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1. SUBMANIFOLDS

Throughout this section fix a smooth m-dimensional manifold M .

Definition 1.1. Let N be a smooth manifold and let φ : N → M be a smooth map. Then

• φ is called a submersion if, for all x ∈ N , the linearization φ∗ : Tx N → Tφ(x)M is
surjective.
• φ is called an immersion if, for all x ∈ N , the linearization φ∗ : Tx N → Tφ(x)M is

injective.
• φ is called an embedding if it is an immersion and, moreover, the map φ is a homeo-

morphism from N to φ(N), where φ(N) is equipped with the subspace topology.

Here are some examples; if these notions are unfamiliar to you then you should check for
yourself that they satisfy the respective definitions.

Example 1.2. (i) The projectionπ: Rn→ Rm onto the first m coordinates (assuming m≤ n)

is a submersion; in fact this provides a local model for all submersions, as will follow

from the proof of Theorem 1.8. For a more interesting global example, the projection

π: Rn+1 \ {~0} → RPn is a submersion (as is the projection Sn→ RPn).

(ii) Dually, if n ≤ m, then the inclusion i : Rn → Rm (defined by i(~x) = (~x , ~0) where Rm is

split as Rn ×Rm−n) is an example of an embedding.

(iii) A simple example of an immersion which is not an embedding is the map φ : R→ C given

by φ(x) = ei x .

(iv) Of course the problem with (iii) was that it wasn’t injective, but one can also construct

examples of injective immersions which are not embeddings. For instance, take two smooth

functions f , g : R → R such that for all t < 0 one has f (t) = t and g(t) = 0, and

such that there is no t ∈ R such that f ′(t) = g ′(t) = 0. Then the map φ : R → R2

defined by φ(t) = ( f (t), g(t)) will be an immersion. If one chooses f and g so that

limt→∞ f (t) = −1 and limt→∞ g(t) = 0 and so that φ is injective (as can easily be done—

you might draw a picture if this isn’t obvious to you), then φ won’t be an embedding, since

by looking at neighborhoods of (−1, 0) in ψ(R) one sees that the image isn’t a topological

manifold when equipped with the subspace topology.

Declare two embeddings φ1 : N1 → M and φ2 : N2 → M to be equivalent if there is a dif-
feomorphism ψ: N1 → N2 such that φ1 = φ2 ◦ψ. An overly formal definition of a subman-

ifold is that a submanifold is an equivalence class of embeddings under this equivalence re-
lation. Of course, part of the point of the above equivalence relation is that if φ1 ∼ φ2 then
φ1(N1) = φ2(N2); when one thinks of a submanifold one should think of the subset of M formed
as the image of any representative embedding. If one has a subset N ⊂ M , it inherits a subspace
topology, and one can ask whether or not this subspace topology makes N a topological mani-
fold. One can then ask whether the topological space N admits smooth structures (this is now
an intrinsic question about N), and how these are related to the ambient space M . Accordingly
I prefer the following definition:
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Definition 1.3. A submanifold of M is a subset N which is a topological manifold with respect
to its subspace topology, equipped moreover with a smooth structure such that the inclusion
i : N → M is an embedding.

This is equivalent to the definition using equivalence classes of embeddings: if φ1 : N1→ M

and φ2 : N2 → M are equivalent embeddings (with common image N ⊂ M) then one can get

a smooth atlas on N by constructing charts by precomposition with either φ−1
1

: N → N1 or

φ−1
2

: N → N2 (since φ1 ∼ φ2 the atlases so obtained will be equivalent), and with this atlas the
inclusion i : N → M will be a distinguished member of the equivalence class of φ1 and φ2. So
we can (and do) identify the equivalence class with this distinguished member.

Accordingly let N ⊂ M be a submanifold, with i : N → M the inclusion. In particular i is an
immersion, so for each x ∈ N we have an induced injective linear map i∗ : Tx N → Tx M . We
can then identify Tx N with its image under this map—in other words, for every x ∈ N we have
a natural identification of Tx N with a subspace of Tx M .

Theorem 1.4. If N ⊂ M is a submanifold where dim N = n and dim M = m and x0 ∈ N, there

exists a coordinate chart φ : U → Rm for M such that x0 ∈ U and φ−1(Rn × {~0}) = N ∩ U.

Proof. As can easily be seen from the definition of the subspace topology, there is a neighborhood
U0 ⊂ M of x0 which is the domain of a coordinate chart φ0 : U0 → R

m for M , such that where
V0 = U0∩N , V0 is the domain of some coordinate chartψ0 : V0→ R

n for N . By replacingφ0 and
ψ0 by their compositions with translations we may as well assume that φ0(x0) and ψ0(x0) are
the origins of Rm and Rn respectively. Also, by composing φ0 with an appropriate linear map,

we may as well assume that the composition φ0 ◦ψ
−1
0

: ψ0(V0)→ φ0(U0) (which is a smooth
map with injective linearization from a neighborhood of the origin in Rn to a neighborhood of
the origin in Rm) has the property that its linearization at 0 is given by ~v 7→ (~v, 0) where we
split Rm as Rn ×Rm−n.

Now define a map α: ψ0(V0)×R
m−n → Rn by α(x , y) = (φ0 ◦ψ

−1
0
)(x) + (~0, y). This map

α is C∞, and its linearization at (~0, ~0) is the identity. The inverse function theorem from mul-

tivariable calculus then asserts that α is a local diffeomorphism near ~0, i.e. that there is a
neighborhood W of the origin in Rm and a smooth map β : α(W )→W so that β ◦α: W →W

and α ◦ β : α(W )→ α(W ) are the respective identities.

Now set U = φ−1
0
(α(W )) ⊂ M and φ = β ◦φ0. φ is a composition of two maps which are

diffeomorphisms to their images in Rm, so φ is a coordinate chart in M (in the maximal atlas
for M). Moreover since by construction we have α(ψ0(V0) × {0}) = φ0(N ∩ U0), we see that
β(φ0(N ∩U)) =W ∩ (ψ0(V0)×{0}). In other words, φ maps the points of its domain which lie
in N precisely to the points of its range (namely W ) which lie in Rn × {0}, as desired. �

Remark 1.5. Conversely, suppose that N ⊂ M is a subset such that every point x0 ∈ N is con-
tained in a coordinate chart for M as in Theorem 1.4, so there is an M -neighborhood U for x0

and a coordinate chart φ : U → Rm so that φ−1(Rn × {0}) = N ∩ U . For any such coordinate
chart φ, the restriction φ|N∩U is a homeomorphism to an open subset of Rn × {0} ∼= Rn; this
shows that N is a topological manifold. Moreover if φα : Uα → R

m and φβ : Uα : Uβ → R
n

are two such coordinate charts, so that by restricting φα,φβ to Uα ∩ N and Uβ ∩ N we obtain

homeomorphisms ψα,ψβ from open subsets of N to open sets in Rn, then the transition map

ψβ ◦ψ
−1
α is just the restriction to φα(Uα∩ (R

n×{0})) of φβ ◦φ
−1
α , which is smooth. This proves

that such charts ψα give N the structure of a smooth manifold. Since in terms of the charts
ψ and φ the inclusion i : N → M is just given my the inclusion of Rn into Rm as the first n

coordinates, i is an immersion. Thus, as a converse to Theorem 1.4, a subset of M which can
be covered by charts of the type described there is a submanifold of M .



MATH 8210 LECTURE NOTES, PART 2 3

If N is a submanifold of M andφ : U → Rm is a chart as in Theorem 1.4, note that if we define
a map f : U → Rm−n by taking the last m− n coordinates of φ (i.e., f = (xm+1, . . . , xn)), then

f : U → Rm−n is a submersion and f −1({~0}) = N ∩ U . Moreover, within U , the tangent space
to N is given by the kernel of the linearization of f . This is a sort of converse to an important
method of constructing submanifolds.

To prepare for this, we make the following definitions:

Definition 1.6. Let f : M → P be a smooth map between two smooth manifolds.

• A critical point of f is a point x ∈ M such that the linearization f∗ : Tx M → T f (x)P is
not surjective.
• A critical value of f is a point y ∈ P such that y = f (x) for some critical point x of f .
• A regular value of f is any point y ∈ P which is not a critical value.

Note in particular that a point y ∈ P which is not in the image of f is still a regular value.
An important fact, which we will not prove, is the following:

Theorem 1.7 (Sard’s Theorem). If f : M → P is a smooth map between two smooth manifolds

then the set of critical values of f has measure zero in P.

(To make sense of this statement one has to know what “measure zero” means for a subset
of a smooth manifold—to interpret this, note that a diffeomorphism between two open sets
in Euclidean space preserves the class of sets of measure zero (even though it generally isn’t
measure preserving), so we can define a set of measure zero in a smooth manifold to be one
whose intersection with the domain of every coordinate chart is mapped by that coordinate
chart to a set of measure zero. If you prefer a statement that does not appeal to measure theory,
it is also true that the set of regular values is residual in the sense of Baire—i.e., it contains a
countable intersection of open dense sets.)

Note that if dim M < dim P and f : M → P is smooth, then since the linearization of f is
never surjective every point of f (M) ⊂ P is a critical value. So in this case Sard’s theorem
amounts to the statement that f (M) has measure zero in P, i.e. that the image of f misses
almost every point of P.

Whether we find a regular value of f by appealing to Sard’s theorem or by directly examining
the map, the following gives a useful way of producing submanifolds:

Theorem 1.8. Let f : M → P be a smooth map between two smooth manifolds and let y0 ∈ P be

a regular value. Then N = f −1({y0}) is a submanifold of M. Moreover if n0 ∈ N then Tn0
N =

ker( f∗ : Tn0
M → T f (n0)

P). (In particular, dim N = dim M − dim P.)

Proof. Let m = dim M , and p = dim P, and n0 ∈ N . Let (y1, . . . , yp): V → Rp be a coordinate

chart for P around f (n0) which sends f (n0) to the origin For i = 1, . . . , p define zi : f −1(V )→ R
by zi = yi ◦ f . By the surjectivity of f∗ at n0, we may choose tangent vectors v1, . . . , vp ∈ Tx0

M

so that dzi(v j) = d yi( f∗v j) = δi j . Let S ≤ Tn0
M be the span of v1, . . . , vp. We may then choose

linearly independent cotangent vectors αp+1, . . . ,αm ∈ T ∗
n0

M so that each αi |S = 0. Let φ =

(x1, . . . , xm): U → Rm be a coordinate chart around n0. In terms of these coordinates, the

cotangent vectors αi at n0 can be written as
∑m

k=1
αkid xk for some real numbers αki . Define

functions zp+1, . . . , zm : U → R by zi =
∑m

k=1
αki xk.

We now claim that the functions z1, . . . , zm together provide a coordinate chart on a neighbor-
hood of n0. First note that the covectors (dz1)|n0

, . . . , (dzm)|n0
are linearly independent elements

of T ∗
n0

M . For if
∑

cidzi were to vanish at n0, then by evaluating both sides on v j for j = 1, . . . , p

we obtain that c1 = · · · = cp = 0, from which it also follows that cp+1 = · · · = cm = 0 since

we chose the αi = (dzi)|n0
for i ≥ p + 1 to be linearly independent. Since the dzi are linearly
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independent at n0, they form a basis for T ∗
n0

M by a dimension count, and in particular there is a

unique, bijective linear map of T ∗
n0

M which sends (dzi)n0
to (d x i)n0

for i = 1, . . . , m. But the this

linear map is the transpose of the Jacobian atφ(n0) of the map which sends (x1, . . . , xm) ∈ φ(U)
to (z1, . . . , zm), and so the Jacobian of this map F : (x1, . . . , xn) 7→ (z1, . . . , zn) is invertible at
φ(n0). So by the inverse function theorem there is an open set W around φ(n0) so that F |W is
a diffeomorphism to its image. Recalling that φ = (x1, . . . , xm) was a coordinate chart for M ,

it follows from this that (z1, . . . , zm): φ
−1(W )→ Rn is a diffeomorphism to its image, and so it

contained in the maximal atlas defining the smooth structure on M .

So given a point n0 ∈ N ⊂ M , we have constructed coordinate charts φ̃ : φ−1(W ) → Rm

around n0 and (y1, . . . , yp): V → Rp around f (n0) in terms of which the map f is given by

(z1, . . . , zm) 7→ (z1, . . . , zp). In particular for any such coordinate chart N ∩W is, in local coor-

dinates, given by the preimage under the coordinate chart of {0} ×Rm−p. By Remark 1.5, this
suffices to establish that N is a submanifold of M . �

Theorem 1.9. Let K be a compact subset of a smooth manifold M. Then there exists an open set

V ⊂ M with K ⊂ V , a positive number q, and an embedding ψ: V → Rq. In particular if M is a

compact manifold then there is an embedding ψ: M → Rq for some q.

Remark 1.10. In fact the compactness assumption is not necessary—any smooth manifold M

embeds into Euclidean space of some dimension q, and indeed a result called the Whitney

Embedding Theorem implies that one can take q = 2dim M (Whitney also showed that RP2k

does not embed in any Euclidean space of dimension less than 2 ·2k, so this is generally the best
one can do).

Proof. Write m = dim M . Any point x ∈ K is contained in the image of a surjective coordinate

chart φ(x) : U (x) → Bm(2) with φ(x)(x) = ~0 (where Bm(2) denotes the open ball of radius 2

around the origin in Rm). If we write V (x) = (φ(x))−1(Bm(1)), then the V (x) still cover K , and

so by compactness they have a finite subcover {V (x1), . . . , V (xn)}. Rename the V (x i), U (x i), and

φ(x i) as Vi , Ui ,φi . For each i let χi : M → [0, 1] be a smooth function such that χ−1
i
(1) = V̄i

and which is supported in Ui . Also, define ψi : M → Rn by ψi(x) = χi(x)φi(x) if x ∈ Ui and
ψi(x) = 0 otherwise; of course this is smooth since χi is supported in Ui . Now define

ψ: M → Rn(m+1)

by

ψ(x) =
�
χ1(x),ψ1(x),χ2(x),ψ2(x), . . . ,χn(x),ψn(x)

�

I claim that the restriction of ψ to the open subset V = ∪n
i=1

Vi is an embedding.

First,ψ|V is an immersion. For if x ∈ V then V ∈ Vi for some i, and since m of the coordinates
of ψ(x) are given by ψi(x) and ψi : Vi → Bm(1) is (the restriction of) a coordinate chart, if we
had ψ∗v = 0 for some v ∈ Tx M then it would hold that (ψi)∗v = 0 and so v = 0. We must
now show that ψ|V is a homeomorphism to its image. Of course ψ is continuous since all of its
coordinates are. To see that ψ|V is injective, suppose that ψ(x) = ψ(y). For some i we have
x ∈ Vi , so χi(x) = 1, and so χi(y) = 1. We chose χi to be 1 precisely on V̄i , so this forces y ∈ V̄i .
But then since ψ(x) = ψ(y) and x , y ∈ V̄i ⊂ Ui we have φi(x) = ψi(x) = ψi(y) = φi(y),
forcing x = y since φi is a coordinate chart on Ui .

Finally we must show that the inverse ofψ|V : V →ψ(V ) is continuous. Let x ∈ V ; we should

show that for any neighborhood W of x there is an open set in Rn(m+1), containingψ(x), whose
preimage underψ is contained in W . To do this, let i be such that x ∈ Vi , and let ε > 0 be small
enough that the preimage under φi of the ball of radius 2ε around φi(x) is contained in W ∩Vi .



MATH 8210 LECTURE NOTES, PART 2 5

If δ > 0, there is an open set W ′ ⊂ Rn(m+1) so that

(ψ|V )
−1(W ′) = {y ∈ V |χi(y)> 1−δ, |ψi(y)−ψi(x)|< ε}.

If we take δ = 2

2+ε
, any y ∈ (ψ|V )

−1(W ′) belonging to this latter set will obey

|φi(y)−φi(x)|=

����
1

χi(y)
φi(y)−φi(x)

����

≤

����
1

χi(y)
− 1

���� |φi(y)|+ |φi(y)−φi(x)|<
ε

2
2+ ε= 2ε

and so y will belong to W , as desired.
�

2. VECTOR BUNDLES AND TUBULAR NEIGHBORHOODS

A vector bundle E of rank k over a smooth manifold M is, to be brief (and to leave out some
important details), a family of vector spaces Ex parametrized by the points x ∈ M .

More precisely:

Definition 2.1. Let M be a smooth manifold, and k a positive integer. A (smooth, real) vector

bundle of rank k over M is a smooth map π: E → M where E is a smooth manifold, with the
following additional structure

• For all x ∈ M , the preimage π−1({x}) (also denoted Ex) has the structure of a real
vector space of dimension k.

• There is an open cover ∪αUα of M and, for each α, a diffeomorphism Φα : π−1(Uα)→
Uα × R

k such that, for each x ∈ Uα, Φα restricts to Ex as a linear isomorphism to the

vector space {x} ×Rk.

For a definition more closely analogous to our definition of a smooth manifold, and in order
to resolve concerns about uniqueness, one could insist that the collection of transition functions
is maximal; just as in the smooth manifold case any collection of local trivializations as in the
definition can be enlarged in a unique way to a maximal such collection.

The vector space Ex is called the fiber of E at x , and the Φα are called local trivializations of
E over Uα. Note that the map π: E→ M is automatically a surjective submersion.

The smooth manifold E carries a distinguished copy of M embedded inside it as the zero

section 0M , whose intersection with each Ex consists of just the zero element of the vector space

Ex (in terms of the local trivializations, 0M = ∪αΦ
−1
α (Uα × {0})).

Example 2.2. If M is a smooth m-dimensional manifold then the tangent bundle π: T M → M

is a vector bundle of rank m. For all intents and purposes we showed this in the first part of the

course: M is covered by coordinate charts (xα
1
, . . . , xα

n
): Uα→ R

m, and for a local trivialization of

T M over Uα we can take the inverse of the map Uα×R
k→ π−1(Uα) which sends (x , v1, . . . , vm) to

the tangent vector
∑m

i=1
vi

∂

∂ x i

at x.

Example 2.3. Let f : N → M be a smooth map between two smooth manifolds, and let π: E →
M be a vector bundle. We can then form the pullback bundle Π : f ∗E → N as follows. Set

theoretically, define

f ∗E =
�
(n, e) ∈ N × E|e ∈ E f (n)

	
.

We have local trivializations Φα : π−1(Uα) → Uα × R
k; for x ∈ Uα define φαx : Ex → R

k to

be the linear isomorphism such that for e ∈ Ex we have Φα(e) = (x ,φαx(e)). Now for each α
define Ψα : Π−1( f −1(Uα)) → f −1(Uα) by, for e ∈ Π−1(n) where n ∈ f −1(Uα), setting Ψα(e) =
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(n,φα f (n)(e)). Now the various f −1(Uα) cover N, and it’s not hard to check that there is a unique

smooth structure imposed on f ∗E by requiring that the maps Ψα be diffeomorphisms. This gives

the map Π : f ∗E→ N the structure of a vector bundle, and we have a commutative diagram

f ∗E //

Π

��

E

π

��

N
f

// M

where the upper map just sends (n, e) ∈ f ∗E ⊂ N × E to e, and maps fibers of f ∗E isomorphically

to fibers of E.

As an important special case, we can let f be the inclusion of a submanifold N ⊂ M. In this case

f ∗E is more often just denoted by E|N . In particular, we have T M |N , the restriction of the tangent

bundle of the ambient manifold M to the submanifold N; its fiber over n ∈ N consists of the whole

tangent space TnM.

Example 2.4. If N ⊂ M is a submanifold we have the vector bundles T N and T M |N ; these give

rise to a third vector bundle over N, the normal bundle νN ,M → N, whose fiber over a point n ∈ N

is naturally identified with
Tn M

TnN
. Perhaps the easiest way of constructing this bundle is to make use

of the adapted coordinate charts from Theorem 1.4. We cover a neighborhood of N in M by charts

φα : Uα → R
m, such that for each α we have Uα ∩ N = φ−1

α ({0} × R
n). So the ψα := φα|Uα∩N

form an atlas for N. Let π1 : Rm→ Rm−n be the projection onto the first m− n coordinates. So if

v ∈ TnN where n ∈ Vα, then since φα sends N to {0} ×Rn, we will have (borrowing the notation

of the previous example) π1 ◦ φαnv = 0. Thus π1 ◦ φαn descends to a linear isomorphism from

(νN ,M )n to Rm−n. Consequently the π1 ◦ φαn give rise to local trivializations over Vα for νN ,M ,

confirming that νN ,M is a vector bundle (again, to get the smooth manifold structure on νN ,M one

can just require that these local trivializations are diffeomorphisms).

Note that, if dim M = m and dim N = n, then the rank of νN ,M is m−n, and so the dimension of

νN ,M as a smooth manifold is n+(m−n) = m, the same as the dimension of the ambient manifold.

The tubular neighborhood theorem (Theorem 2.11) will show that, in fact, νN ,M is diffeomorphic

to an open neighborhood of N in M.

Remark 2.5. It is possible to formulate the notion of a subbundle of a vector bundle, and then
show quite generally that if F ≤ E is a subbundle then one can form the quotient bundle E/F
(with fiber over x canonically identified with Ex/Fx). In the case of a submanifold N ⊂ M , one
can show that T N is a subbundle of T M |N , and so the normal bundle can be identified with the
quotient bundle of the latter by the former.

Definition 2.6. An orthogonal structure on a vector bundle π: E→ M is a map

〈·, ·〉: ∪x∈M (Ex × Ex)→ R

whose restriction to each Ex × Ex defines an inner product on Ex , and such that whenever
s1, s2 : M → E are two smooth sections (i.e. smooth maps so that π ◦ si = 1M ), the map x 7→
〈s1(x), s2(x)〉 is smooth.

In other words, an orthogonal structure is a smoothly varying family of inner products on the
fibers of E. In the case that E is the tangent bundle T M of M an orthogonal structure on T M is
called a Riemannian metric on M . (Indeed, sometimes one uses the term “Riemannian metric”
to refer to an orthogonal structure on any vector bundle.)

Proposition 2.7. If π: E→ M is a vector bundle there exists a orthogonal structure on E.
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Proof. Recall that the vector bundle structure on E gives us an open cover {Uα} of M and dif-

feomorphisms Φα : π−1(Uα) → Uα × R
k which commute with the projections to Uα and re-

strict to the fibers Ex as a linear isomorphism φαx to Rk. So if we denote the standard inner

product on Rk by (·, ·)0 we can define 〈, ·, ·〉α : ∪x∈Uα
Ex × Ex → R by, for e1, e2 ∈ Ex , setting

〈e1, e2〉α =
�
φαx e1,φαx e2

�
0
.

Now let {χα} be a partition of unity subordinate to the cover {Uα} and define 〈·, ·〉: ∪x∈E Ex×
Ex → R to be equal to

∑
αχα(x)〈·, ·〉α, where we have extended χα(x)〈·, ·〉α by zero outside of

Uα. Since convex combinations of inner products on vector spaces are still inner products, it’s
easy to see that this satisfies the requirements. �

Note that an orthogonal structure 〈·, ·〉 on E gives rise to a smooth function ‖·‖2 : E→ [0,∞)
defined by ‖e‖2 = 〈e, e〉. The square root of this function, ‖ · ‖: E → R, is smooth on the
complement of the zero section.

Using orthogonal structures one can show:

Proposition 2.8. Let π: E → M and let U be any neighborhood of the zero section 0M . Then

there is an open set V with 0M ⊂ V ⊂ U and a diffeomorphism ψ: E → V which restricts to the

identity on 0M .

Thus the entire total space of a vector bundle can be shrunk by a diffeomorphism to an
arbitrarily small neighborhood of the zero-section. This is basically a parametrized version of

the statement that Rk is diffeomorphic to an arbitrarily small ball around the origin.

Proof of Proposition 2.8. This is easier if M is compact, since then there is r > 0 such that the

open set V = Er = {e ∈ E|‖e‖2 < r2} is contained in U . (Proof: The subset Ē1 := {‖e‖2 ≤ 1} is
in this case also compact, as one can see by writing it as a union of compact sets obtained from
a finite cover by local trivializations, so Ē1 \U is also compact. If the statement were false then

one could find a sequence ei ∈ Ē1 \U with ‖ei‖
2→ 0. But since Ē1 \U is compact a subsequence

of the ei would converge to some e, which would have the contradictory properties that ‖e‖= 0
and e /∈ U .) In this case one can choose a diffeomorphism f : [0,∞) → [0, 1) such that f is

equal the identity on a neighborhood of the origin (for instance, take f (t) =
∫ t

0
g(s)ds where

g(s) = 1 for small s, g(s)> 0 for all s and
∫∞

0
g(s) = 1). Then define ψ: E→ V by

ψ(e) = r f (‖e‖)
e

‖e‖

(so ψ rescales each fiber in such a way that a point with norm n now has norm r f (n)). This is
easily seen to satisfy the required properties (the only place where smoothness either of ψ or

ψ−1 might seem to be an issue is at the zero section, but in fact we have arranged for ψ to be
just scalar multiplication by r on a neighborhood of the zero section).

If M is noncompact then there might not be a single number r > 0 as above. However, we

shall construct below a smooth function r : M → (0,∞) so that V := {e ∈ E|e ∈ Ex ⇒ ‖e‖
2 <

r(x)2} is contained in the given open set U . If we can do this, then a simple modification of the
ψ constructed above works: just define ψ(e) = r(x) f (‖e‖) e

‖e‖
for e ∈ Ex ; since r is smooth and

positive (as, therefore, is 1

r
) this ψ will be a diffeomorphism from E to V just as before.

To construct the desired r : M → (0,∞)we can just proceed as follows. Cover M by open sets
Oβ such that Ōβ is compact. Then for each β there will, as earlier, be a number rβ > 0 so that

if x ∈ Ōβ and e ∈ Ex has ‖e‖ < rβ then e ∈ U . Now let {χβ} be a partition of unity subordinate

to {Oβ} and let r(x) =
∑
β rβχβ (x). For each x , r(x) will then be a convex combination of
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those rβ with x ∈ Oβ , and hence will be less than or equal to one of them, so any e ∈ Ex with

‖e‖< r(x) will lie in U . �

Definition 2.9. Let N ⊂ M be a submanifold. A tubular neighborhood of N in M consists of an
open subset U ⊂ M with N ⊂ U , and a diffemorphism Φ : νN ,M → U , where νN ,M is the normal
bundle of N in M , such that the restriction of Φ to the zero section N ∼= 0N ⊂ νN ,M is the identity
map to N .

Remark 2.10. In view of Proposition 2.8, to construct a tubular neighborhood it is enough to
construct a diffeomorphism Φ′ : U ′ → U restricting as the identity on N , where U ′ ⊂ νN ,M

is some neighborhood of the zero section. For then we can find a subneighborhood V ⊂ U ′

and a diffeomorphism ψ: νN ,M → V as in Proposition 2.8, and then Φ′ ◦ψ will give a tubular

neighborhood (with image Φ′(U ′), which will still be an open neighborhood of N in M).

The rest of this section will be concerned with proving the following:

Theorem 2.11. If N ⊂ M is any compact submanifold then there exists a tubular neighborhood

of N in M.

(In fact, the compactness assumption is not strictly necessary–its main role in the proof given
here will be to allow us to embed a neighborhood of N in M intoRq for some q, and as mentioned
after Theorem 1.9 this can be done without the compactness assumption. Near the end of the
proof we will also use the compactness of N to find the limit of a sequence, but one can get
around this as long as one arranges for the embedding of M into Rq to be proper, as can be
arranged in the Whitney embedding theorem.) To construct the tubular neighborhood, one
needs some systematic way of “moving in directions normal to N in M .” There are two common
ways of doing this—either by choosing a Riemannian metric on M and using the theory of
geodesics, or by embedding a neighborhood of N in M into Euclidean space and using the
special structure of Euclidean space. To avoid a digression into Riemannian geometry, we’ll
take the latter approach.

Throughout the following discussion, for x ∈ Rq we will make the standard identification
of TxR

q with Rq (and so if X ⊂ Rq is a submanifold and x ∈ X then Tx X is identified with a
subspace of Rq).

To begin the proof of the theorem note that we may as well replace M by a small neighbor-
hood of the compact submanifold N , and then by Theorem 1.9 (applied with K = N) we can
assume that M is embedded in Rq. We can then define

ν̃M ,Rq = {(x , v) ∈ M ×Rq|v ∈ Tx M⊥}

and

ν̃N ,M = {(x , v) ∈ N ×Rq|v ∈ (Tx M)∩ (Tx N)⊥}.

Note that there is a bijection αM ,Rq : ν̃M ,Rq → νM ,Rq , taking (x , v) to the equivalence class of v in

TxR
q/Tx M . Similarly there is a bijection αN ,M : ν̃N ,M → νN ,M sending (x , v) to its equivalence

class in Tx M/Tx N . These bijections commute with the projections to M (in the case of αM ,Rq )
or N (in the case of αN ,M ). It should at least appear that ν̃M ,Rq is a vector bundle over M , and
likewise that ν̃N ,M is a vector bundle over N , and that these are isomorphic to the respective
normal bundles. This is indeed true, but so far we have not even shown that ν̃M ,Rq and ν̃N ,M

are smooth manifolds. We now remedy this:

Lemma 2.12. Let M ⊂ Rq be a submanifold, and N ⊂ M a submanifold. Then ν̃M ,Rq and ν̃N ,M

are smooth manifolds, and the bijections αM ,Rq : ν̃M ,Rq → νM ,Rq and αN ,M : ν̃N ,M → νN ,M are

diffeomorphisms.
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Proof. Actually the statements about ν̃M ,Rq are, after renaming, just special cases of those about
ν̃N ,M , but for clarity’s sake we prove the results about ν̃M ,Rq first. To show that ν̃M ,Rq is a smooth
manifold it suffices to show that for any point m0 ∈ M there is a neighborhood U ⊂ M of m0 so
that ν̃M ,Rq ∩ (U ×Rq) is a submanifold of U ×Rq.

To do this, note that on a sufficiently small neighborhood U ⊂ M we there will be smooth
functions ai j : U → R (1≤ i ≤ m, q ≤ j ≤ q) so that, for all X ∈ U ,

Tx M = span

(
q∑

j=1

ai j(m)
∂

∂ x j

: 1≤ i ≤ m

)

(for instance, one could take an adapted coordinate chart as in Theorem 1.4 and use for
∑

ai j
∂

∂ x j

the vector fields that are mapped by the coordinate chart to the standard coordinate vector fields
on Rm × {0}) So at each x ∈ U the matrix A(x) = {ai j(x)} has full rank m. Define

F : U ×Rq→ Rm

(x , v1, . . . , vq) 7→

 
k∑

j=1

a1 j(x)v j , . . . ,

k∑

j=1

amj(x)v j

!
.

Identifying T(x ,v)(M×R
q)with Tx M⊕Rq, we see that the linearization F∗ : T(x ,v)(M×R

q)→ Rm

has F∗(0, w) = A(x)w. In particular since A(x) has full rank, F∗ is surjective. By Theorem 1.8
this proves that ν̃M ,Rq ∩(U×Rq) is a submanifold of U×Rq for each member U of an open cover
of a neighborhood of M in Rq, and hence that ν̃M ,Rq is a smooth manifold.

Moreover, inspection of the coordinate charts constructed in the proof of Theorem 1.8 shows
that the smooth structure on ν̃M ,Rq is consistent with that of νM ,Rq under the obvious bijection
between them. Indeed, in the intersection of ν̃M ,Rq with U ×Rq where U is a sufficiently small
open set as in the previous paragraph, we can define a coordinate system whose first m coor-
dinates (parametrizing M) are the same as those of an adapted coordinate chart for M ⊂ Rq,
and whose last q −m coordinates depend only on the Rq factor. It’s not hard to see that such
a coordinate chart is diffeomorphic via αM ,Rq to a corresponding local trivialization for νM ,Rq

as described in Example 2.4. So since the bijection αM ,Rq restricts to each member of an open
cover as a diffeomorphism it is a diffeomorphism.

Now we turn to the slightly more complicated case of ν̃N ,M . In this case, for any n0 ∈ N we
can find a neighborhood of n0 in Rq and smooth functions ai j (1 ≤ n+ q − m, 1 ≤ j ≤ q) on

U so that, for each x ∈ U , Tx N is spanned by the
∑q

j=1
ai j(x)

∂

∂ x j

for 1 ≤ i ≤ n, and Tx M⊥ is

spanned by the
∑q

j=1
ai j(x)

∂

∂ x j

for n+1≤ i ≤ n+q−m. Namely, as before we can use an adapted

coordinate chart for the vector fields spanning T N |U , while for the vector fields spanning T M⊥|U
we can start with a similar such basis of vector fields spanning Tx M at every x ∈ U , extend this
to a basis for Rq (say using vector fields with constant coefficients, and perhaps shrinking U in
the process), and then modify this basis using the Gram-Schmidt procedure to get a basis for
all of TxR

q at every point of U consisting of smooth vector fields, the last q −m of which span

Tx M⊥ at every x ∈ U .

Now since Tx N ∩ Tx M⊥ = {0} for all x ∈ M (as T N ⊂ T M), our entire set of vector fieldsn∑q

j=1
ai j(x)

∂

∂ x j

: 1≤ i ≤ n+ q−m

o
is linearly independent at each x ∈ U . So just as before
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we can define

G : U ×Rq→ Rn+m−q

(x , v1, . . . , vq) 7→

 
k∑

j=1

a1 j(x)v j , . . . ,

k∑

j=1

amj(x)v j

!

The preimage of 0 under this map consists of those pairs (x , v) where v is perpendicular both

to the subspace Tx N and to the subspace Tx M⊥, i.e. where v ∈ Tx M ∩ Tx N⊥, so G−1({0}) =
{(x , v) ∈ ν̃N ,M |x ∈ U}. As in the case of ν̃M ,Rq , the linear independence of the vector fields

that we have chosen implies that G∗ is surjective, so G−1({0}) is a submanifold, and indeed

following the proof of Theorem 1.8 we can take a coordinate system on G−1({0}) so that the
first n coordinates depend only on the N factor and the last m−n depend only on the Rq factor,
so that in this coordinate system the projection ν̃N ,M → N appears as the projection onto the
first n coordinates. Allowing U to vary through sufficiently small open neighborhoods in Rq of
points of N produces an atlas for ν̃N ,M each member of which can be seen as a local trivialization
for the bundle ν̃N ,M → N . Once again, these trivializations are compatible under the bijection
αN ,M with the standard normal bundle trivializations as given in Example 2.4, completing the
proof. �

The following (when combined with Proposition 2.8) proves the tubular neighborhood the-
orem for submanifolds of Rq, and will also be used in the more general case. To prepare for the
statement, note that the space

ν̃M ,Rq = {(x , v)|x ∈ M , v ∈ Tx M⊥}

of the previous lemma contains a distinguished “zero section” consisting of points of form (x , 0).

Lemma 2.13. If M ⊂ Rq is a submanifold, define

εM ,Rq : ν̃M ,Rq → Rq

by

εM ,Rq(x , v) = x + v.

Then there is a neighborhood V of the zero section of ν̃M ,Rq such that εM ,Rq restricts to V as a

diffeomorphism to its image, which is an open neighborhood of M in Rq.

Proof. Writing 0M = {(m, 0)} for the zero section of ν̃M ,Rq , for any (x , 0) ∈ 0M the tangent space

T(x ,0)ν̃M ,Rq splits naturally as Tx M ⊕ (Tx M)⊥, where the first factor is tangent to 0M and the

second is tangent to the fibers of the bundle projection ν̃M ,Rq . Of course, since Tx M is identified

via the embedding as a subspace of Rq, Tx M ⊕ (Tx M)⊥ in turn may be identified with all of
R

q. As should be clear from the definition of εM ,Rq , with respect to these identifications the

linearization of εM ,Rq at (x , 0) is just the identity from Rq to itself and in particular is invertible.
So by the inverse function theorem every point 0M has a neighborhood to which εM ,Rq restricts
as a diffeomorphism to its image.

If x ∈ M and δ > 0, define

Vx ,δ = {(y, v) ∈ ν̃M ,Rq ||y − x |+ |v|< δ},

where | · | refers to the standard distance in Euclidean space Rq. By the previous paragraph,
for any x ∈ M there is δ > 0 so that εM ,Rq |Vx ,δ

is a diffeomorphism to its image. So define a

function δ : M → R by setting δ(x) equal to the supremum of all numbers δ such that εM ,Rq |Vx ,δ

is a diffeomorphism to its image. So evidently δ(x)> 0 for all x .
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I now claim that δ : M → R is continuous. Indeed, one has a relationship

δ(y)≥ δ(x)− |x − y |,

resulting from the fact that Vy,δ−|x−y| ⊂ Vx ,δ for all δ > 0. Combining this relationship with the
same one where x and y are reversed shows that

|δ(x)−δ(y)| ≤ |x − y |,

so δ is indeed continuous. Now define

V =

�
(x , v) ∈ ν̃M ,Rq

����|v|<
1

3
δ(x)

�

V is then an open subset (since (x , v) 7→ |v| − 1

3
δ(x) is continuous and V is the preimage of an

open set under this map), and we will show that it has the property stated in the lemma.
The main issue is to show that εM ,Rq |V is injective. So we must show that if (x , v), (y, w) ∈

ν̃M ,Rq with |v| <
δ(x)

3
, |w| <

δ(y)

3
, and x + v = y + w, then (x , v) = (y, w) Without loss of

generality assume that δ(x) ≤ δ(y). Now the assumed relation x + v = y + w is equivalent to
x − y = w − v. But |w − v| ≤ |w|+ |v|< 2δ(x)/3, and so

|x − y |+ |w|= |w − v|+ |w|< δ(x).

So for some δ < δ(x) we have (x , v), (y, w) ∈ Vx ,δ. But by the definition of δ(x), εM ,Rq restricts

injectively to Vx ,δ for all δ < δ(x). So indeed (x , v) = (y, w).
So we have shown that εM ,Rq restricts injectively to V . By the construction of V and by

what was done at the start of the proof, V is covered by open sets on which εM ,Rn is a local

diffeomorphism, and so εM ,Rn |V is also continuous and open. Thus εM ,Rq |V is a diffeomorphism
to its image, which is open in Rq. �

Corollary 2.14. Let M ⊂ Rq be a submanifold. Then there is an open neighborhood W of M and

a smooth map r : W → M so that r|M is the identity.

(Indeed, r can be taken to be a deformation retraction, as you can check.)

Proof. Let V be a neighborhood of 0M ⊂ ν̃M ,Rq as in Lemma 2.13, so that εM ,Rq : V → Rq is a
diffeomorphism to its image. Denote this image by W ⊂ M . Then where π: ν̃M ,Rq → M is the

bundle projection and where we identify M with 0M , define r : W → M by r = π ◦ (εM ,Rq |V )
−1.

Since εM ,Rq restricts to 0M
∼= M as the identity, r is easily seen to satisfy the desired property. �

End of the proof of Theorem 2.11. We let N ⊂ M be any compact submanifold, and by replacing
M by a sufficiently small open set containing N and applying Theorem 1.9 we assume M to be
embedded as a submanifold of Rq. Where again

ν̃N ,M = {(x , v) ∈ N ×Rq|v ∈ Tx M ∩ (Tx N)⊥}

define f0 : ν̃N ,M → R
q by f (x , v) = x + v. Where r and W is as in Corollary 2.14, let U0 =

f −1(W ), and define

f : U0→ M by f = r ◦ f0.

We have the zero section 0N = {(x , 0)} ⊂ ν̃N ,M ; clearly for (x , 0) ∈ 0N , f0(x , 0) = x ∈ N ⊂ M

and so f (x , 0) = x also. Moreover, for (x , 0) ∈ 0N , T(x ,0)U0 splits (compatibly with the splitting

of N ×Rq) as a direct sum Tx N ⊕(Tx M ∩(Tx N)⊥) (which is the same as Tx M), and with respect
to this splitting the linearization ( f0)∗ : T(x ,0)U0 → TxR

q ∼= Rq acts as the inclusion. Now since

the map r acts as the identity on M , and since ( f0)∗ sends T(x ,0)U0 isomorphically to Tx M ≤ Rq,

it follows by the chain rule that f∗ = r∗ ◦ ( f0)∗ also sends T(x ,0)U0 isomorphically to Tx M for
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all (x , 0) ∈ 0N . Thus around any point (x , 0) ∈ 0N ⊂ U0 there is a neighborhood Vx to which
f : U0→ M restricts as a diffeomorphism to its image, which is open in M .

So much like the proof of Lemma 2.13 we should now show that, perhaps after shrinking the
neighborhood U0 of 0N to some smaller neighborhood U1, f restricts injectively to U1. For this
we exploit the compactness of N . If there were no neighborhood of 0N to which f restricted
injectively, we could find (x i , vi), (yi , wi) ∈ U0 such that (x i , vi) 6= (yi , wi) and vi , wi → 0 but
f (x i , vi) = f (yi , wi) for all i. After passing to subsequences, the sequences x i , yi would converge
in N by compactness, say to x and y , and we would have f (x , 0) = f (y, 0) and hence x = y .
But then (x i , vi) and (yi , wi)would eventually both lie in the neighborhood Vx from the previous
paragraph, contradicting the fact that f is injective on that neighborhood. This contradiction
shows that there is some neighborhood U1 of 0N , which we may as well take to be contained in
∪x∈N Vx , such that f |U1

is injective.

Since f : U1 → M is injective and U1 is covered by sets to which f restricts as a diffeomor-
phism to its image, it follows that f : U1→ f (U1) is a global diffeomorphism to its image (since

smoothness of f and of f −1 can be checked on these open sets).
This shows that a neighborhood U1 of 0N in ν̃N ,M is diffeomorphic to a neighborhood of N

in M by a diffeomorphism restricting to the identity on M . By Remark 2.10 and the fact that
ν̃N ,M is diffeomorphic to νN ,M by a diffeomorphism acting as the identity on the zero section,
this suffices to yield a tubular neighborhood Φ : νN ,M → M . �

3. VECTOR FIELDS AND FLOWS

The following is a basic result from the theory of ordinary differential equations:

Theorem 3.1. Let F : Rn→ Rn be a compactly supported smooth function. Then for any x0 ∈ R
n

there is a unique solution γx0
: R→Rn to the initial value problem

γ′(t) = F(γ(t))

γ(0) = x0

Moreover if I ⊂ R is any open interval, if t0 ∈ R, and if γ: I → R obeys γ′(t) = F(γ(t)) and

γ(t0) = γx0
(t0), then γ= γx0

|I . Furthermore, the map

Φ : R×Rn→ Rn

(t, x) 7→ γx(t)

is a smooth map.

Sketch of proof. (See [Lee, Chapter 17] for details.) First of all, suppose that we can show that
there is ε > 0 such that for every x0 ∈ R

n and every t0 ∈ R there is a solution γx0
: (t0 −

ε, t0+ ε)→ R
n to γ′(t) = F(γ(t)) with γ′(t0) = x0, and such that any other solution γ on some

subinterval of (t0 − ε, t0 + ε) such that γ(t1) = γx0
(t1) for some t1 coincides is equal to γx0

everywhere. From this the existence of the all-time solution γx0
: R→ Rn would follow. Indeed,

we could initially apply the result to get a solution γ0 on (−ε,ε) with γ0(0) = x0. But we could
then also get a solution γ1 on (−ep/2, 3ε/2)with γ1(ε/2) = γ0(ε/2). The uniqueness statement
would then force γ1 and γ0 to be equal everywhere that they are both defined; hence they would
combine to give a solution (still denoted γ0) on (−ε, 3ε/2). But there would also be a solution
γ2 on (0, 2ε) with γ2(ε) = γ0(ε), and by uniqueness this then coincides with γ0 everywhere,
allowing the domain of γ0 to be extended to (−ε, 2ε). This can be repeated indefinitely, and the
union of all of the solutions so obtained gives a map γx0

→ R→ Rn.

In other words, existence and uniqueness for all time (i.e., all of the theorem except the last
sentence) will follow if we can prove existence and uniqueness on all time intervals I of length at
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most 2ε for some fixed ε. We will do this by converting the differential equation to a fixed point
problem and applying the contractive mapping principle. Namely, observe that the fundamental
theorem of calculus implies that the following two statements about a map γ: I → Rn, where I

is an interval containing a point t0 are equivalent:

γ is a differentiable map such that γ′(t) = X (γ(t)) and γ(t0) = x0

and

γ is a continuous map such that γ(t) = x0 +

∫ t

t0

F(γ(s))ds for all t ∈ I

Let C(I ,Rn) denote the space of continuous functions from I to Rn, endowed with the uniform
(“sup”) norm. A standard fact in analysis is that C(I ,Rn) is a Banach space (basically this is
because a uniform limit of continuous functions is continuous). Define

A : C(I ,Rn)→ C(I ,Rn)

by
�
A γ

�
(t) = x0 +

∫ t

t0

F(γ(s))ds

Now F was assumed compactly supported and smooth—in particular F is Lipschitz (actually
F being Lipschitz is all that is needed for the conclusion of the theorem), i.e., there is C such
that |F(x) − F(y)| ≤ C |x − y | for all x , y ∈ Rn (C can be taken to be the maximum norm of

the gradient of F). An easy computation shows that, provided the length of I is less than 1

C
, the

above map A is contractive, i.e., there is r < 1 such that ‖A γ −Aη‖ ≤ r‖γ − η‖. But the
contractive mapping mapping principle asserts that a contractive map from a Banach space to
itself always has a unique fixed point (if γ0 is chosen arbitrarily and we define γi =A γi−1, the
fixed point is lim∞

i=1
A γi). This precisely gives the desired existence and uniqueness of solutions

on sufficiently short time intervals, and hence by the first paragraph proves all of the theorem
except the last sentence.

The smoothness of Φ relies on some somewhat subtle estimates which can be found in [Lee];
I’ll just prove the fact that Φ is continuous, which is a first step in the smoothness proof. First
of all observe that for any smooth u: R→ Rn such that u(t) is nonzero for all t, one has, using
the Cauchy–Schwarz inequality and the chain and product rules,

(1)
d

d t
|u(t)|=

d

d t

p
u(t) · u(t) =

2u(t) · u′(t)

2
p

u(t) · u(t)
≤
|u(t)||u′(t)|

|u(t)|
=

����
du

d t

���� .

Now if x , y ∈ Rn are distinct points, by uniqueness of solutions we have γx(t) 6= γy(t) for all t,

so we can apply (1) with u(t) = γx(t)− γy(t) to get

d

d t
|γx(t)− γy(t)| ≤

����
d

d t

�
γx(t)− γy(t)

�����=
��F(γx(t))− F(γy(t))

��

≤ C |γx(t)− γy(t)|

where as before C is the Lipschitz constant of F . Dividing by |γx(t) − γy(t)| (which as noted

earlier is nowhere zero) and recalling the identity d

d t
(ln f ) =

f ′

f
then gives

d

d t
ln |γx(t)− γy(t)| ≤ C .

The Fundamental Theorem of Calculus (and then exponentiation of both sides) then shows that

|γx(t)− γy(t)| ≤ eC t |γx(0)− γy(0)|,
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i.e.

|γx(t)− γy(t)| ≤ eC t |x − y |.

This shows that Φ is continuous as a function of x for fixed t. To take into account the varying
of t we can just note that, if D > 0 is such that |F(x)| ≤ D for all x (such D exists since we
assumed F was compactly supported), then |γx(s)− γx(t)| ≤ D|s− t|. So we get

|Φ(s, x)−Φ(t, y)| ≤ |Φ(s, x)−Φ(t, x)|+ |Φ(t, x)−Φ(t, y)| ≤ D|s− t|+ eC t |x − y |,

and this proves that Φ is continuous at the (arbitrary) point (t, y).
As mentioned earlier, smoothness as opposed to continuity takes more work; I’ll just mention

that part of the idea is to differentiate the equation

∂

∂ t
(Φ(t, x)) = F(Φ(t, x))

which is satisfied by Φ with respect to t and/or x , in order to get a differential equation satisfied
by a partial derivative of Φ; one can work inductively on the order of the derivative.

�

In other words, for compactly supported vector fields F on Rn, there is always a unique
integral curve of a vector field passing through any given point, and this curve varies smoothly

with the point. This can easily be exported to smooth manifolds to yield the following corollary:1

Corollary 3.2. Let M be a smooth manifold and let X be a compactly supported vector field on M.

Then there is a unique family of diffeomorphisms, parametrized by t ∈ R,

φ t
X

: M → M

such that for all m ∈ M we have

φ0
X
(m) = m and

d

d t
φ t

X
(m) = X (φ t

X
(m)).

These diffeomorphisms obey

(2) φ t
X
◦φs

X
= φ t+s

X

and the map (t, m) 7→ φ t
X
(m) is smooth.

The equation 2 should be easy to see: both sides represent the effect of starting at a point
and flowing along the flow of the vector field for a time t+s. This equation is part of what leads
to the conclusion that the φ t

X
are diffeomorphisms rather than just being smooth maps, since

evidently φ−t
X

is an inverse to φ t
X
. The family {φ t

X
} is called the flow of the vector field X .

Remark 3.3. It is sometimes useful to allow the vector field X to itself depend on t, i.e. one
can have a family of vector fields X t varying with the parameter t. As long as this dependence
is smooth and X t has a uniform Lipschitz constant for all t then the proofs of Theorem 3.1
and Corollary 3.2 go through essentially without change in order to show that one still gets

diffeomorphisms φ t
X

so that φ0
X
= idM and d

d t
φ t

X
(m) = X t(φ

t
X
(m)). In fact, any smooth path

of diffeomorphisms starting at the identity can be described as such a “time-dependent” flow—

given such a path φt one can define X t(m) =
dφt

d t
(φ−1

t
(m)) and, more or less tautologically, the

flow of X t will recover φt . Of course, for one of these time-dependent flows the homomorphism
property (2) typically will not hold.

1One can approach the derivation of the corollary from Theorem 3.1 in either of a couple of different ways, either

by directly working in local coordinate charts or by embedding M in Rq for some large q and using the tubular neigh-

borhood theorem to construct a vector field on Rq which restricts to M as the given vector field X ; details are left to

you
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Remark 3.4. If one drops the hypothesis that X is compactly supported (or, more generally,
Lipschitz in a suitable sense) then Corollary 3.1 will no longer be true as stated. However a
“local” statement can be made: for any m ∈ M there will still be ε > 0 and a neighborhood U

of m in M on which there exists a unique “partial flow”

(−ε,ε)× U → M

(t, y) 7→ φ t
X
(y)

so that d

d t
φ t

X
(y) = X (φ t

X
(y)) and φ0

X
(y) = y . In other words, while a long-time existence

result along the lines of Theorem 3.1 will typically fail, one still has uniqueness and short-time
existence, for a time ε which depends on the point of interest in M .

The classic example of failure of long-time existence comes in the case M = R, where the

vector field X is given by X (x) = x2. Thus the relevant differential equation is

d x

d t
= x2.

This equation can be solved by separation of variables to yield, where x0 = x(0),

x(t) =
x0

1− x0 t
.

So for any x0 we have a unique integral curve x(t) through x0, but this solution “blows up in

finite time”—it ceases to be well-defined at time t = 1

x0

(but is a perfectly good solution until

then).

3.1. The Lie Derivative. Given a (say compactly supported for convenience, but this is not
really necessary for this section) vector field X on a smooth manifold M , the flow of X as
described above provides a path of diffeomorphisms φ t

X
: M → M . The Lie derivative of a vector

field or of a differential form along X is meant to be a measurement of how that vector field or
differential form changes as one moves along the flow of X .

We’ll start with the definition for vector fields:

Definition 3.5. Let X and Y be vector fields on M The Lie derivative of Y along X is the vector
field LX Y whose value at a point m ∈ M is the element of TmM defined by

(LX Y )m = lim
t→0

(φ−t
X
)∗(Yφ t

X (m)
)− Ym

t

Note that this definition makes sense: recall that φ−t
X

is inverse to φ t
X
, and therefore we have

a map (φ−t
X
)∗ : Tφ t

X (m)
M → TmM . Thus the two tangent vectors in the numerator belong to the

same vector space, namely TmM .
There is a similar definition for differential forms, but actually it can be rewritten in a some-

what simpler way because one moves from T ∗
φ t

X (m)
M to T ∗M by pullback by the map φ t

X
. So

if ω ∈ Ωp(M) and we wish to compare ωφ t
X (m)

to ωm we can hit the first of these with the

transpose of the linearization of φ t
X
. But recall that pullback of differential forms was defined

precisely to so that the differential form ((φ t
X
)∗ω)m would be equal to the result of applying the

transpose of the linearization of φ t
X

to ωφ t
X (m)

. So we define:

Definition 3.6. Let ω ∈ Ωp(M) be a differential form and let X be a vector field on M . The Lie
derivative of ω along X is the differential p-form defined by

LXω = lim
t→0

(φ t
X
)∗ω−ω

t
=

d

d t

����
t=0

(φ t
X
)∗ω
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Remark 3.7. It can be shown (either directly from the definition or from the formulas that we
are about to prove) that our definitions of the Lie derivative of a vector field and of a differential
form are compatible in the following sense. Suppose that X , Y1, . . . , Yp are vector fields andω is

a p-form. Thenω(Y1, . . . , Yp) is a smooth function, i.e. a 0-form, so we can take its Lie derivative

along X . On the other hand we can take the Lie derivatives along X of ω and of the Yi . These
obey the Leibniz rule:

LX

�
ω(Y1, . . . , Yp)

�
= (LXω)(Y1, . . . , Yp) +

p∑

j=1

ω
�
Y1, . . . , Yj−1,LX Yj , Yj+1, . . . , Yp

�
.

The definition of the Lie derivative along X makes it look somewhat impossible to compute;
however we will presently give formulas which allow it to be quite easily computed from local
coordinate expressions of X and of the object being differentiated. We start with 0-forms, and
remind the reader that a vector field can be viewed as a derivation on the space of C∞ functions;
in particular if X is a vector field and f ∈ C∞(M) we have a well-defined function X f .

Proposition 3.8. If f ∈ Ω0(M) = C∞(M) then LX f = X f .

Proof. For any point m ∈ M we have, using the chain rule

(LX f )(m) =
d

d t

����
t=0

(φ t∗
X

f )(m) =
d

d t

����
t=0

( f ◦φ t
X
)(m)

=
d

d t

����
t=0

f
�
φ t

X
(m)

�
= d f

�
d

d t

����
t=0

φ t
X
(m)

�
= d f (Xm) = (X f )m

�

Recall that, since vector fields are derivations on C∞(M), they have well-defined commuta-
tors ([X , Y ] = X ◦ Y − Y ◦ X ), which are also vector fields. Interestingly, commutators fit into
the story of Lie derivatives:

Theorem 3.9. If X and Y are vector fields on M then LX Y = [X , Y ]

Proof. Let f ∈ C∞(M) and m ∈ M ; we are to show that
�
(LX Y )( f )

�
(m) =

�
X (Y f )

�
(m) −�

Y (X f )
�
(m).

We see (recalling that an element of, e.g. TmM is a derivation from the algebra of germs of
C∞ functions around m to R, so if v ∈ TmM and f ∈ C∞(M) we have a number v( f )):

�
(LX Y )( f )

�
(m) = lim

t→0

((φ−t
X
)∗Yφ t

X (m)
) f − Ym f

t
= lim

t→0

Yφ t
X (m)
( f ◦φ−t

X
)− Ym f

t

=
d

d t

����
t=0

Yφ t
X (m)
( f ◦φ−t

X
)

where in the first inequality we have used the definition of the pushforward in terms of deriva-
tions: (φ∗v)( f ) = v( f ◦φ). Now define a function of two variable H by

H(s, t) = ( f ◦φ−t
X
)(φs

Y
(φ t

X
(m))).

We observe
∂ H

∂ s
(0, t) = d( f ◦φ−t

X
)(Yφ t

X (m)
) = Yφ t

X (m)
( f ◦φ−t

X
).

Combining this we the previous displayed equation we see that

�
(LX Y )( f )

�
(m) =

∂ 2H

∂ t∂ s
(0, 0).
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Now (setting u= −t and using the chain rule)2

∂ 2H

∂ t∂ s
(0, 0) =

∂ 2H

∂ s∂ t

�����
(0,0)

f (φs
Y
(φ t

X
(m)))−

∂ 2H

∂ s∂ u

�����
(0,0)

f (φu
X
(φs

Y
(m)))

=
∂

∂ t

����
t=0

�
∂

∂ s

����
s=0

f ◦φs
Y

�
(φ t

X
(m))−

∂

∂ s

����
s=0

�
∂

∂ u

����
u=0

f ◦φu
X

�
(φs

Y
(m))

=LX (Y f )m −LY (X f )m =
�
(X Y − Y X ) f

�
(m),

where in the last inequality we use Proposition 3.8. Since f and m are arbitrary this proves that
LX Y = X Y − Y X . �

We now turn to the Lie derivative on differential forms; just as with vector fields there turns
out to be a rather simple formula, which is quite useful for geometric applications. First we
observe:

Lemma 3.10. The Lie derivative LX (defined by LXω =
d

d t

���
t=0
φ t∗

X
ω) is the unique linear map

L : Ω∗(M)→ Ω∗(M) obeying the following properties:

(1) For all f ∈ Ω0(M) = C∞(M), L f = X f .

(2) dLω =L (dω) for all ω ∈ Ω∗(M).
(3) For all ω,θ ∈ Ω∗(M), L (ω∧ θ ) = (Lω)∧ θ +ω∧ (L θ ), and

(4) If U is an open set and ω,ω′ ∈ Ω∗(M) are such that ω|U = ω
′|U , then (Lω)|U =

(Lω′)|U .

Proof. First we should check that LX obeys properties (1)-(4).
Property (1) is Proposition 3.8.
For property (2), simply note that, since d commutes with pullback,

d
�
φ t∗

X
ω−ω

�
= φ t∗

X
dω− dω,

and then (2) follows by dividing by t and taking the limit as t → 0
For property (3) we have

d

d t

����
t=0

φ t∗
X
(ω∧ θ ) =

d

d t

����
t=0

(φ t∗
X
ω)∧ (φ t∗

X
θ )

=
d

d t

����
t=0

(φ t∗
X
ω)∧ θ +ω∧ (φ t∗

X
θ ) = (LXω)∧ θ +ω∧ (LXθ ).

Property (4) is easily verified: for any point m ∈ U we will have φ t
X
(m) ∈ U for sufficiently

small t, and so (φ t∗
X
ω)m = (φ

t∗
X
ω′)m for all sufficiently small t, from which the conclusion

immediately follows.
It remains to show that properties (1)-(4) uniquely specify a linear map. If L is any map

obeying (1)-(3), and if f , g1, . . . , gp ∈ C∞(M), then we will have L f = LX f and L gi = LX gi

by (1), and then L (d gi) =LX (d gi) by (2), and then

L
�

f d g1 ∧ · · · ∧ d gp

�
=LX

�
f d g1 ∧ · · · ∧ d gp

�

by (3). So by linearityL andLX coincide on any forms which are finite linear combinations of
forms of the shape f d g1∧· · ·∧d gp. Now we proved earlier (Proposition 4.19 of Part 1) that any

differential form ω can be written as a locally finite sum of forms of the shape f d g1∧· · ·∧ d gp,

2Here and below I will make use of the following point (and similar ones) without comment: if f (x , y) is some

function and if we set g(z) = f (−z, z), then the chain rule gives that g ′(0) = (∇ f ) · 〈−1, 1〉=
∂ f

∂ y
(0, 0)−

∂ f

∂ x
(0, 0)
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i.e., M is covered by open sets on each of whichω is a finite linear combinations of forms of the
shape f d g1 ∧ · · · ∧ d gp. Now if L (like LX ) obeys condition (4) then the restriction of Lω to

any open set is determined by the restriction of ω to that set, so by considering the restriction
of ω to the open sets in the cover in the previous paragraph we see that Lω =LXω. �

Accordingly if we find a simple formula for an operation obeying (1)-(4) above then we can
deduce that LX is given by that formula. To prepare for this, recall the operation of “interior
multiplication” of a form by a vector field: For any vector field X we get a map ιX : Ωp(M)→
Ω

p−1(M) defined by

(ιXω)(v1, . . . , vp−1) =ω(X , v1, . . . , vp−1).

Here is the promised formula:

Theorem 3.11 (Cartan’s Magic Formula). For any ω ∈ Ωp(M) we have

LXω = dιXω+ ιX dω.

Proof. We just have to show that L ′
X

:= dιX + ιX d obeys condition (1)-(4) above.

If f ∈ Ω0(M) we see that

L ′
X

f = 0+ ιX d f = d f (X ) = X f ,

confirming (1).

(2) holds, since both dL ′
X

and L ′
X

d are equal to dιX d (as d2 = 0).

(4) is immediate from the definition of L ′
X
.

So the only nontrivial part is (3). And this isn’t too hard: the key point is (as I will leave you
to verify, using formula (7) on p. 23 of part 1) the identity

ιX (ω∧ θ ) = (ιXω)∧ θ + (−1)pω∧ (ιXθ ) if ω ∈ Ωp(M).

Of course this is the same “anti-derivation” property as is satisfied by d. Combining these we
get, if ω ∈ Ωp(M),
�
dιX + ιX d

�
(ω∧ θ ) = d

�
(ιXω)∧ θ + (−1)pω∧ (ιXθ )

�
+ ιX ((dω)∧ θ + (−1)pω∧ (dθ ))

= (dιXω)∧ θ + (−1)p−1ιXω∧ dθ + (−1)pdω∧ (ιXθ ) + (−1)2pω∧ dιXθ

+ (ιX dω)∧ θ + (−1)p+1dω∧ ιXθ + (−1)pιXω∧ dθ + (−1)2pω∧ ιX dθ ,

and after cancellation one ends up with precisely
�
dιXω+ ιX dω

�
∧ θ +ω∧

�
dιXθ + ιX dθ

�
, as

desired. �

We have, by definition,

LXω =
d

d t

����
t=0

φ t∗
X
ω;

to find the derivative at a time other than zero, we compute, using (2),

(3)
d

d t

����
t=s

φ t∗
X
ω = lim

h→0

φ
(s+h)∗
X ω−φ∗

s
ω

h
= lim

h→0

φs∗
X
(φh∗

X
ω−ω)

h
= φs∗

X
LXω

Corollary 3.12. Suppose thatω ∈ Ω∗(M) is closed: dω= 0. Then a vector field X has the property

that φ t∗
X
ω =ω for all t if and only if d(ιXω) = 0.
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Proof. We have φ t∗
X
ω = ω for all t if and only if d

d t

���
t=s
φ t∗

X
ω = 0 for all s, which by (3) is

equivalent to φs∗
X
LXω = 0 for all s, which of course is equivalent to LXω = 0. Cartan’s Magic

Formula reveals that this in turn is equivalent to

dιXω+ ιX dω= 0,

and of course the second term on the left is zero since we assume ω is closed. �

3.2. Volume forms and the Moser argument. From now on let M be a compact oriented n-
manifold (without boundary). A volume form on M is by definition a differential form ω ∈
Ω

n(M) which is nowhere zero. In particular since volume forms have top degree they are obvi-
ously automatically closed. Ifω is a volume form, then for any open subset U ⊂ M , by restricting
ω to U and then integrating we can define the volume of U:

volω(U) =

∫

U

ω

(this is a finite number by virtue of the ambient manifold M being compact). A diffeomorphism
φ is called volume-preserving (with respect to the volume formω) if φ∗ω =ω; this terminology
is justified by recalling the behavior of integrals under pullbacks by diffeomorphisms: we have

volω(φ(U)) =

∫

φ(U)

ω =

∫

U

φ∗ω =

∫

U

ω = volω(U)

if φ is volume-preserving.
Corollary 3.12 shows how to construct many volume-preserving diffeomorphisms. Namely,

the time-t flow of a vector field X will be volume-preserving provided that d(ιXω) = 0. To get
a feel for this condition, note that we can write ω in local coordinates (x1, . . . , xn) as

ω = gd x1 ∧ · · · ∧ d xn

for some smooth nowhere-zero function g. Then if a vector field X is given locally by X =∑
i fi

∂

∂ x i

, we will have

ιXω =
∑

i

g fiι ∂

∂ xi

d x1 ∧ · · · ∧ d xn =
∑

i

(−1)i−1 g fid x1 ∧ · · · ∧dd x i ∧ · · · ∧ d xn

and so

d(ιXω) =

�∑

i

∂

∂ x i

(g fi)

�
d x1 ∧ · · · ∧ d xn.

Thus the condition for the flow of X to preserve ω is just that

n∑

i=1

∂

∂ x i

(g fi) = 0.

In case the function g is 1 (i.e., ω restricts to the coordinate chart as the standard volume form
d x1 · · · ∧ · · · d xn; it is actually always possible to find coordinates around any given point such
that this holds—see Remark 3.14), this condition just reads that the divergence (in the standard

multivariable calculus sense) of X =
∑

fi
∂

∂ x i

should be zero. Thus the flow of a divergence-free

vector field preserves volume.
It should be clear from the local coordinate formulas above that, given a volume form ω

and any α ∈ Ωn−1(M), a unique vector field X can be chosen so that ιXω = α (this can be
done locally in coordinate charts, and then the local solutions can be pieced together with a
partition of unity). Of course, there are many closed (n− 1)-forms (for instance, the derivative
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of any (n − 2)-form will do), and so there are many vector fields X with dιXω = 0. As such,
from Cartan’s Magic Formula we have seen that for any volume form on a compact oriented
manifold there are many diffeomorphisms which preserve the volume form.

Now let us call two volume forms ω0 and ω1 on M equivalent if there is a diffeomorphism
f : M → M so that f ∗ω1 = ω0. In view of the behavior of the integral under pullbacks, if ω1

is equivalent to ω0 it is obviously necessary to have
∫

M
ω1 =

∫
M
ω0. An argument of Moser

shows that this condition is also sufficient:

Theorem 3.13 ([Mos]). Let M be a compact connected oriented manifold without boundary and

ω0,ω1 ∈ Ω
n(M) two volume forms such that

∫
M
ω0 =

∫
M
ω1. Then there is a diffeomorphism

f : M → M so that f ∗ω1 =ω0.

Sketch of proof. First of all note that since the only closed 0-forms on a connected manifold
are the constants, the assumption says that the ωi have the same integral when wedged with
any closed 0-form. By Poincaré duality, this then implies that ω0 and ω1 represent the same

cohomology class in Hn(M). So there is some α ∈ Ωn−1(M) such that ω1 = ω0 + dα. Now for
0≤ t ≤ 1 let

ωt =ω0 + tdα= (1− t)ω0 + tω1.

The fact that ω0 and ω1 have equal integrals (or even just integrals of the same sign) means
that they induce the same orientation on M . So if m ∈ M and {e1, . . . , en} is a basis for TmM such
that ω0(e1, . . . , en)> 0, then it will also hold that ω1(e1, . . . , en)> 0. But then for all t ∈ [0, 1]

ωt(e1, . . . , en) = ((1− t)ω0 + tω1)(e1, . . . , en)> 0.

Since m ∈ M was an arbitrary point this shows that the ωt =ω0 + tdα are all volume forms.
The plan now is to find a time-dependent vector field X t on M so that where {φt} is the flow

of X t (i.e. φ0 = idM and d

d t
φt(m) = X t(φt(m))) we have φ∗

t
ωt =ω0 for all t. If we can do this

then f = φ1 would be our desired diffeomorphism.
In this direction, Cartan’s Magic Formula together with the chain rule can be seen to imply

that, if X t has flow φt :

d

d t
(φ∗

t
ωt) = φ

∗
t

dωt

d t
+φ∗

t
LX t
ωt

= φ∗
t

�
dα+ dιX t

+ ιX t
dωt

�
= φ∗

t
d
�
α+ ιX t

ωt

�

So one need only solve the equation ιX t
ωt = −α, which by local coordinate considerations

as above can be done in a unique way, producing a vector field X t which depends smoothly on
t. So indeed we can just set f equal to the time-one map of the flow of X t . �

Remark 3.14. With sufficient care, one can localize this argument to show that for any volume
form ω = g(x1, . . . , xn)d x1 ∧ · · · ∧ d xn on a neighborhood U of the origin in Rn, there are
coordinates (y1, . . . , yn) on a smaller neighborhood U ′ of the origin so thatω|U ′ = d y1∧· · ·∧d yn.
This justifies a statement made earlier that for any volume form, the manifold is covered by
coordinate charts in which the volume form is given by the standard formula d x1 ∧ · · · ∧ d xn.
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