,p(Σ, M)∩C1(Σ, M), the operator Du : W k,p(u∗T M)→
W k−1,p

�
Hom(TΣ,u∗T M)

�
given by (69) is a Fredholm operator.

PROOF. We begin by expressing Du in local coordinates. Let U ⊂ Σ be an open set on which we

have a holomorphic coordinate z = s + i t on Σ, and a complex orthonormal frame {e1, . . . , en} for

u∗T M (so {e1, Je1, . . . , en, Jen} evaluates at each point p ∈ U as an orthonormal basis for (u∗T M)p =

Tu(p)M with respect to our fixed J -compatible Riemannian metric). Since u is of class W k,p ∩ C1,

the em can likewise be taken be of class W k,p∩C1. Using this frame, we identify each (u∗T M)p with

C
n, so that multiplication by i in Cn corresponds to the action of J(u(p)).

A general element ξ ∈ W k,p(u∗T M) has restriction to U given by ξ|U =
∑

m fmem where fi ∈
W k,p(U;C). At the same time, since for each p ∈ U (Duξ)p is a conjugate-linear map TpΣ →
(u∗T M)p and since ∂t = i∂s, we have (Duξ)p(∂t) = −i(Duξ)p(∂s), and hence

(72) (Duξ)|U = ((Duξ)(∂s)) dz̄|U
where as usual dz̄ = ds − id t. (In other words, for each v ∈ TpΣ with p ∈ U , (Duξ)p(v) =
((Duξ)(∂s)) dz̄(v).)

If ξ|U =
∑

m fmem then one finds (by the Leibniz rule for the connection ∇) that

(∇∂s
ξ)|U =

∂ f

∂ s
em + fm∇∂s

em + ℑ fm(∇∂s
J)em
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and similarly for (∇∂t
ξ)|U , where ℑ denotes imaginary part. This (69) yields, if ξ|U =

∑
m fmem for

fm→ U → C,

(73)

(Duξ)(∂s) =
1

2

∑

m

��
∂ fm

∂ s
+ i
∂ fm

∂ t

�
em + fm(∇∂s

em + i∇∂t
em) + ℑ fm(∇∂s

J + i∇∂t
J)em + fm(∇em

J)(∂J u)(∂t)

�
.

The key point about the above formula is that the only terms that involve differentiation of the

functions fm yield precisely
∑

m(∂z̄ fm)em. A little more specifically, based on (72) and (73), for

u ∈W k,p(Σ, M) there is a class-W k−1,p real endomorphism of A of u∗T M |U such that

Du

�∑

m

fmem

�
=

�∑

m

(∂z̄ fm)em + A(z)(
∑

m

fmem)

�
dz̄.

In the case that k = 1, since we have assumed that u ∈ C1(Σ, M), A will still be continuous (for

k > 1 this follows automatically by Morrey’s inequality). It then follows from Theorem 3.2.9 that

whenever V ⋐ U ′ ⋐ U we have a bound

‖ξ‖W k,p(u∗T M |V ) ≤ C
�
‖Duξ‖W k−1,p(Hom(TΣ,u∗T M)|U′ ) + ‖Aξ‖W k−1,p(u∗T M |U′ ) + ‖ξ‖W k−1,p(u∗T M |U )

�

for some constant C . If k ≥ 2 then Proposition 3.3.1 bounds ‖Aξ‖W k−1,p(u∗T M |U′ ) in terms of ‖ξ‖W k−1,p(u∗T M |U′ ).
If k = 1 then such a bound simply follows from the continuity of A on a set which contains the (com-

pact) closure of the set U ′. So in fact we have, whenever V ⋐ U (in which case we can always find

an intermediate set U ′ as above),

‖ξ‖W k,p(u∗T M |V ) ≤ C
�
‖Duξ‖W k−1,p(Hom(TΣ,u∗T M)|U ) + ‖ξ‖W k−1,p(u∗T M |U )

�

for a different constant C .

By applying this to a finite collection of local frames over open subsets U1, . . . , Ur with subsets

V1 ⋐ U1, . . . , Vr ⋐ Ur with the Vm still covering Σ (as is possible since Σ is compact), we obtain a

global bound (with still a new constant C)

‖ξ‖k,p ≤ C(‖Duξ‖k−1,p + ‖ξ‖k−1,p).

Now it is a straightforward consequence of Theorem 1.3.16 that the inclusion W k,p(u∗T M) ,→
W k−1,p(u∗T M) is a compact operator. Hence the above estimate puts us precisely in the context

of Lemma 1.6.14 (as generalized to Banach spaces in Remark 1.6.15), and so proves that Du has

closed range and finite-dimensional kernel.

It now remains only to show that the cokernel of Du is finite-dimensional. Because we know

that Im(Du) is closed, the dimension of coker(Du) is equal to the dimension of ker(D∗
u
) where D∗

u
is

the adjoint to Du, provided that ker(D∗
u
) is finite-dimensional.2 Let us first assume that k = 1, so

the codomain of Du is Lp(Hom(TΣ,u∗T M)), which has dual space given by Lq(Hom(TΣ,u∗T M)∗)
where 1

p +
1
q = 1. If η ∈ ker(D∗

u
), then in terms of a local frame {e1, . . . , en} for u∗T M and local

holomorphic coordinate z for Σ as at he start of the proof, η is locally represented as η|U = hdz̄∗

for some h ∈ Lq(U;Cn), and the local description of Du from earlier shows that we must have
´

U〈∂z̄ f +A(z) f (z),h(z)〉dsd t = 0 for every f ∈ C∞
0
(U;Cn), where 〈·, ·〉 is the usual Hermitian inner

product. But then this means that h̄ is a weak, class Lq solution to the equation −∂z̄ h̄+A(z)T h̄= 0,

which since A is continuous forces h to be of class W 1,q by Theorem 3.2.9. So (when k = 1), ker(D∗
u
)

in fact consists of class W 1,q solutions to an equation D̃∗
u
η= 0 of the same basic form as the equation

2Sketch of proof: If y ∈ W k−1,p
�
Hom(TΣ, u∗T M)

�
does not lie in Im(Du), the Hahn-Banach theorem allows one to

construct an element η ∈ W k−1,p
�
Hom(TΣ, u∗T M)∗

�
which vanishes on Im(Du) but not on y . Since η|Im(Du)

= 0 we have

η ∈ ker(D∗u). Consequently the natural pairing between ker(D∗u) and coker(Du) is nondegenerate, and so these spaces either

have the same finite dimension or are both infinite-dimensional.
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Duξ = 0, where D̃∗
u

maps class W 1,q sections to class Lq sections. In particular just as with Du one

gets an estimate ‖η‖1,q ≤ C(‖D̃∗
u
η‖q + ‖η‖q), so by Theorem 1.3.23 and Lemma 1.6.14 D̃∗

u
has

finite-dimensional kernel. So indeed the cokernel of Du is finite-dimensional when k = 1.

The case that k > 1 can quickly be inferred from this, together with Theorem 3.2.9. Let

u ∈ W k,p(Σ, M), so that in particular u ∈ W 1,p(Σ, M) and we can view Du either as acting on

W k,p(u∗T M) or as acting on W 1,p(u∗T M). If V ≤W k−1,p
�
Hom(TΣ,u∗T M)

�
has trivial intersection

with Im(Du|W k,p(u∗T M)) then by Theorem 3.2.9 V would also have trivial intersection with the image

of Du acting on class-W 1,p sections, since if Duξ is of class W k−1,p then ξ is of class W k,p. But then

V can have dimension no larger than the dimension of the cokernel of Du on W 1,p sections. Thus

the cokernel is no larger for Du|W k,p(u∗T M) than it is for Du|W 1,p(u∗T M). �

REMARK 3.4.4. If u ∈W 1,p(Σ, M) is a J-holomorphic map and if J is a smooth almost complex

structure, then Theorem 3.3.5 shows that u is in fact smooth, and so we could apply Theorem 3.4.3

for any value of k. The description of Du in the proof, together with Theorem 3.2.9, then shows

inductively that (for k ≥ 1) any class W k,p element ξ of Du is in fact of class W k+1,p, and hence is

actually smooth. Thus ker(Du) is independent of our choice of k. Similarly since coker(Du) can be

identified with the dual of the kernel of the adjoint D∗
u
, the discussion of the kernel of D∗

u
in the

proof shows, again via Theorem 3.2.9, that coker(Du) is independent of our choice of k.

3.4.1. Generalities about Fredholm operators. Having shown that Du is a Fredholm operator,

we now discuss some general properties of such operators.

DEFINITION 3.4.5. Let E and F be Banach spaces and let L : E → F be a Fredholm operator.

The index of L is the integer

ind(L) = dim ker L − dim coker L.

EXAMPLE 3.4.6. Let E = Rn and F = Rm. Then obviously any linear map L : E→ F is a Fredholm

operator since all subspaces of E and F are closed and finite-dimensional. We find

ind(L) = dim ker L−dim coker L = dim ker L− (m−dimIm L) = (dimker L+dimIm L)−m= n−m

where the last equality is the rank-plus-nullity theorem. So for linear maps between two given finite-

dimensional Banach spaces, the index depends only on the spaces and not on the specific map, even

though different maps will certainly have different-sized kernels or cokernels.

We will see that in the infinite-dimensional context the index is likewise a fairly robust invariant

of the operator, though it is not completely independent of the operator—for instance among maps

ℓ2 → ℓ2 the identity has index zero while the “backwards shift” operator {xn}∞n=1
7→ {xn+1}∞n=1

has

index one.

Here we give another characterization of the Fredholm property.

LEMMA 3.4.7. Let L : E→ F be a bounded linear operator. The following are equivalent:

(i) L is Fredholm.

(ii) There is a finite-dimensional Banach space C and a surjective bounded linear operator L′ : E×
C → F such that L′|E×{0} = L and ker L′ is finite-dimensional.

(iii) There are finite-dimensional Banach spaces C and K and a bounded linear isomorphism

L̂ : E × C → F × K having the form L̂(e, c) = (Le + αc,βe + γc) for some bounded linear

operators α: C → F, β : E→ K, γ: C → K.

Moreover in case (ii) we have ind(L) = dim ker L′−dim C, and in case (iii) we have ind(L) = dim K−
dim C.
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PROOF. (i)⇒(ii): Since Im(L) is closed with F
Im L finite-dimensional, we can find a finite-dimensional

(and hence closed) subspace C ≤ F such that Im(L)⊕ C = F (just take the span of an arbitrary set

of lifts of the basis elements of coker L via the projection F → coker L). Then L′ : E × C → F

defined by L′(e, c) = Le + c will satsify the required property. (This choice of L′ in fact gives

ker L′ = (ker L)× {0}.)
(ii)⇒(iii): Let K = ker L′ ≤ E×C . Since this is finite-dimensional, it is a standard consequence

of the Hahn-Banach theorem that there is a bounded linear map Π: E×C → K such that Πk = k for

all k ∈ K . So define L̂ : E×C → F×K by L̂(e, c) = (L′(e, c),Π(e, c)). This is bounded since L′ and Π

are bounded, and it is clearly injective since ker L′ = K and Π restricts injectively to K . Surjectivity

is only slightly harder: if ( f , k) ∈ F × K we can find x ∈ E × C such that L′x = f . Now since L′

vanishes on K we have L′Π = 0 and so L̂ (x −Πx + k) = (L′x ,Πx −Πx +Πk) = ( f , k). So L̂ is a

bounded linear isomorphism, which is clearly of the desired form (with α given by c 7→ L′(0, c), β

by e 7→ Π(e, 0), and γ by c 7→ Π(0, c)).

(iii)⇒(ii): By the open mapping theorem, the inverse L̂−1 : F × K → E × C is also bounded, so

‖ L̂(e, c)‖ ≥ δ‖(e, c)‖ for all e, c and some number δ > 0 independent of e, c. We thus have

‖e‖= ‖(e, 0)‖ ≤ δ−1‖ L̂(e, 0)‖= δ−1‖(Le,βe)‖ ≤ δ−1(‖Le‖+ ‖βe‖).
But β is a bounded operator to the finite-dimensional Banach space K , so β is a compact operator

(as any bounded set in K is sequentially precompact). Thus Lemma 1.6.14 (and Remark 1.6.15)

proves that L has finite-dimensional kernel and closed range. Moreover the surjectivity of L̂ shows

that F = Im L + Imα where α: C → F has finite rank since C is finite-dimensional. Thus coker L is

finite-dimensional, completing the proof that L is Fredholm.

Now let us obtain the conclusions about the index, first for case (ii). Define α: C → F by

α(c) = L′(0, c), so that L′ is given by L′(e, c) = Le+αc. Since L′ is surjective we have

rank(α) = dim coker L + dim(Im L ∩ Imα).

Meanwhile there is a surjective linear map ker L′→ Im L∩Imα given by (e, c) 7→ Le (or equivalently

(e, c) 7→ −αc), and the kernel of this map is ker L × kerα, so we have

dim ker L′ = dim ker L + dim kerα+ dim(Im L ∩ Imα).

Subtracting the last two displayed equations from each other gives dim ker L′− rank(α) = ind(L)+

dim kerα, which by the rank-plus-nullity theorem proves that dim ker L′ = ind(L) + dim C .

Finally in case (iii), let π denote the projection F × K → F . Since L̂ : E × C → F × K is a linear

isomorphism, it follows thatπ◦ L̂ : E×C → F is surjective, with dim ker(π◦ L̂) = dim K . On the other

hand, the assumption on L̂ shows that π◦ L̂(e, 0) = L(e) for e ∈ E, so π◦ L̂ satisfies the requirements

of case (ii), in view of which, by what we have already shown, dim ker(π ◦ L̂) = ind(L) + dim C .

Thus dim K = ind(L) + dim C , as claimed. �

As the proof shows, given a Fredholm operator L : E → F , we can choose the spaces C and K

in part (iii) to be equal to the cokernel and the kernel of L, respectively; however the freedom to

make other choices is helpful in the following corollary.

COROLLARY 3.4.8. Let E and F be Banach spaces, denote by B(E, F) the space of bounded linear

operators from E to F, and let F red(E, F) ⊂ B(E, F) be the subset consisting of Fredholm opera-

tors. Then F red(E, F) is open with respect to the operator norm topology on B(E, F), and the map

F red(E, F)→ Z defined by L 7→ ind(L) is locally constant.

PROOF. If L ∈ F red(E, F), construct a bounded linear isomorphism L̂ : E×C → F ×K as in (iii)

of Proposition 3.4.7, so L̂(e, c) = (Le + αc,βe + γc) for certain bounded operators α,β ,γ. Recall

that the set of bounded linear isomorphisms between two Banach spaces is open with respect to
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the operator norm topology.3 So if L1 is sufficiently close to L, the operator L̂1 : E × C → F × K

given by L̂1(e, c) = (L1e + αc,βe + γc) will still be a bounded linear isomorphism and hence will

be Fredholm by the implication (iii)⇒(i) of Proposition 3.4.7. Moreover we will have ind(L1) =

ind(L) = dim K − dim C . Thus all bounded linear operators in a sufficiently small neighborhood of

a Fredholm operator L are Fredholm and have the same index as does L, which suffices to prove

the corollary. �

COROLLARY 3.4.9. If E and F are two Banach spaces and γ: [0,1] → F red(E, F) is a path of

Fredholm operators which is continuous with respect to the operator norm topology, then ind(L0) =

ind(L1).

PROOF. The preceding corollary shows that the map t 7→ ind(Lt) is a locally constant function

on [0,1], hence is constant since [0,1] is connected. �

3.4.2. Local structure of moduli spaces of J-holomorphic curves. An immediate conse-

quence of Corollary 3.4.9 is that, given a homotopy {ut}t∈[0,1] of W k,p maps ut : Σ→ M (assumed

also to be C1 if k = 1), the Fredholm index of the linearization Dt
u

from Theorem 3.4.3 is inde-

pendent of t. In fact, by applying Corollary 3.4.9 to a path of Fredholm operators beginning at Du

and ending at the ∂̄ operator on sections of u∗T M with respect to a holomorphic structure on the

complex vector bundle u∗T M , it can be shown using the Hirzebruch Riemann-Roch theorem (see

[MS2, Appendix C]) that

(74) ind(Du) = 2 (n(1− g(Σ)) + 〈c1(T M),u∗[Σ]〉)
where g(Σ) is the genus of Σ, c1(T M) ∈ H2(M ;Z) is the first Chern class of the complex vector

bundle (T M , J), and [Σ] ∈ H2(Σ;Z) is the fundamental class determined by the orientation that

is induced by the complex structure j on Σ. So the index of Du in fact only depends on the class

u∗[Σ] ∈ H2(M ;Z).

For A∈ H2(M ;Z) let us define

M (A, J) = {u: Σ→ M |∂̄J u= 0, u∗[Σ] = A}.
(We do not specify the regularity of u because Theorem 3.3.5 shows that all elements will auto-

matically be smooth if J is smooth, or W k,p if J is C k.) We would like to describe the structure of

M (A, J) in a neighborhood of a general element u ∈M (A, J).

First of all, if Du is surjective, then the implicit function theorem for Banach manifolds asserts4

that a neighborhood of u inM (A, J) will be a smooth manifold of dimension equal to dim ker Du.

The surjectivity of Du is equivalent to the statement that coker Du = {0}, so in this case dim ker Du =

ind(Du) = 2 (n(1− g(Σ)) + 〈c1(T M),A〉). So if Du is surjective for all u ∈ M (A, J) (typically J

is said to be regular if this is the case) then all of M (A, J) is a smooth manifold of dimension

2 (n(1− g(Σ)) + 〈(T M),A〉) (and in particular is empty if this number is negative).

If Du is not surjective we can make a weaker statement. Since Du is Fredholm, Lemma 3.4.7

shows that we can find a finite-dimensional Banach space C with a bounded linear map α: C →
E k−1,p

u
such that the map L′ : W k,p(u∗T M)×C →E k−1,p defined by L′(ξ, c) = Duξ+αc is surjective

and has kernel of dimension equal to ind(Du) + dim C . So the implicit function theorem shows

that a neighborhood N of the point (u, 0) in the space {(v, c) ∈ U × C |P ∇̃∂̄J v + αc = 0} is a

smooth manifold of dimension ind(Du) + dim C; here U is the neighborhood of u in W k,p(u∗T M)

3Sketch proof: If A is a bounded linear isomorphism (which implies that A−1 is bounded by the open mapping theorem)

then A+ ε will have inverse given by
�∑∞

k=0(−A−1ε)k
�

A−1 provided that ε is small enough in operator norm ‖ · ‖op that

‖A−1ε‖op < 1.
4In general the implicit function theorem would require that Du have a bounded right inverse, but this holds automat-

ically in the present context because ker(Du) is finite-dimensional and hence admits a closed complement.
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from Proposition 3.4.1. A neighborhood of u in M (A, J) can then be identified with the preim-

age of 0 under the projection N → C . Thus denoting m = dim C , it is quite generally the case

that a neighborhood of u inM (A, J) is homeomorphic to the preimage of 0 under a smooth map

ψ : Rm+ind(Du) → Rm. Of course such a set in general need not be a manifold (and it also need not

be empty if ind(Du) < 0), but it is at least a finite-dimensional object; this map ψ is an example of

what is called a Kuranishi neighborhood for u. As described in the proof of Lemma 3.4.7, the space

C can be taken equal to coker Du; if we do this then our Kuranishi neighborhood will be given by a

map Rdim ker Du → Rdim coker Du , or, just as well, as a map ker Du→ coker Du.

One would naturally prefer to work with manifolds instead of Kuranishi neighborhoods. Sadly

this is not always possible, but it often is, at least if one is willing to modify the almost complex

structure J . The idea is to consider a whole (possibly infinite-dimensional Banach) manifold J
of almost complex structures, and then look at the map which sends a pair (u, J) to ∂̄J u. As with

u 7→ ∂̄J u this is map is properly seen as a section of a Banach vector bundle; if we trivialize the bundle

around some pair (u, J) with ∂̄J u = 0, the linearization will be a map Du,J : W k,p(u∗T M)× TJJ →
E k−1,p

u
of the form (ξ, Y ) 7→ DJ

u
ξ + AY where DJ

u
is the operator from Proposition 3.4.1 (and we

include J in the notation since it is now variable). Since DJ
u

is already “close to” surjective (it has

finite-dimensional cokernel), it is perhaps plausible that if we take J to be large enough then Du,J

will always be surjective. This runs into trouble when u is a multiple cover, i.e. u = v ◦π for some

branched covering map π: Σ → Σ′, but can generally be arranged otherwise, see [MS2, Chapter

3]. If this is the case, we obtain a “universal moduli space” M̃(A) = {(u, J)|∂̄J u = 0} which is a

smooth (maybe infinite-dimensional) manifold. There is then a projection p : M̃(A)→J given by

(u, J) 7→ J . It is a good exercise for the reader to show that, if J ∈ J is a regular value for this

projection p, then it will hold that DJ
u

is surjective for every u ∈ M (A, J), and hence thatM (A, J)

is a manifold of the “expected dimension” ind(Du). While a particular J ∈ J may not be a regular

value for p, Sard’s theorem (and Smale’s infinite-dimensional generalization of it) implies that many

regular values do exist, allowing this sketch to be carried out at least if one removes multiple covers

from consideration. See [MS2] for a much more complete discussion.

3.5. Pseudoholomorphic curves in the presence of a symplectic structure

While the notion of a pseudoholomorphic curve just requires the target manifold M to carry

an almost complex structure J , Gromov observed [G] that if M carries a symplectic structure with

which J is compatible then J -holomorphic curves satisfy compactness properties which allow them

to be used in a powerful way to study the properties of M ; this has been a major tool in symplectic

topology ever since. First we define the relevant terms.

DEFINITION 3.5.1. A symplectic manifold is a pair (M ,ω) where M is a smooth manifold and

ω ∈ Ω2(M) is a two-form which is closed and nondegenerate (i.e., if x ∈ M and 0 6= v ∈ Tx M then

there is w ∈ Tx M with ω(v, w) 6= 0).

DEFINITION 3.5.2. An almost complex structure J on a symplectic manifold (M ,ω) is said to

be ω-compatible if for all x ∈ M and all v, w ∈ Tx M with v 6= 0 we have ω(J v, Jw) = ω(v, w)

and ω(v, J v) > 0. We write J (M ,ω) for the space of ω-compatible almost complex structures

(equipped with the compact-open topology on maps T M → T M).

We have already seen a large family of examples of symplectic manifolds. If (M , J , g) is a Her-

mitian manifold (so (M , J) is a complex manifold and g is a Riemannian metric obeying g(J v, Jw) =

g(v, w)) then in Section 2.4.1 we defined the fundamental 2-formω ∈ Ω2(M) byω(v, w) = g(J v, w),

and we said that (M , J , g) is a Kähler manifold if dω = 0. Note that in this situation ω is certainly
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nondegenerate, since for any nonzero v ∈ T M we have ω(v, J v) = g(J v, J v) > 0. So Kähler man-

ifolds (M , J , g) can be seen as symplectic manifolds, using the fundamental 2-form ω as the sym-

plectic form. Since (as just noted) ω(v, J v) > 0 for nonzero v, and since ω(J v, Jw) = g(J2v, Jw) =

g(Jw,−v) = ω(w,−v) = ω(v, w), in this situation we have J ∈ J (M ,ω). It’s worth mentioning

that none of the above depended on J being a genuine complex structure as opposed to an almost

complex structure; if (M , J , g) is only almost Hermitian then we can still form the fundamental

2-form ω, and we say that (M , J , g) is almost Kähler if ω is closed. In this situation (M ,ω) will

again be a symplectic manifold with J ∈ J (M ,ω).
Taking a different perspective, we can start with the triple (M ,ω, J)with (M ,ω) symplectic and

J ∈ J (M ,ω) and then obtain a Riemannian metric gJ by the formula gJ (v, w) =ω(v, Jw). It’s easy

to check that (M , J , gJ ) is then an almost Hermitian manifold with ω as its fundamental 2-form.

Accordingly the term “almost Kähler manifold” (or “Kähler manifold” if J is a genuine complex

structure) is sometimes assigned to the data (M ,ω, J) rather than the (equivalent) data (M , J , gJ ).

Before trying to discuss J -holomorphic curves in a given symplectic manifold (M ,ω) for ω-

compatible almost complex structures J , we should make sure that such almost complex structures

exist. Indeed they do:

PROPOSITION 3.5.3. If (M ,ω) is a symplectic manifold then the space J (M ,ω) of ω-compatible

almost complex structures is nonempty and contractible.

PROOF. Let G denote the space of Riemannian metrics on M (equipped with the compact open

topology on maps T M ⊕ T M → R). We will show that J (M ,ω) is homotopy equivalent to G , from

which the result immediately follows since G is nonempty (as can be seen by a construction with

partitions of unity by working in local coordinates) and convex.

More specifically, we will show that the map ι : J (M ,ω)→G given by ι(J) = gJ is a homotopy

equivalence; in particular we must construct a homotopy inverse g 7→ Jg . Let g ∈ G . For each

x ∈ M , the maps w 7→ ω(·, w) and w 7→ g(·, w) each define isomorphisms Tx M → T ∗
x
M (they are

injective by nondegeneracy, and hence surjective by dimensional considerations). Composing one

of these isomorphisms with the inverse of the other gives a smooth invertible map Ag : T M → T M

such that g(v, w) =ω(v,Ag w). This latter property uniquely determines Ag , for if A′
g

is another such

map then the map v 7→ ω(v,Ag w− A′
g
w) would be trivial for all w, forcing Ag w = A′

g
w for all w by

the nondegeneracy of ω. In particular it follows that if g = gJ for some J ∈ J (M ,ω) then Ag = J .

For general g we cannot expect Ag to be an almost complex structure. However we find that,

for x ∈ M and v, w ∈ Tx M ,

(75) g(A2
g
v, w) =ω(A2

g
v,Ag w) = −ω(Ag w,A2

g
v) = −g(Ag w,Ag v)

and likewise g(v,A2
g
w) = −g(Ag v,Ag w). Thus A2

g
is a symmetric operator on each Tx M (with respect

to the inner product given by g). Moreover we see from (75) that g(A2
g
v, v) = −g(Ag v,Ag v)< 0 for

all nonzero v. So A2
g

is a symmetric negative definite operator on each Tx M , from which it follows

that −A2
g

is diagonalizable with all eigenvalues positive. This allows us to define, for any s ∈ R, the

matrix power (−A2
g
)s: one simply has (−A2

g
)s act by multiplication by λs on each λ-eigenspace of

−A2
g
. Now Ag preserves each eigenspace of −A2

g
, so since (−A2

g
)s acts by scalar multiplication on

each such eigenspace (and since the eigenspaces together span Tx M) it follows that

(76) Ag(−A2
g
)s = (−A2

g
)sAg for all s ∈ R.

Let us define Jg = Ag(−A2
g
)−1/2 for each g ∈ G . Then by (76),

J2
g
= Ag(−A2

g
)−1/2Ag(−A2

g
)−1/2 = A2

g
(−A2

g
)−1 = −I ,
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so Jg is an almost complex structure. Moreover for x ∈ M and v, w ∈ Tx M we have (using (75),

(76), and the fact that each (−A2
g
)s, like −A2

g
, is symmetric and positive definite):

ω(Jg v, Jg w) = g
�
Ag(−A2

g
)−1/2v,Ag(−A2

g
)−1/2A−1

g
w
�
= −g

�
(−A2

g
)−1/2v,A2

g
(−A2

g
)−1/2A−1

g
w
�

= g
�
(−A2

g
)−1/2v, (−A2

g
)1/2A−1

g
w
�
= g(v,A−1

g
w) =ω(v, w);

and

ω(v, Jg v) =ω(v,Ag(−A2
g
)−1/2v) = g(v, (−A2

g
)−1/2v)> 0 for v 6= 0.

Thus for all g ∈ G we have Jg ∈ J (M ,ω) and we can define a mapφ : G →J (M ,ω) byφ(g) = Jg .

As mentioned earlier, if g = gJ then Ag = J (and so −A2
g
= I); thus where again ι(J) = gJ we

haveφ◦ι = I . On the other hand ι◦φ sends a general metric g(·, ·) =ω(·,Ag ·) to the metric given by

ω(·,Ag(−A2
g
)−1/2·) = g(·, (−A2

g
)−1/2·). If we define Ht : G → G by setting Ht(g) = g(·, (−A2

g
)−t/2·)

(which is indeed a Riemannian metric since −A2
g

and hence also each (−A2
g
)−t/2 is positive definite)

we thus see that {Ht}t∈[0,1] defines a homotopy from the identity to ι ◦φ. Thus ι and φ are indeed

homotopy inverses. �

Thus any symplectic manifold (M ,ω) can be viewed as an almost Kähler manifold by choosing

some J ∈ J (M ,ω). Such a choice is very non-unique; in fact (by considering the linearization of

the equations on J imposed by requiring that J ∈ J (M ,ω) and appealing to the implicit function

theorem) it is not hard to see that J (M ,ω) is an infinite-dimensional manifold. One large family of

elements of J (M ,ω) can be obtained by starting with one element J0 ∈ J (M ,ω) and considering

φ∗J0φ
−1
∗ for arbitrary diffeomorphisms φ : M → M such that φ∗ω = ω. (There are many such φ,

obtained for instance as the flows of vector fields X such that ω(X , ·) is closed—the nondegeneracy

of ω shows that any closed 1-form determines such an X .)

While symplectic manifolds can always be made almost Kähler, they typically cannot be made

Kähler; the earliest proof of this (in [T]) involves constructing compact symplectic manifolds whose

first Betti number are odd (Thurston’s first example was given by S1 × Y for the three-manifold Y

given by taking the mapping torus of a Dehn twist on the two-torus); we have seen in Corollary

2.5.5 that such a manifold is not Kähler. By now it is well-understood that the class of symplectic

manifolds is vastly larger than the class of Kähler manifolds.

We will now do a computation that indicates the significance of J -holomorphic curves in a sym-

plectic manifold (M ,ω) with J ∈ J (M ,ω). Let (Σ, j) be a compact (almost) complex 2-manifold,

and choose a j-compatible Riemannian metric h on Σ. For any p ∈ Σ, if e1 ∈ TpΣ is any unit vec-

tor (as measured by h), then the j-compatibility of h shows that je1 is also a unit vector and that

h(e1, je1) = h( je1,−e1), so h(e1, je1) = 0; thus {e1, je1} is an orthonormal basis for TpΣ. Accord-

ingly, for a C1 map u: Σ→ M we define

|du|2
gJ
(p) = gJ (u∗e1,u∗e1) + gJ (u∗ je1,u∗ je1).

Since any other unit vector in TpΣ is given by ae1+b je1 with a2+b2 = 1, it’s easy to see that |du(p)|2
gJ

is independent of the choice of unit vector e1. We now compute, for any C1 map u: Σ → M and
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any p ∈ Σ and unit vector e1 ∈ TpΣ,

|du|2
gJ
(p) = gJ (u∗e1,u∗e1) + gJ (u∗ je1,u∗ je1) =ω(u∗e1, Ju∗e1) +ω(u∗ je1, Ju∗ je1)

=ω(u∗e1,u∗ je1) +ω(u∗e1, Ju∗e1 − u∗ je1) +ω(u∗ je1,−u∗e1) +ω(u∗ je1,u∗e1 + Ju∗ je1)

= 2u∗ω(e1, je1) +ω (u∗e1, J(u∗e1 + Ju∗ je1)) +ω (Ju∗ je1, J(u∗e1 + Ju∗ je1))

= 2u∗ω(e1, je1) +ω
�
2(∂̄J u)p(e1), 2J(∂̄J u)p(e1)

�

= 2u∗ω(e1, je1) + 4gJ ((∂̄J u)p(e1), (∂̄J u)p(e1))

= 2
�
u∗ω(e1, je1) + gJ ((∂̄J u)p(e1), (∂̄J u)p(e1)) + gJ ((∂̄J u)p( je1), (∂̄J u)p( je1))

�

where the last equation uses that (∂̄J u)p( je1) = −J(∂̄J u)p(e1), so that (∂̄J u)p( je1) and (∂̄J u)p(e1)

have the same magnitude with respect to gJ .

So if, consistently with our definition of |du|2
gJ
(p), we define |∂̄J u|2

gJ
(p) = gJ ((∂̄J u)p(e1), (∂̄J u)p(e1))+

gJ ((∂̄J u)p( je1), (∂̄J u)p( je1)), we have thus shown that, for any p ∈ M and any unit vector e1 ∈ TpΣ,

we have
1

2
|du|2

gJ
(p) = u∗ω(e1, je1) + |∂̄J u|2

gJ
(p).

Now we can integrate this equation with respect to the volume form volh determined by the Rie-

mannian metric h on Σ together with the orientation given by j; this volume form evaluates at p as

e1 ∧ e2 where {e1, e2} is the dual basis to {e1, je1}. In particular u∗ω(e1, je1)volh = u∗ω(e1, je1)e
1 ∧

e2 = u∗ω. So we obtain

(77)
1

2

ˆ

Σ

|du|2
gJ

volh =

ˆ

Σ

u∗ω+

ˆ

Σ

|∂̄J u|2
gJ

volh.

Now the fact that ω is closed means that the first term on the right-hand side is a topologi-

cal quantity: it is just 〈[ω],u∗[Σ]〉 where [ω] ∈ H2(M) is the de Rham cohomology class of ω.

Meanwhile the second term on the right-hand side is nonnegative, and is zero if and only if u is

J -holomorphic. So we obtain:

COROLLARY 3.5.4. Let (Σ, j,h) be a compact Hermitian manifold of real dimension 2, let (M ,ω)
be a symplectic manifold with J ∈ J (M ,ω), and for any C1 map v : Σ→ M define the energy of v as

the quantity E(v) = 1
2

´

Σ
|dv|2

gJ
volh. Suppose that u: Σ→ M has ∂̄J u= 0. Then:

(i) E(u) = 〈[ω],u∗[Σ]〉.
(ii) If v : Σ→ M represents the same class in H2(M ;Z) as does u, then E(v)≥ E(u)with equality

if and only if v is J-holomorphic.

Thus the energy of a J -holomorphic map—seemingly a geometric quantity—is determined by

its topology, and J -holomorphic maps minimize the energy in their homology classes. One obvious

consequence of Corollary 3.5.4 and the definition of E(u) is that if A ∈ H2(M ;Z) has 〈[ω],A〉 ≤ 0

then A can never be represented by a J -holomorphic curve, except in the case that A= 0 in which

case the only J -holomorphic representatives of A are the constant maps.

3.5.1. Compactness. If we fix a class A∈ H2(M ;Z) and a complex curve (Σ, j) and letM (Σ,A, J) =

{u: Σ→ M |∂̄J u = 0, u∗[Σ] = A}, then Corollary 3.5.4 gives something like a W 1,2 bound on all el-

ements ofM (A, J). A bit more precisely, we could embed M in some Euclidean space RN and use

the usual norm on W 1,2(Σ;RN ) to make sense of the W 1,2 norm of a map u: Σ→ M , and then as

long as M is compact (implying a bound on the L2 norm of any map Σ → M) we would have an

upper bound on all elements ofM (Σ,A, J) in this W 1,2 norm. If we instead were to have a bound

on the W 1,p norms of elements ofM (Σ,A, J) for some p > 2, then Theorem 1.3.16 would imply

that every sequence inM (A, J) has a uniformly convergent subsequence (and with a bit more work
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based on the proof of Theorem 3.3.5 one could even show that the limit is a genuine J -holomorphic

curve). Unfortunately since we are in the “Sobolev borderline” case p = dimΣ = 2, this reasoning

does not quite apply, and indeedM (Σ,A, J) is generally not sequentially compact. However, as we

will discuss (briefly) next, a somewhat weaker form of compactness does hold, in the sense that

M (A, J) can be compactified by adding other objects that are built out of J -holomorphic curves and

adjusting for reparametrization issues.

Before making positive statements, let us give a couple examples which should disabuse the

reader of any hope thatM (Σ,A, J) should generally be compact, while suggesting the limited senses

in which compactness can fail.

EXAMPLE 3.5.5. Let Σ = M = CP1, and let A= [CP1] be the fundamental class. ThenM (Σ,A, J)

is just the set of degree-one holomorphic maps fromCP1 to itself; these are precisely the Möbius transfor-

mationsφ([w : z]) = [cz+d : az+b] for a, b, c, d ∈ Cwith ad 6= bc. (IdentifyingCwith a dense subset

of CP1 via z 7→ [1 : z], these restrict to C as z 7→ az+b
cz+d .) But the group PGL(2;C) of Möbius transfor-

mations is not compact under any reasonable topology. If we let φn([w : z]) = [nw : z] = [w : z
n ], then

for all [w : z] ∈ CP1 \ {[0 : 1]} we have φn([w : z])→ [1 : 0], while φn([0 : 1]) = [0 : 1] for all n.

So {φn} converges pointwise to a discontinuous function, and so no subsequence of {φn} can converge

uniformly to anything.

This issue affects all nonempty spacesM (CP1,A, J) for all nonzero classes A∈ H2(M ;Z), the point

being that if u ∈ M (CP1,A, J) then u ◦ φ ∈ M (CP1,A, J) for all φ ∈ PGL(2;C). For A 6= 0, any

element u of M (CP1,A, J) is nonconstant, so after precomposition by some Möbius transformation

can be arranged to have the property that u([1 : 0]) 6= u([0 : 1]). But then if φn is the sequence

of the previous paragraph, u ◦φn will converge pointwise to a function taking exactly the two values

u([1 : 0]),u([0 : 1]), so u ◦ φn has no subsequence converging to any element of M ([Σ],A, J) (or

indeed to any continuous map, much less a pseudoholomorphic curve).

This suggests that we may have been asking the wrong question, at least when Σ = CP1: instead

of asking for compactness ofM ([Σ],A, J) we should ask for compactness of the quotient of this space

by the equivalence relation given by identifying a general element u with any of its reparametrizations

u◦φ for φ ∈ PGL(2;C). Another way of dealing with this reparametrization issue is to choose distinct

codimension-two submanifolds C1, C2, C3 each having nontrivial intersection number with the class A

and then restrict attention to those elements u ofM (Σ,A, J) such that u(pi) ∈ Ci for i = 1,2,3, where

p1, p2, p3 are three fixed points on CP1. Since reparametrizations of u will typically no longer satisfy

the latter property, this has the effect of eliminating reparametrizations as a source of noncompactness

(at least in generic situations).

EXAMPLE 3.5.6. For this example let M = CP2, equipped with its standard complex structure J and

the Fubini-Study symplectic form ω from Example 2.5.9. Let H denote the positive (i.e. 〈[ω], H〉> 0)

generator for H2(CP2;Z).

The idea in this example is to consider the limit of the of the complex curves {(x , y) ∈ C2|x y =

1/n}; after including them into CP2 and taking the closure to obtain a curve Cn ⊂ CP2, these curves

can each be seen as copies of CP1 representing the homology class 2H, while their limit, which would

be the closure in CP2 of {x = 0}∪ {y = 0} ⊂ C2, is a union of two copies of CP1 each representing the

class H.

To phrase this in terms of holomorphic maps, the Cn are the images of maps un : CP1 → CP2

obtained by extending the map z 7→
�

1
nz , z

�
from C \ {0} to C2 to a map between projective spaces. So

for w 6= 0 we should have un([1 : z
w ]) =

�
1 : 1

nz/w : z
w

�
; clearing denominators yields a map on all of

CP1, namely

un([w : z]) =
�
[nzw : w2 : nz2]

�
=

�
zw :

w2

n
: z2

�
.
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From this formula it should be clear that

As n→∞, un([w : z])→
§
[w : 0 : z] if [w : z] 6= [1 : 0]

[0 : 1 : 0] if [w : z] = [1 : 0]
.

So somewhat similarly to Example 3.5.5, the sequence {un}∞n=1
converges pointwise to a discontinuous

function, so does not converge uniformly to any function. For any given compact subset K of CP1 \{[1 :

0]}, un|K does converge uniformly to the function u|K , where u: CP1→ CP2 is defined by u([w : z]) =

[w : 0 : z]. In other words u has image given by the closure in CP2 of the complex line {(x , y) : x =

0} ⊂ C2. This is one half of the union of two complex projectivized lines that we expected to be the limit

of Cn. So our maps un converge away from the point [1 : 0], but the image of the limit u is “missing”

the copy of CP1 corresponding to the line {(x , y) : y = 0}.
It turns out that we can recover this missing line by reparametrizing the un; this essentially allows

for a better understanding of the behavior of un near the “bubble point” [1 : 0]. As in Example 3.5.5

let φn([w : z]) = [nw : z] = [w : z/n]. Note that for large n and any fixed neighborhood U of [1 : 0]

with closure contained in CP1 \ {[0 : 1]}, φn maps U to a very small neighborhood of [1 : 0]. Hence

if we consider the behavior of the sequence {un ◦φn} then we are essentially “zooming in” on [1 : 0],

which is the point at which our original sequence {un} behaved poorly. We find that

un ◦φn([w : z]) = [nzw : nw2 : z2] =

�
zw : w2 :

z2

n

�

and so

As n→∞, un ◦φn([w : z])→
§
[z : w : 0] if [w : z] 6= [0 : 1]

[0 : 0 : 1] if [w : z] = [0 : 1].
.

So the sequence {un ◦ φn} converges uniformly on compact subsets of CP1 \ {[0 : 1]} to the map

v([w : z]) = [z : w : 0]; this latter map has image equal precisely to the “other half” {y = 0} of the

expected limit of the curves Cn.

Thus the sequence of maps un ∈ M (CP1, 2A, J) has a uniform-on-compact-subsets limit u on the

complement of a single bubble point (and u extends to a map over the bubble point, though it is no

longer the limit of {un} there); by reparametrizing so as to zoom in on this bubble point we obtain a

sequence having a limit v which likewise extends to a map of CP1. This map v is called a “bubble,” and

the sequence {un} is said to weakly converge to the “bubble tree” (u, v). The formal definition of weak

convergence is rather involved and I will not attempt to give it, but obviously it is not convergence in any

Sobolev space or C k sense, since (u, v) is not a map but rather a pair of maps. In particular this reflects

thatM (CP1, 2H, J) (and likewise its quotient by reparametrizations) is not compact. However it also

suggests that the one can obtain fromM (CP1, 2H, J) a space that is at least closer to being compact

by adding objects which are made out of J-holomorphic curves whose homology classes have sum equal

to 2H.

With very little time left in the semester, I don’t intend to give a serious proof of the compactness

theorem, but will indicate now some of the basic ingredients. I gave a more complete account in

[U1, Section 8], and [MS2, Chapter 5] contains a still-more-detailed treatment. Fix a compact sym-

plectic manifold (M ,ω) with an almost complex structure J ∈ J (M ,ω), let (Σ, j,h) be a compact

Hermitian manifold of real dimension two, and let A ∈ H2(M ;Z). Also let D(r) denote the closed

disk in C of radius r around the origin. Suppose that {un}∞n=1
is a sequence in the moduli space

M (Σ,A, J) = {u: Σ→ M |∂̄J u = 0, u∗[Σ] = A}. We can use h and gJ to measure quantities such as

|du(p)| for any point p ∈ Σ. The energy of a map u: C → M (where C is now a complex curve pos-

sibly with boundary—usually C will be a subset of Σ or its image under a holomorphic coordinate

chart) is again defined as E(u) = 1
2

´

C |du|2vol. By Corollary 3.5.4 we have E(u) =
´

C u∗ω when u

is J -holomorphic.
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(i) Suppose that K ⊂ Σ is any compact subset on which there is a uniform bound ‖dun|K‖L∞ <

C . Then the Arzelà-Ascoli theorem gives a subsequence of un which converges uniformly

on K . In fact with a little more work using the methods of Section 3.3, one can obtain

W 2,p bounds on the un for p > 2, which implies that (after passing to an appropriate

subsequence) their derivatives also converge uniformly, and so the limit will in fact be a

J -holomorphic curve.

(ii) A result sometimes called “Gromov’s Schwarz Lemma” ([U1, Corollary 8.14]) asserts that

there are constants C ,ħh> 0 depending only on (M , J) such that any J -holomorphic map

u: D(1)→ M such that E(u) < ħh obeys |du(0)| ≤ C . By reparametrizing we see that any

J -holomorphic map u: D(r)→ M such that E(u) < ħh obeys |du(0)| ≤ C
r . It follows from

this that if p ∈ Σ and if |dun(p)| →∞ then p must be a “bubble point” in the following

sense:

(78) For every neighborhood U of p, lim inf
n→∞

E(un|U)≥ ħh.

A little more strongly, if U is an neighborhood of p with each E(un|U)< ħh and V ⋐ U then

we can apply Gromov’s Schwarz Lemma to coordinate neighborhoods centered at points

in V to obtain a bound ‖dun|V | ≤ CV for a constant CV . Thus for any p ∈ Σ, either p has a

neighborhood Vp on which ‖dun|Vp
‖L∞ is bounded or else p is a bubble point in the sense

of (78).

(iii) Note that since E(un) = 〈[ω],A〉 is independent of n, we can pass to a subsequence of

un for which there are only finitely many (more specifically, at most
〈[ω],A〉
ħh ) bubble points

p1, . . . , pN . (Choose one bubble point p1 and pass to a subsequence—still called un—for

which E(un|U) ≥ ħh for all neighborhoods U of p1 and all sufficiently large n, i.e. so that

every subsubsequence of our subsequence still has p1 as a bubble point, then repeat for

a bubble point p2 of this subsequence, and so on until no bubble points are left. This

process stops after at most
〈[ω],A〉
ħh steps since arbitrarily small neighborhoods of each of

the bubble points contribute energy at least ħh to every subsequence.) Moreover, the last

sentence of (ii) combined with (i) shows that a further subsequence of {un} converges

uniformly to a pseudoholomorphic curve u: Σ \ {p1, . . . , pN} → M on compact subsets of

Σ\{p1, . . . , pN}. Passing to a further subsequence if necessary (and perhaps deleting some

of the pi), we may as well assume that each pi is a bubble point for every subsequence of

{un}.
(iv) A pseudoholomorphic version of the removal of singularities theorem from complex anal-

ysis ([U1, Theorem 8.11]) asserts that a finite energy J -holomorphic map v : D(1)\{0} →
M extends over the origin to a J -holomorphic map on all of D(1). Applying this in coordi-

nate neighborhoods of p1, . . . , pN to the map u from the end of (iii) shows that u extends

to a J -holomorphic map u: Σ→ M . Thus, much like in Example 3.5.6, we have found a

map J -holomorphic map u: Σ→ M and a finite set {p1, . . . , pN} such that a subsequence

of {un} converges uniformly on compact subsets of Σ \ {p1, . . . , pN} to u, and such that

the derivatives likewise converge uniformly on compact subsets of Σ \ {p1, . . . , pN}. By

the definition of a bubble point (and the condition in the last sentence of (iii)), for every

K ⋐ Σ\{p1, . . . , pN}we will have E(un|K)≤ 〈[ω],A〉−Nħh, and hence E(u)≤ 〈[ω],A〉−Nħh.

In particular if our subsequence has any bubble points, then u: Σ→ M will represent a

class having strictly smaller pairing with [ω] than does A.

(v) We now consider the behavior near the bubble points. Let pi be one of these points, iden-

tify a neighborhood of pi by a holomorphic coordinate chart with D(1) ⊂ C (with pi corre-

sponding to 0), and identify the maps un with their representations un : D(1)→ M in these

coordinate charts. A fairly elementary argument (see [U1, Lemmas 8.19 and 8.20]) allows
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one to find a sequence ζn→ 0 and numbers εn→ 0 such that rn := εn|dun(ζn)| →∞ and

|dun(ζn+w)| ≤ 2|dun(ζn)| whenever |w| ≤ εn. One then defines maps vn : D(rn)→ M by

vn(z) = un

�
ζn +

z

|dun(ζn)|

�
.

In other words we are zooming in on a sequence of points ζn converging to 0 at which

|dun| is large. By construction |dvn(0)|= 1 for all n, and the condition that |dun(ζn+w)| ≤
2|dun(ζn)| whenever |w| ≤ εn implies that |dvn(z)| ≤ 2 for all z in the domain D(rn) of vn.

But rn→∞, so it follows from (i) that a subsequence of {vn} converges uniformly on com-

pact subsets to a J -holomorphic map v : C→ M . Certainly the energy of v is no greater

than 〈[ω],A〉. Even better, viewing C as the complement of a point in CP1 in the usual

way, by applying the removal of singularities theorem from (iv) to a coordinate neighbor-

hood of the point at infinity we find that v extends to a J -holomorphic map v : CP1→ M .

Thus associated to each bubble point p we have produced a holomorphic sphere v in M , by

rescaling the domains of restrictions of the vn to certain open subsets contained in small

neighborhoods of v. This sphere is nonconstant, since |dv(0)| = limn→∞ |dvn(0)| = 1.

Also for any neighborhod U of p, the quantity lim infn→∞ E(un|U) is at least equal to the

energy of v.

The above outline shows how a sequence {un} inM (Σ,A, J) has a subsequence which converges

on the complement of finitely many bubble points to an element u ∈M (Σ, B, J) (with B = A if and

only if there are no bubble points, and 〈[ω], B〉 < 〈[ω],A〉 otherwise), and moreover produces a

nonconstant J -holomorphic sphere v(i) from the behavior of the un near each bubble point pi . A

more refined argument (which in particular involves a different approach to rescaling in (v) above)

builds a “bubble tree” consisting of u together with collections of J -holomorphic spheres sprouting

off of each of the bubble points (and possibly bubbling off of each other), such that the sum of all

of the homology classes of all the resulting curves is equal to A. Note that while our spheres v(i)

are nonconstant, it is possible for u to be constant—this is what happens with the sequence {φn} in

Example 3.5.5.

By the way, the same conclusions about convergence to a J -holomorphic bubble tree hold if,

instead of assuming that un ∈ M (Σ,A, J) for some fixed J , we assume that un ∈ M (Σ,A, Jn) for

some sequence Jn of almost complex structures that C0-converges to J , in which case the limit will

be J -holomorphic.

3.6. Sketch of a proof of the non-squeezing theorem

In this final section we indicate how the general theory that we have discussed can be used to

prove Gromov’s non-squeezing theorem [G]; this is one of the earliest applications of pseudoholo-

morphic curves, and remains one of the most famous.

We now set up notation for the theorem, using contemporary notation for the sets involved.

For n ∈ N we write points in R2n as (~x , ~y) = (x1, . . . , xn, y1, . . . , yn), and use the symplectic form

ω0 =
∑

i d x i ∧ d yi on R2n. For a ≥ 0 we define the ball

B2n(a) = {(~x , ~y ∈ R2n|π
∑

i

(x2
i
+ y2

i
)≤ a},

so B2n(a) intersects the x1 y1 plane in a disk of area a, and B2n(a) is a ball of radius
Æ

a
π . Also let

Z2n(a) = {(~x , ~y) ∈ R2n|π(x2
1
+ y2

1
)≤ a},

so Z2n(a) = B2(a)×R2n−2, with the natural product symplectic structure.
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A basic feature of symplectic geometry is that a symplectic manifold (M ,ω) admits many sym-

plectomorphisms (i.e. diffeomorphisms obeying φ∗ω =ω), obtained for instance as flows of vector

fields X such that ω(X , ·) is closed. For some time it was unclear what sorts of qualitative proper-

ties a symplectomorphism φ necessarily satisfies, other than the easy fact that φ must preserve the

volume form given as the top exterior power of ω. The following non-squeezing theorem was the

first significant constraint going beyond volume preservation.

THEOREM 3.6.1 (Gromov’s non-squeezing theorem). Suppose that φ : B2n(a) → Z2n(A) is an

embedding with φ∗ω0 =ω0. Then a ≤ A.

So in particular a symplectomorphism of R2n can never map B2n(a) into Z2n(A) if A< a; on the

other hand certainly there are (for n≥ 2) many volume-preserving diffeomorphisms of R2n that do

so. For that matter if we had defined Z2n(A) slightly differently the theorem would be false: given

any a,A, for sufficiently small λ > 0 the map φ(~x , ~y) = (λ~x ,λ−1 ~y) is a symplectomorphism that

maps B2n(a) into {(~x , ~y)|π(x2
1
+ x2

2
) ≤ A}. So it is essential that the cylinder Z2n(A) was defined

using the variables x1, y1, not x1, x2.

To start the proof of Theorem 3.6.1, first note that here will be some N > 0 such thatφ(B2n(a)) ⊂
int([−N , N]2n), so if we let T 2n

N
= R

2n−2

2NZ2n−2 it suffices to show that (for any N) if there is an embed-

ding φ : B2n(a)→ B2(A)× T 2n
N

with φ∗ωN =ω0 then a ≤ A. (The point of doing ths is to make the

codomain compact.) Here ω is the sympletic form on R2× T 2n
N

that pulls back by the quotient map

to the standard symplectic form on R2n.

For any b > 0 let S2(b) denote the symplectic manifold whose underlying smooth manifold is

S2 and has symplectic form whose integral over S2 is b. (It’s a basic symplectic geometry exercise

to show that this determines S2(b) up to symplectomorphism. Of course for a concrete version one

could use an appropriate multiple of the Fubini-Study form from Example 2.5.9.) Whenever a < b,

B2n(a) (with its standard symplectic structure) can be seen as a codimension-zero submanifold-

with-boundary of S2(b) The key lemma is:

LEMMA 3.6.2. For any positive real numbers b, N, let J be any almost complex structure that is

compatible with the product symplectic form Ω on S2(b)×T 2n−2
N

. Choose any point x0 ∈ S2(b)×T 2n−2
N

.

Then there is a J-holomorphic map u: CP1 → S2(b) × T 2n−2
B

such that u∗[CP1] = [S2 × {pt}] and

x0 ∈ Im(u).

PROOF. (Sketch) Letπ1 : S2(b)×T 2n−2
N
→ S2 andπ2 : S2(b)×T 2n−2

N
→ T 2n−2

N
for the projections,

and choose points s1, s∞ ∈ S2 such that the elements π1(x0), s1, s∞ are all distinct. Identify CP1

with C∪ {∞} in the standard way, so we have three distinguished points 0,1,∞∈ CP1.

For any J ∈ J (S2(b)× T 2n−2
N

,Ω), consider the space

MJ =

�
u: CP1→ S2

����
∂̄J u= 0, u∗[CP1] = [S2 × {pt}],

u(0) = x0, π1(u(1)) = s1, π2(u(∞)) = s∞

�
.

Evidently it suffices to show that, for every J ,MJ is nonempty. (The conditions on u(1),u(∞) are

introduced to eliminate reparametrization symmetry, as suggested at the end of Example 3.5.5.)

These spaces fit into a simple modification of the Banach manifold setup described before Proposi-

tion 3.4.1: for k ≥ 1, p > 2 we have a bundle E k−1,p →W k,p(CP1, M) of which ∂̄J is a section, and

we can also consider the “evaluation map” e : W k,p(CP1, M)→ (S2 × T 2n−2
N
)× S2 × S2 defined by

e(u) = (u(0),π1(u(1)),π1(u(∞)).
By locally trivializing the bundle E k,p using parallel transport as before, we see that the intersection

ofMJ with a small neighborhoodU of an element u ∈ W k,p(u∗T M) is given by the preimage of the
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point (0, (x0, s1, s∞)) ∈ E k−1,p
u
×
�
(S2 × T 2n−2

N
)
�
× S2 × S2 under the map u 7→ (P ∇̃∂̄J u, e(u)). This

map has linearization

Du : W k,p(u∗T M)→E k−1,p
u
× Tx0

(S2 × T 2n−2
N
)× Ts1

S2 × Ts∞S2

ξ 7→ (Duξ,ξ(0),π1∗ξ(1),π2∗ξ(∞))
where Du is the operator from Proposition 3.4.1, which was shown to be Fredholm in Theorem

3.4.3.

Since the codomain of Du is the product of the codomain of Du with a (2n + 4)-dimensional

vector space, it is not hard to see from Theorem 3.4.7 that Du is also Fredholm and that ind(Du) =

ind(Du)− (2n+4). According to (74), we have ind(Du) = 2(n+ 〈c1(T (S
2× T2n−2)), [S

2×{pt}]〉) =
2(n+〈c1(TS2), [S2]〉) = 2(n+2) since c1(TS2) coincides with the Euler class of TS2 and so evaluates

on the fundamental class to give the Euler characteristic of S2, i.e., 2. Thus ind(Du) = 0, so if Du is

surjective at all elements ofMJ thenMJ will be a zero-dimensional manifold. Let us call an almost

complex structure J regular if Du is surjective at all u ∈MJ .

Let’s see how this works when our almost complex structure J on S2 × T 2n−2
N

is the “product

complex structure” J0, obtained by acting separately on TS2 and T T 2n−2
N

by the standard complex

structures on these manifolds (where S2 is identified with CP1 and T 2n−2
N

is viewed as a quotient

of Cn−1). We can then write any map u: CP1 → S2 × T 2n−2
N

as u = (π1 ◦ u,◦π2 ◦ u), and ∂̄J0
u = 0

if and only if both π1 ◦ u: CP1 → S2 and π2 ◦ u: CP1 → T 2n−2
N

are holomorphic with respect to

the standard complex structures. The statement that u∗[CP1] = [S2 × {pt}] is equivalent to the

statement that (π1 ◦ u)∗[CP1] = [S2] and (π2 ◦ u)∗[CP1] = 0. So in this case ∂̄J0
= 0 if and only if

(again identifying S2 withCP1) π1◦u is a Möbius transformation and π2◦u is constant (as Corollary

3.5.4 shows that a holomorphic null-homologous map from a compact domain must be constant).

From this we see that

(79) MJ0
consists of exactly one element uJ0

= (uS ,uT ),

where uS : CP1 → CP1 is the unique Möbius transformation sending 0,1,∞ to π1(x0), s1, s∞ re-

spectively, and uT is the constant map to π2(x0).

In fact it’s not hard to see that DuJ0
is surjective; since we already determined that DuJ0

has

index zero it suffices to show that DuJ0
is injective.5 Because J0 is the product complex structure, an

element of kerDuJ0
is given by a pair (ξS ,ξT )where ξS is a holomorphic section of (the holomorphic

line bundle) u∗
S
TS2 and ξT is a holomorphic section of u∗

T
T 2n−2

N
, satisfying the additional properties

that ξS(0) = ξS(1) = ξS(∞) = 0 and that ξT (0) = 0 in order to preserve the conditions on

u(0),u(1),u(∞). Now uT is a constant map, so a holomorphic section of u∗
T

T 2n−2
N

is the same thing

as a holomorphic map CP1 → Cn−1, any one of which is constant, so the condition that ξT (0) = 0

implies that ξT = 0 whenever (ξS ,ξT ) ∈ kerDuJ0
. As for ξS , one can see in various ways that

a holomorphic section of the bundle u∗
S
T M that has more than two zeros must vanish identically.

From an algebraic geometry perspective this is because u∗
S
T M has degree two and any zero of a not-

identically-zero section contributes positively to the degree. For a more elementary argument, one

can find a section X of u∗
S
T M vanishing to order one exactly at 0 and∞ (for instance, take a vector

field generating a one-parameter family of Möbius transformations each of which fixes s0, s∞, and

then pull this vector field back by the holomorphic map uS), and then the ratio
ξS

X is (after removal

5Alternatively, if one didn’t want to appeal to the index computation (74), one could show that DuJ0
is surjective by

showing that the adjoint of DuJ0
is injective. This would involve first computing this adjoint in terms of sections of various

holomorphic line bundles over CP1 and then applying a similar analysis to the argument that DuJ0
is injective that we give

presently.
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of singularities) a well-defined holomorphic function CP1 → C which vanishes at 1. But the only

holomorphic functions CP1 → C are constants, so in fact ξS = 0. So indeed kerDuJ0
= {0}, which

implies that J0 is a regular almost complex structure in the sense defined earlier.

The key now is to consider one parameter families of almost complex structures {Jt}t∈[0,1]

beginning at our regular complex structure J0, and their associated “parametrized moduli spaces”

M{Jt} = {(t,u) ∈ [0,1]×W k,p(CP1,S2 × T 2n−2
N
)|u ∈MJt

}.
One finds by a similar analysis to what we have seen before that any such space is locally modeled

by the zero locus of a Fredholm operator of index equal to ind(Du) + 1, i.e. to 1. If this Fredholm

operator is surjective at all elements ofM{Jt}, thenM{Jt} will be a one-dimensional manifold with

boundary, the boundary consisting of the points with t = 0 or t = 1. An argument with the Sard-

Smale theorem along the lines suggested at the end of Section 3.4.2 shows that, for any k, there is a

C k-dense set in the space of paths of Ω-compatible almost complex structures {Jt}t∈[0,1] beginning

at J0 such that this surjectivity property is satisfied. Thus, for any member of this dense set of paths,

M{Jt} is a one-manifold with boundary consisting of the set {(0,uJ0
))} ⊔ ({1} ×MJ1

).

The final crucial point is that any suchM{Jt} is compact. To explain why, we know from Section

3.5.1 that if a sequence {(tm,um)}∞m=1
failed to have a convergent subsequence, then this sequence

would necessarily form bubbles. These bubbles would be nonconstant Jtm
-holomorphic spheres

v : CP1 → S2 × T 2n−2
N

, each having energy E(v) bounded above by the energy of each of the um,

namely 〈[Ω], [S2 × {pt}]〉 = b. Now elementary fundamental group considerations show that v

lifts to a map CP1 → S2 × Cn−1, so we must have v∗[CP1] = k[S2 × {pt}] for some k ∈ Z. But

E(v) =
´

CP1 v∗Ω = 〈[Ω], v∗[CP1]〉 is both positive (since v is nonconstant) and bounded above by

b, so the only possibility for bubbling would be that k = 1, in which case v would be the only

bubble and the almost-everywere limit u of the um would be constant. In fact this last possibility

is prevented by the incidence conditions that um(0) = x0, π1(um(1)) = s1, and π1(um(∞)) = s∞,

since {um} converges to u on the complement of its set of bubble points, and so if there is only one

bubble point then u would take distinct values at at least two of the three points 0,1,∞. So u

cannot be constant, in view of which no bubbling can occur andM{Jt} is compact.

It thus follows that for any path {Jt} in our dense set, M{Jt} is a compact 1-manifold with

boundary equal to {(0,uJ0
))} ⊔ ({1} ×MJ1

). But a compact 1-manifold with boundary can never

have exactly one boundary point; thusMJ1
is nonempty.

This holds for arbitrary almost complex structures J1 that arise as endpoints of paths {Jt} in

our C k-dense set. Now if J ∈ J (S2 × T 2n−2
N

,Ω) is a completely arbitary compatible almost complex

structure, then since Proposition 3.5.3 implies the existence of paths in J (S2 × T 2n−2
N

,Ω) from J0

to J , we can approximate one such path by a sequence of paths in our dense set, and this yields

a sequence of almost complex structures Jm with Jm → J and eachMJm
nonempty, say with um ∈

MJm
. The same compactness argument as that given two paragraphs ago shows that the um have a

subsequence that converges to an element ofMJ , finally proving thatMJ is nonempty. �

We now apply this lemma to our embedding problem. Suppose we have an embeddingφ : B2n(a)→
Z2n(A) with φ∗ω0 = ω0. As noted earlier, for sufficiently large N we can replace the codomain by

B2(A) × T 2n−2
N

and we will still have an embedding. Now let ε > 0, and consider the symplectic

manifold (S2(A+ ε)× T 2n−2
N

,Ω) where Ω is the same symplectic structure as in Lemma 3.6.2; using

the (symplectic) inclusion B2(A) ⊂ S2(A+ ε), φ is an embedding B2n(a) ,→ S2(A+ ε)× T 2n−2
N

with

φ∗Ω =ω0.

Now let J0 be the standard complex structure on Cn ⊃ B2n(a). Because φ∗Ω = ω0, the almost

complex structure given by φ∗ ◦ J0 ◦φ−1
∗ on φ(B2n(a)) is compatible with (the restriction of) Ω. By

the proof of Proposition 3.5.3, we may construct an Ω-compatible almost complex structure J on
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S2(A+ε)×T 2n−2
N

whose restriction to φ(B2n(a−ε)) is equal to φ∗J0φ
−1
∗ . (Use a partition of unity to

construct a Riemannian metric restricting to φ(B2n(a−ε)) as gφ∗J0φ−1
∗

and input this metric into the

map g 7→ Jg constructed in the proof of Propositon 3.5.3.) Lemma 3.6.2 produces a J -holomorphic

curve u: CP1→ S2(b)× T 2n−2
N

such that u(0) = φ(~0, ~0). The condition on the homology class of u

means that E(u) = A+ ε.
Now S := u−1(φ(B2n(a − ε))◦) is an open subset of CP1, and we have a well-defined map

φ−1 ◦u: S→ B2n(a− ε)◦ (the superscript ◦ means interior). Because J coincides with φ∗ ◦ J0 ◦φ−1
∗

on S, this map φ−1 ◦ u is in fact J0-holomorphic. Moreover

E(φ−1 ◦ u) =

ˆ

S

(φ−1 ◦ u)∗ω0 =

ˆ

S

u∗Ω = E(u|S)≤ E(u) = A+ ε.

By construction, φ−1 ◦ u(0) = (~0, ~0). If c < a − ε is any regular value of the smooth function

π‖φ−1 ◦ u‖2, then Sc := u−1(φ(B2n(c))) is a subsurface-with-boundary of CP1, such that φ−1 ◦
u|Sc

: Sc → B2n(c) is a J0-holomorphic map with φ−1 ◦ u(∂ Sc) ⊂ ∂ B2n(c). So by Sard’s theorem (or

the weaker statement that there exist regular values arbitrarily close to a− ε) we conclude:

PROPOSITION 3.6.3. Suppose that there is an embedding φ : B2n(a)→ Z2n(A) with φ∗ω0 =ω0,

and let ε > 0. Then there is c > a− 2ε, a compact almost complex 2-manifold with boundary Sc , and

a J0-holomorphic map v : Sc → B2n(c) such that (~0, ~0) ∈ Im(v), v(∂ Sc) ⊂ ∂ B2n(c), and E(v)≤ A+ ε.

The key fact now is that a holomorphic map v : Sc → B2n(c) with (~0, ~0) ∈ Im(v) and v(∂ Sc) ⊂
B2n(c) necessarily has E(v)≥ c. So we obtain inequalities a− 2ε < c ≤ E(v)≤ A+ ε, which since ε
is arbitrary concludes the proof of the non-squeezing theorem modulo this lower bound E(v)≥ c on

the energy of a holomorphic map with image passing through the origin and boundary contained

in the boundary of a ball of cross-sectional area c.

So we finally sketch the proof of this lower bound E(v)≥ c. For 0≤ t ≤ c let St = v−1(B2n(t)).

Whenever t is a regular value of the function π‖v‖2 : Sc → R, St is a submanifold with boundary of

Sc , with v restricting as a J0-holomorphic map of pairs (St ,∂ St)→ (B2n(t),∂ B2n(t)). Furthermore,

still assuming that t is a regular value of π‖v‖2, v|St
is transverse to ∂ B2n(t), so at each point of

∂ St the outward normal vector is mapped by v∗ to a vector pointing outward from ∂ B2n(t).

For all t ∈ [0, c] let α(t) denote the area of St as a subset of Sc with the measure given by

the pulled back form v∗ω0. This quantity is well-defined for all t ∈ [0, c] and gives a monotone

increasing function; for those t which are additionally regular values of π‖v‖2 it additionally holds

that St is a smooth manifold with boundary and α(t) is the integral of (v|St
)∗ω over this manifold

with boundary.

Also, for each regular value t of π‖v‖2, let λ(t) denote the length of the parametrized curve

v|∂ St
. Fix such a t, and let us parametrize ∂ St by a map γ: I → ∂ St where I is a union of circles

R

ℓ jZ
each having angular coordinate τ, consistently with the orientation of ∂ St , in such a way that

v∗
dγ
dτ has length 1 with respect to the standard metric gJ0

. Thus λ(t) =
∑
ℓ j . Then − j

dγ
dτ is an

outward normal along ∂ St , so as noted earlier v∗
�
− j

dγ
dτ

�
points outward from ∂ B2n(t). Since v is

J -holomorphic this latter vector is equal to −J v∗
dγ
dτ , and so it also has length 1 and is orthogonal to

v∗
dγ
d t . So for small ε, flowing out from ∂ St along the vector field −ε j

dγ
dτ extends St to a subsurface

Sε
t

of Sc which is mapped by v inside the ball of radius
q

t
π + ε+ o(ε), and the energy of v on the

newly-introduced part Sε
t
\St is ελ(t)+ o(ε). (Here as usual o(ε) is a generic symbol for a quantity

depending on ε such that limε→0
o(ε)
ε = 0.) This proves that, for t a regular value of π‖v‖2, we have

lim inf
ε→0+

α(t + 2
p
πtε)−α(t)
ε

≥ λ(t),
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and so since the implicit function theorem fairly readily implies that α(t) is differentiable near t

when t is a regular value of π‖v‖2,

(80) α′(t)≥ λ(t)

2
p
πt

when t is a regular value of π‖v‖2.

The final ingredient is then given by a mild adaptation of the classic isoperimetric inequality

that in turn bounds λ(t) below in terms of α(t). The standard isoperimetric inequality (see [O])

says that if C is a compact 2-manifold with boundary and w: C → R2 is smooth then the length

L of the parametrized curve w|∂ C obeys L2 ≥ 4π
´

C w∗ω0. If instead we have a map w: C → R2n

then, denoting by p1, . . . , pn : R2n → R2 the projections to the various complex coordinate planes,

one has
´

C w∗ω0 =
∑n

i=1

´

C(pi ◦ w)∗ω0 (where ω0 is the standard symplectic form on R2n or R as

appropriate). Meanwhile, if we parametrize each component of ∂ C by γ j : R/Z → ∂ C in such a

way that w∗
dγ j

dτ is a unit vector at all times, then we have

Leng th(w|2∂ C
) =

∑

j

ˆ 1

0

‖γ′
j
(τ)‖2dτ=

∑

i

∑

j

ˆ 1

0

‖(pi ◦ γ)′j(τ)‖2dτ

≥
∑

i

Leng th(pi ◦ w|∂ C)
2

where the last inequality follows from the Schwarz inequality (it may not be an inequality because

the pi◦w probably will not be constant-speed-parametrized). So the standard isoperimetric inequal-

ity shows that maps w: C → R2n continue to obey Leng th(w|∂ C)
2 ≥ 4π

´

C w∗ω0. Applying this to

our maps v : St → Cn yields

λ(t)2 ≥ 4πα(t) when t is a regular value of π‖v‖2.

Combining this with (80) shows that, for any regular value t of π‖v‖2, we have α′(t)≥
Ç
α(t)

t . But

then
d

d t

�Æ
α(t)−

p
t
�
=

α′(t)

2
p
α(t)
− 1

2
p

t
≥ 0

whenever t is a regular value6 of π‖v‖2. Since Sard’s theorem shows that the regular values of

π‖v‖2 form a full measure set, and since α is monotone increasing for all t (not just for regular

values) and α(0) = 0, it follows easily that
p
α(t) ≥ pt for all t ∈ [0, c]. In particular α(c) ≥ c, so

the map v produced by Proposition 3.6.3 has energy greater than or equal to c.

As noted earlier, this directly proves that a − 2ε < A+ ε, which since ε is arbitrary completes

the proof of the non-squeezing theorem.

6Note that the fact that v(0) = ~0 implies that the sets St are never empty, which implies that α(t) > 0 at all regular

values, justifying the division by
p
α(t).
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