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1. MULTIVARIABLE CALCULUS WITHOUT COORDINATES

The objects of study in this course are what are called “smowtnifolds.” For the time being | won't give
a precise definition of these (it will come later, or of couysel can easily look it up), but for now fiice it to
say that these are topological spaces which locally resembtlidean space and in which, in particular, it is
possible to do something resembling calculus. The surfateedEarth is (to good approximation) an example
of a two-dimensional smooth manifold. Of course, the EasthaitR? but rather a closed surface (I was going to
say a sphere, but then it occurred to me that if one looks lgl@és®ugh there are some rock formations which
cause the genus to be positive), yet locally it looks enoikghR? that it seems reasonable to speak for instance
of the directional derivatives of a function (the temperafsay) defined on the Earth.

So how can we formulate calculus in such spaces? Part of firétide will be that a manifoldM will have
an open covefU,|la € A} by sets equipped with homeomorphisms (“charis;,) U, — V, whereV, c R"is
open. So we can try to do calculus Bhby, roughly speaking, doing standard multivariable calsuh the open
setsV, and then transporting the constructions backitby the maps,, (or their inverses). However, ifie M,
thenm will typically belong to several of the set$, in the open cover oM, and one needs to make sure that
one’s constructions don’t depend on which of the charts smsing. To compare between thh chart and the
Bth chart, one needs to look at the “transition function”

¢ 0 dat: da(Us NUpg) — ¢p(U, N Up).

This is a map between two open subset&bfand part of the definition of a smooth manifold will ensuratth
the map is smooth.g., C*) and invertible (with a smooth inverse), but there won't by eestrictions on what
¢p o ¢, other than that. So for example it doesn’t make sense to ttak@artial derivative of a function o
with respect to the first coordinate,” since although we ddélieintiate a function oW, with respect to the first
coordinate, or we can do the same for a function/grthese operations won't be equivalent when we try to lift
them up toM using the map#,, ¢;.

So this makes it important to understand how notions of wavitible calculus behave under the action of
diffeomorphismgi.e., smooth maps with smooth inverses) U — U whereU andU are open subsets &f".
You should think of the action of such affidiomorphism as being the same as changing one’s coordirstgagy
e.g.from Cartesian coordinates to polar coordinates. In pagtid want to first discuss various notions of what
atangent vector at a point g U is. (And we'll later generalize this to the notion of a tangeector at a point
in a smooth manifold.) Visually you're supposed to think dhagent vector ap as being a little arrow whose
base is ap, pointing in a possible direction of motion from The set of these tangent vectors will form a vector
space called theangent space to U at @and denoted ,U. I'll give three characterizations, from most concrete
to most abstract.

(1) The way to describe this notion that is used in undergagedmultivariable calculus courses is just to say
that a tangent vectarat p € U is (or is represented by) an n-tuple of numbess.(..,v,) € R". One
can then draw the vector whose base ip ahd whose first coordinatevs, second coordinate is, and
so on. (In somewhat more sophisticated language, the sth@datesian coordinates ® determine a
basis{ey, ..., e} of unit vectors, and one has= ) vig.)
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This characterization is very good for computational psgsy but when one is interested in how
tangent vectors behave under coordinate chasnged — U it has some disadvantages. The tangent
vectorv = (vi,...,Vn) € ToU should correspond under the coordinate chapge a tangent vector
PN € T¢(p)l] at ¢(p). Perhaps you've learned how this correspondence worke: constructs the
Jacobian matrix ap of the mapg (with (i, j) entry given byg—ij whereg; is theith component ob),
and then the coordinates ¢fv are obtained by multiplying the Jacobian matrix by the viectmsisting
of the components of. This is a manageable computation, but it may not be veryepumeally clear
from this discussion what's going on here. In particular & then want to say what a tangent vector
to a pointm on a smooth manifold is we'd have to say something like fiegple of numbers for each
chart containingn, such that the-tuples for diferent charts are related by the Jacobians of the transition
functions,” which is much more opaque and less natural-dioigrthan it really should be.

A more natural characterization of tangent vectors ésfttlowing. The idea is that the tangent space
TpU consists of all possible velocities of curves passing thhopu If p € U, consider allC™ paths

v: (—€,6) — U (for somee > 0) such thaty(0) = p. | would like to declare two of these to be
equivalent if they have the same velocitg., y1 ~ 2 iff ¥1(0) = y,(0) (or equivalently, and maybe
less circularly,y; ~ v, if lim_g M = 0). Then simply define a “tangent vector” ptto be an
equivalence class/] of C* arcs througtp (and soT,U is just the set of equivalence classes). The way
this behaves under coordinate changes is extremely sigipte I'm not using coordinates to define the
notion: a tangent vectare T,U has the fornv = [y] for somey, and the corresponding tangent vector
.V € T¢(p)0 is just [¢ o y]. We'll see later that this adapts to general smooth maaéfekry simply and
directly—a tangent vector at a point on a smooth manifold jugt be a suitable equivalence class of
curves passing through that point.

The one disadvantage of this characterization is that@tsa intuitively obvious how to do algebraic
operations (like addition of tangent vectors) on equive¢ealasses of curves through a point (though
you can make a suitable definition if you put your mind to it).

It shouldn't be hard to construct a natural correspondeeteden tangent vectors in this sense and
tangent vectors in the sense of Definition (1) above, butradhé advantage of thinking about it this
way is that it's less coordinate-dependent.

Now for a characterization of tangent vectors that yonast certainly would not have thought of. To
attempt to motivate it, note that a given tangent veeter T,U gives you the ability to dferentiate
smooth functiond : U — R at p—namely you take the directional derivativepat

. f(p+tv) - f(p)
(Dvf)(p) = lim SEEEErE—

So we willdefinea tangent vector gt to be “a way of diferentiating functions defined nepy i.e., we
will abstract some relevant properties of the operatioraking a directional derivative, and then define
a tangent vector to be one of these operations.

To do this, first consider pairsf(V) whereV is an open neighborhood gfand f: V — R is
C>, and declare two such pair$,{/) and @, W) to be equivalent if there is a smaller neighborhood
Z c VN W of psuch thatf|; = glz. LetO, be the set of equivalence classes. Since we can set,
for instance f,V] - [g,W] = [fg,V N W], O, is easily seen to be a commutatiRealgebra ie., it is
both a commutative ring and a vector space dewith appropriately compatible operations), called
the “algebra of germs of functions @t” I'll tend to denote a germ by just rather than f, V]; it
is to be understood thét is defined not necessarily throughduitbut rather on some (varying) open
neighborhood op. Of course one always has a well-defined val(p) for f € O,.

A tangent vector ap will then be defined to be derivation v. O, — R, i.e. vis to satisfy

o (R-linearity)v(cf +g) = c\(f) + v(g) force R andf,g e Op

o (Leibniz rule)v(fg) = f(p)v(g) + g(p)v(f) for f,g € Oy.
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It's standard that the directional derivative operatibgslluded to above satisfy these properties. It's
not obvious that, conversely, any derivation@pis given by a directional derivative in some direction,
but we'll prove this shortly.

Like the characterization of tangent vectors as equivaaet@sses curves, this formulation is com-
pletely coordinate free, making it easy to extend the défmitio manifolds when the time comes. Unlike
the situation with curve characterization, though, it'#gwbvious that derivations form a vector space,
which is another advantage.

To see how this notion behaves undefetimorphisms (or indeed under more general smooth maps)
¢: U — U, ifve TpU (i.e, if vis a derivation or0,), we need to construct a derivatignv on Oy .
Well, if f e Oy (really we should write {, V]), so f is a smooth function defined negp), thenf o ¢
will be a smooth function defined nepr(specifically, it will be defined on the open sgt'(V) around
p), and so we can define

(@V)(f) = (f o ¢)

So as with the curve formulation, it's quite simple to see hdmrivations transform under coordinate
changes.

Among the three above characterizations of tangent vedtashould be clear that (1) is equivalent to (2),
under the correspondence which assigns to an equivaleass af curves,f] the vectory’(0) (expressed in
coordinates using the standard basisK8)y. We now set about proving that (1) and (3) are also equitalen
Let T,U denote the space of tangent vectors as given by formulatip@.¢., as elements dk") and (for the
moment)pr that given by (3)i¢e., as derivations). Write the coordinatesp&é U c R" as (0y,. .., Pn). Now
we have a linear map: T,U — 'pr given by

n
0
a’(Vl,...,Vn)Z Vi—,

i.e, @ sends a vector (in the undergraduate multivariable cadcsdunse) to the operation given by directional
differentiation in the direction of that vector. We claim thés bijective, justifying our proposal to regard (3) as
an equivalent definition of the tangent space.at should be clear that is injective. Indeed, for eadhwe have
an elemenk; — p; € Op, and we see that, whege 'pr — T,U is given by

BNV) = (VX1 = P1)s .., V(% = Pn)) s
we haveBoa = 1 (asa’—;(xj - pj) = 6;j). Thuse is injective, angs surjective. To see thatis surjective, we note

the following, whenevev € T,U:

o V(1) =v(1-1) = 1v(1) + 1v(1) = v(1) + v(1). Hencev(1) = 0, and so byR-linearity v(c) = O for every
constant functiore.
e For anyi andj, if f € Op we have

V(6 = o5 = 1) F) = (% = PIV((x; — ) F) + (X; = PplpF (V% — p1)) = 0.

¢ By the multivariable Taylor formula, any (germ of a) funetig € O, can be written (on some neighbor-
hood ofp)

n

90 = 9P+ ). S2P0— D)+ D) (x = PO - P )
i=1

ij=1

for somefi; € Op. Hence by the first two items and the linearitywive get

VQ) = ) 52 (VX - ).
i=1
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Thus

where the numbeng are equal ta/(x, — ;).

In view of the above correspondence, we can drop the tildeémbtation'f'pU, and always view tangent
vectors as derivations on spaces of germs of functions. Ed®m we express a tangent vector in coordinates,
we will often use notation consistent with the derivatioteimpretation and write the vector as

v 9 + W 9
18x1 "axn

rather thany, ..., ).

Of course, another familiar notion from multivariable adlcs is that of avector fieldon an open set/, which
can be thought of as a smooth family of tangent vectors atf@ieopoints ofU, or as a smooth vector-valued
functionX: U — R", expressible in coordinates A$m) = (Xy(m), ..., X,(m)). There is also a coordinate-free
interpretation of what a vector field is: it is a map C*(U) —» C*(U) which, as with tangent vectors, is a
derivation, namely:

e X(cf+g)=cX(f)+ X(g)forallceR, f,ge C*(U), and
o X(fg) = fX(9) + gX(f) forall f,ge C*(M).
Note that while tangent vectors, when viewed as derivatijpiss take values iR, vector fields take values in
the space of smooth functions. Just as with tangent vedten®’s a natural one-to-one correspondence between
the undergraduate versions of vector fields and the desivatonC>(U): simply assign toXi(:), ..., Xa(})) the

derivation
n
of
f Xi—.

Again, the great advantage of the derivation interpretiadhat it makes no direct reference to coordinates.
So on a smooth manifol, once have defined the space of smooth funct®fiéM), we will effortlessly be
able to define a vector field dd as a derivatiorX: C®(M) — C®(M).

Another nice feature of the derivation interpretation fector fields (but not for tangent vectors) is that it
points toward some additional structure on the space obvédiglds that we wouldn’t have noticed if we just
worked in coordinates. Namely, given that a vector field igdain kind of functionX: C*(U) — C*(U), it
becomes natural to think about composing such functions: &lslight hitch with this is that the composition of
two derivations will not typically be a derivation. For expl®, aixl is a derivation, buta"T1 o aixl certainly is not;
namely we have

0 0
— o —(X1X1) =2
%1 o 6X1( 1X1)
but 5 5 5
de_xl ° 6—)(1(X1) + Xlﬁ_xl ° 8_X1(X1) =0.

So while we can “compose” two vector fields the result won'ebector field. However:

Proposition 1.1. Let A be a commutativi®-algebra and let XY: A — A be two derivations otA. Then the
commutatorK, Y] := Xo Y — Y o X is also a derivation otA.

Proof. The linearity of [X, Y] is trivial, so we just need to check the Leibniz rule. We fifat, f,g € A:
[X.YI(fg) = X(Y(fg)) - Y (X(fg)) = X(fYg+gY ) - Y (fXg+gXf)
= (fXYg+ (XT)(YQ + gXY f+ (Xg)(Y ) — (fYXg+ (Y )(Xg) + gY X+ (YQ(XT))
= f(XY=YX)g+g(XY-YX)f = f[X, Y](g) + oY, X](f),
which is precisely the Leibniz rule foiX] Y]. ]
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In local coordinates, iK = 3 Xia% andY =Y Yjaixi, then one finds

of

X Y](f Y
[ Y]( ) ZX'C'))Q (Z ]ax] Z '(’))(| [Z Jaxj]

n n

0°f aY; of 0°f oX; of

= XY Xi— Yi X Y —

Z( ' oxax; * A% OX ) I;( Voxiax; - 0% 6x,)

L (& 9Y 0X;
I pITARRe

£ . 0% 0% axJ
Thus [X, Y] is the vector field}, Zj% whosejth component is given by

. aY; BXJ

@ 1= (X' ")

This commutator operation on vector fields (also called bebracke} turns out to be a fairly important one.
Of course, if one wanted to work entirely in coordinates withtaking a more abstract point of view, it would
have been possible to just define the Lie bracket of two vdittits X andY to be the vector field given by
formula (1), but it's not clear why one would be motivated togb.

In general, the commutator operation] on the space of linear maps from a vector space to itsebfgsi
the Jacobi identity:

@ X2 +[Z[X Y]] +[Y.[Z2.X]] =0
Indeed, the left hand side is equal to
X(YZ=-2ZY) = (YZ-ZY)X+ Z(XY =Y X) = (XY = YXZ + Y(XZ - ZX) — (ZX - X2)Y

and (using associativity of function composition) you cae that each of the six three-letter words made up of
one each of the letters X,Y,Z appears above once positivelyoace negatively, so the sum is zero. Note that if
[-,-] were an associative operation we would instead haveY[Z]] + [Z, [X, Y]] = [X[Y.Z]] - [[X, Y].Z] = O

thus the Jacobi identity expresses a particular way forarpioperation to be non-associative. In general a vector
spacel equipped with a binary operation{: Ax A — Awhich is bilinear, which obeys¥, Y] = —[Y, X], and
which satisfies the Jacobi identity is calledlia algebrg thus we have shown that,if c R" is open, then the
spaceX(U) of vector fields orU is naturally a Lie algebra.

Exercisel.2 a)Let¢: U — V be a difeomorphism between two open subsetBfand letX be a vector field
onU. Prove that ifg.X: C*(V) —» C*(V) is defined by @.X)())(¢(p)) = (X(f o ¢))(p), theny. X is a vector
field onV. Why did we have to assume thatwas a difeomorphism (or at least bijective) in order to do this
(unlike the situation with tangent vectors, which can behgasforward by any smooth map)?

b) Prove that ifX, Y are two vector fields o) and if¢: U — V is a difeomorphism then

¢ [X. Y] = [4. X, .Y].
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Exercisel.3. Define the following three vector fiellisn R3:

I—zi— 9
=%y Yoz

0 0
J_Xa_z_za_x
_y2_,9
= Yox dy

a) Computel, J], [I, K], and [J, K].
b) Deduce as a formal consequence of part (a) that the crodsgironR? satisfies the Jacobi identity.

2. BUMP FUNCTIONS AND PARTITIONS OF UNITY IN R"

In point-set topology one learns a result called Urysohrésnina, which states that given inclusiofisc
U c X whereX is a normal topological spacé] is open, andA is closed, there is a continuous function
x: X — [0,1] identically equal to one oA and identically zero oiX \ U. A version of this result is extremely
important in diferential topology (perhaps more important than in pointggology); unfortunately, since we
need our functions to K> and not just continuous, we can't just cite Urysohn’s Lemmiar&ther need to prove
a new, smooth, version of the result (of course, this smoetkion will apply in a more limited context, if only
because it doesn’t make sense to speak of “smooth funct@na’general normal topological space). The good
news is that the functions can be constructed in a more ctenfarghion than one sees in the proof of Urysohn’s
Lemma.

We begin with a result in one-variable calculus.

Lemma 2.1. Define the function f R — R by

et t>0
f(t)z{ 0 t<0

Then fe C®(R). Indeed, for all ke N there is a polynomial Pe R[t] with the property that the kth derivative
() exists and is given by

(3) £09t) = { gk(l/t)e—l/t E z 8

Proof. First note that if[(B) holds, thef® is continuous on all oR: indeed continuity is obvious everywhere
except zero, and at zero we have, by repeated applicatidid 6pital’s rule,

. _ . Pe(s) .
t|Lm0+ Pc(1/t)e ™t = Ilmoo = I|moo 0

wherecy is some constant (which results fronfidrentiatingdegR-many times the polynomidt), from which
continuity at zero follows directly.
Thus we just need to provEl(3), which we do by inductiorkor8o assumd{3) holds fég we prove it for

k + 1. Fort < 0 the formula is trivial. Fot = 0 we see
LR (o) 1 .
lim PO-1"0 _ lim =P (1/t)e Yt = lim SRS _ 0
t—0* t t—0* s—c0 @S

1Though it's not necessary in order to do the problem, you mightinice yourself that if one interprets these vector fieldbe standard
multivariable calculus senskpoints in the direction of a rotation around tkexis, J in the direction of a rotation around tlyeaxis, andk
in the direction of a rotation around tizeaxis.
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by L'Hdpital’s rule, and so (since the left-hand limit is trivialtero) we havef &*(t) = 0. Finally fort > 0 we
have, by the product and chain rules,

d 1 1 1 1
(k+1) _ VA0 Wl o Y —1/t = = —1/t
flk+ (t)_—dt(Pk(l/t)e )= tzpk(t)e +t2Pk(t)e ,
and so the formula holds with
Pis1(9) = S*(P(9) + Pk(9)).
O

Note that our functiorf is a surjection to the half-open interval, [), with f=1({0}) = (-0, 0]. Out of this
function we can build many other useful ones. For instance:

Corollary 2.2. There is a © function g R — [0, 1] with the property that g'({1}) = [1, ) and g*({0}) =
(—OO, 0]

Proof. Note that the function — f(1 - t) is smooth and nonnegative, and equals zero precisely antdreal
[1, c0). In particularf(t) + f(1 - t) is positive everywhere. So we can let

_ f(t)
90O =+ ra-o
| leave it to you to check that this has the desired properties O

Corollary 2.3. For any real numbers & b there is a C’ function g,p: R — [0, 1] such that gj)({O}) = (—o00,q]
and g (1) = [b. ).
Proof. Let

Gan(t) = g(;%i)-

O

Corollary 2.4. For any real numbers & b < ¢ < d there is a smooth “bump” function:hR — [0, 1] so that
h™*({1}) = [b, c] and T*({0}) = (~c0,a] U[d, ).
Proof. Let
h(t) = Gan()(1 - Gea(t))-
mi

Corollary 2.5. For xe R"and r> Olet B.(x) = {y € R"||ly — X|| < r} denote the open ball of radius r around x.
Then for anyd < s < r there is a smooth functigh: R" — [0, 1] such thapg~1({1}) = Bs(xX) and supgB) = B (x).

(Here bysupgg) we mean thesupportof 3, i.e., the closed sdly € R"|8(y) # 0})

Proof. Let
BY) =1-gg2(ly - X[

Our goal now is the following theorem:

Theorem 2.6. Let U c R" be an open set, and I1&¢ = {V,|a € A} be an open cover of U. Then there ar& C
functionsy, : U — [0, 1] obeying the following properties:
(i) supxa) € Ve
(i) Any xe U has a neighborhood WWvith the property thak,lw, = O for all but finitely many.
(iii) Forall x € U we havey,, y.(xX) = 1.
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Note that property (ii) ensures thal, v, is well-defined and smooth (even if there are infinitely many—
perhaps uncountably many—firente), sinceU is then covered by open sets on each of which the Sy,
is really a finite sum (all but finitely many terms are zero).

Definition 2.7. A collection of functiongy,|a € A} obeying properties (i)-(iii) of Theorem 2.6 is calleghartition
of unity subordinate to the cov¢y,}.

Theoren 26 has an analogue for general smooth manifoldsT{seoreni 3.17); to make this more general
version eventually easier to reach we present the prooffen@ets iR" in a fairly general way (a proof more
specifically adapted t&" can be found in Appendix A of Madsen-Tornehave). In paréicule bring in the
following definition from point-set topology:

Definition 2.8. A topological space X is callesecond-countabliéthere is a countable basis for the topology of
X.

In other words, there should be a collecti@|n € N} of open sets with the property thatUf is open and
x € U thenx € O, c U for somen. For exampleR" has this property (take the base to consist of open balls
centered at points with rational coordinates and havingmat radius), as does any open subseR®dfjust use
those rational balls that are contained in the open subBai) of our eventual definition will require that any
smooth manifold also has this property.

Lemma 2.9. Let X be a second-countable locally compact Haugdmace. Then there is a sequence of compact
sets{Kj}2, and a sequence of open séits};°; such that

e Ki C Hi

o X=U,Ki =U>2 Hi

o Ifj>i+3thenHNH;=2.

Proof. First note that a second-countable, locally compact spasealcountable base for its topology which
consists of open sets with compact closure. Indeed, givauatable bas#, by local compactness any point
X € X has a neighborhoo®, with compact closure, and there will be soMes B such thatx € V c Oy;
evidentlyV will be compact, and the set of all that can be obtained in this fashion will still be a base fer th
topology (and will be contained in the origin&| so will be countable).

So let{U;};2, be a base for the topology which is countable and such thatldais compact. In particular the
U; coverX. We claim now that there is a sequenGg};°, of open sets with eadB; compact, such tha@; c Gi,,
and such thav?,G; = X. Specifically, thes; will have the form

GiZUoU“-UUL

for a certain increasing sequence of natural numbgfs To construct the sequen¢g}, we let jo = 0 (so
Go = Uo), and assuming that we have choggrso thaiG, = U, U- - -UUj,, we note thaGy is compact since the
U; are, and so since thé; coverX there must be somg.1 > jx S0 thatGy c UiJ:llUi. Inductively choosing the
jk in this fashion results in a sequen@esatisfying the required properties (the fact that@eoverX follows
from the fact that theJ; do, and the fact thaf; — oo since thej; are a strictly increasing sequence of natural
numbers).

To construcK; andH;, letK; = G1, W; = Gy, and, fori > 2, letK; = G; \ Gi_; andH; = Gi,1 \ Gi_,. These
are easily seen to satisfy the required properties.

m]

Proof of Theorerh 2]6Let K; andH; be subsets o) as in Lemma&Z]9 (applied witk = U), and fix anyi. For
all x e Ki we may chooser, € A andex > 0 so thatBy, (X) € V,, N H;. Then the collection of open balls
{B., (X)Ix € K} coversK;|, so it has a finite subcover.

Now lettingi vary and taking the union of all of these finite subcovers, axeta countable collection of balls
{Bx}i, that coversX, and such that wherB, denotes the ball with the same centeBadut twice the radius,



MATH 8210, FALL 2011 LECTURE NOTES 9

there aray, andiy such thatB, c Vy, N Hi.. (While there may be more than one sughandi,—there might
even be uncountably many possible—we specifically choose ong andiy for everyk. For convenience let us
takeiy to be the for which B, was a member of the finite subcoverkf so that in particular for aniythere are
just finitely manyk with iy =i.)

| claim that the ball€, form alocally finitecover ofU, i.e. that any poink € U has a neighborhod@, which
meets just finitely many of thB,. Indeed we could use f@, any neighborhood af with compact closure. For
thenOy is contained in the union of just finitely many of the sef{ssayOx c Hi U--- U H,. But theH; have the
property that; N Hp, = @ whenevem > i + 3, and sdOx N Hy = @ for m > r + 3. Consequentl, N Oy = @
unlessk is one of the finitely many indices havimg< r + 2.

We can now construct the desired functions. First, for dadet yx: U — [0, 1] be a smooth function
identically equal to 1 orB, and such thasupfy) c By suchy, exist by Corollary25. By the previous
paragraph, any point i has a neighborhood which is disjoint from the supports obaflfinitely many of the
Yk, consequently

is a well-defined, smooth function. Moreower- 0 everywhere, since the (smaller) baliscoverU. So for any
k we have a well-defined, smooth functigh, and obviouslyy, % = 1.
Now define

i
Xa = - -
k:;a/ !’l{
Since B¢ c V, whenevera = ay, we havesupiy.) c V, for all . Since any point has a neighborhood

intersecting the support gf for only finitely manyk, there will be just finitely many, whose supports intersect
this neighborhood (namely, just thogavhich equaky for one of thesd). Finally, we clearly have

N IPIE DN

1% a kKax=«a

As essentially a special case we get a direct analogue obmsLemma:

Corollary 2.10. If A c U c R" with A closed and U open, there is &Qunction f: R" — [0, 1] with fla =1
and suppf) c U.

Proof. Let{y1,x2} be a partition of unity subordinate to the coyet R" \ A} of R", and letf = y;. | leave it to
you to confirm the desired properties. m|

Exercise2.11 a) LetU c R" be open, lepp € U, and letX be a vector field otJ (use the interpretation of
as a derivation fronC*(U) to itself). Prove that one can obtain a well-defined tangestor (in the sense of
a derivationOp, — R) X, by the following prescription: If {,V] € Oy, let f € C*(U) be a function such that
[f,U] = [f,V]. ThenXf e C*(U), and we set

Xp([, VD) = (XF)(P)

(Pgrt of the problem is showing thétexists, and moreover th, ([ f, V]) is independent of the choice of such
af.)
b) If in coordinates we havk = 3; f; -, prove thatX, = 3}; fi(p) -

Tax
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3. SMOOTH MANIFOLDS

Definition 3.1. Let ne N. An ndimensional topological manifol(br “topological n-manifold”) is a second-
countable Hausdgf space M with the property that, for all m M, there is a neighborhood & M of m and a
homeomorphism: U — V where Vc R" is an open subset.

Remark3.2 Of course, by replaciny with a small open balB c V aroundg(p) andU with ¢~1(B), we could
just as well require the image ¢fis an open ball irR" rather than an arbitrary open set. In turn, since any open
ball in R" is homeomorphic (and indeedfi@iomorphic) taR", we could equally well require the images of the
maps¢ in Defnition[3.1 to all beR"—i.e., a topologicaln-manifold is a second-countable Haud@i@pace in
which every point has a neighborhood homeomorphikto

Definition 3.3. Let M be a topological n-manifold, and let k be either a pesitinteger oreo. A C< atlason M
is a collectionA = {(U,, ¢.)la € A} where

e The U, are open subsets of M, ang,.aU, = M.

e Each¢,: U, — R"is a homeomorphism from,uo the open subse,(U,) c R", and

e If o, Aaresuchthatyn Uz # @, then

¢ﬁ o ¢;l: ‘r/’uz(Uoz N UB) - ¢B(U<x N U,B)
is of class ¢.
The map®,: U, — R" are calledcoordinate chartéor sometimes “coordinate patches”) for the atla®

Exercise3.4. (@) If A andB areC* atlases on a topologicatmanifold, write A ~ Bif A U B is also aCk
atlas. Prove that defines an equivalence relation on the set of all atlases.
(b) If A = {(U,,d,)} is aCk atlas forM, let Amay denote the set of all pairéJ(¢) whereg: U — R" is
a homeomorphism from an open subdet M to an open subset(U) c R", and such that whenever
UnU, #@the mapp o ¢;1: #,(UNU,) — ¢(UNU,)isCkand has inverse which 8*. Prove that
Amaxis an atlas containingl, and is maximal in the sense that it contains every othes #ik contains
A. Deduce that ifA ~ B thenAmax = Bmax

Definition 3.5. A C-differentiable structuren a topological n-manifold is a maximal atlag on M (.e., an
atlas such that, in the notation of Exerc[sel3.4(#),= Amay. An ndimensionalCk manifoldis a topological
n-manifold M equipped with a'Cdifferentiable structure. A € manifold will also be called amooth manifold
and a C°-differentiable structure will also be calledsamooth structure

Remarl3.6. We will almost exclusively discusamooth(i.e., C*) manifolds in this course. This is partly justified
by the fact that, for 1< k < oo, any Ck manifold is Ck-diffeomorphic to eC* manifold (there is a proof in
Hirsch’s bookDifferential Topology. On the other hand there is some real loss of generalitydkithg atC*

(or even jusC') manifolds rather than just topologica&{) manifolds, as there are topological manifolds which
are not homeomorphic to arf§* manifold. Examples of such are rather complicated—Kervainestructed a
10-dimensional one in 1960, and the lowest dimension in vaity occur is 4, where there are examples due to
Freedman in the early 1980s.

Remarl3.7. The definition is that a smooth manifold is a certain kind gidlmgical space equipped witmaax-

imal C* atlas. A maximal atlas is a rather unwieldy object—exceptivie cases it will consist of uncountably
many coordinate charts. But in view of Exerdise] 3.4 it is lsaifeever necessary to really work with a maximal
atlas—you just have to specifneatlas (often with a small, finite number of charts), and thes tanonically
determines a maximal atlas by the construction in Exefc#R One could equally well define a smooth man-
ifold as a topological manifold equipped with an equivakeiotass of atlases, where the equivalence relation is
the one from Exercise_3.4(a). One advantage of a maximal mtidhat “everything that could be a coordinate
patch is,” so that if you have to work in local coordinates yauwre a great variety of possible coordinate systems
to work in and you can choose whichever works best for youppses at the time.
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Example3.8. As the simplest possible example, we note ffais canonically a smooth manifold: take an atlas
consisting of the single pair {1, R") where %~ denotes the identity map. As noted in RemarK 3.7 specifying
this (very small!) atlas canonically determines a maxintialsaj.e., a diferentiable structure).

Of course we could just as well have replad@tby any open subséi of R", using the atlag(1y, U)} to
makeU into a smooth manifold. More generally,M is any smooth manifold with atldég,, U,)} and ifU c M
is an open subset then we naturally get an atlals omamely{(¢.lunu,, U N U,))}.

| promised at the outset that a smooth manifold would be the kif space on which it is possible to do
something resembling calculus. In particulaMf is a smoothm-manifold it should be possible to speak of
differentiable functions frorivl to R", or vice versa, for any (and, more generally, i andN are two smooth
manifolds we should be able to speak offelientiable functions fronM to N). The principle is simple: one
checks the dferentiability of a function by using coordinate charts tmtthe function into one whose domain
and range are open subsets of Euclidean space, where waydhaae a notion of dierentiability.

Definition 3.9. Let M be an m-dimensional smooth manifold, with (maximadsd{¢,, U, )| € A}.

e If f: M — R"is a continuous function, we say f is of clas§ @nd write fe C¥(M,R"), if for every
a € A the function
fog.: ¢a(Uy) - R"
is of class ¢ (note that fo ¢ is a function from an open set &" to R", so the notion of b ¢;* being
of class ¢ is well-defined from multivariable calculus).
e If V c R™is an open subset and ¢V — M is a continuous function we say that g is of class &nd
write CX(V, M), if for all o € A the function

$o0g: gH(Uy) - RT
is of class ¢.
e Suppose that N is an n-dimensional smooth manifold, wittxifmel) atlas{ys, Vs)|8 € B}. If f: M —

N is a continuous function, we say that f is of cladsifCfor all @, such that {U,) N Vs # @, the
function

Ypo fog.tt ga(Us N FH(Vp) —» R
is of class ¢ (as a function from an open subsefff to R").

The appropriate notion of isomorphism of smooth manifofdhe following:

Definition 3.10. Let M and N be &manifolds. A ¢-diffeomorphisnfrom M to N is a smooth, bijective map
f: M — N such that f!is also smooth.

As mentioned earlier, we will generally just consider €fé case—as such a “fieomorphism” will, unless
otherwise indicated, meanGt® diffeomorphism.

Of course, it would be a pain to actually check that Definifio8 is satisfied since maximal atlases are very
large. But the following exercise shows that tBeproperty can be checked more easily (and also implies that,
viewing R" as a smooth manifold, the third part of the above definitioma&ias the first two as special cases).
This exercise is intended in part to demonstrate the roldh@fassumption on the functiogs o ¢, in the
definition of an atlas.

Exercise3.11 Let M andN be smooth manifolds, and lét. M — N be a continuous function. Prove that
f e C¥(M, N) if and only if the following holds: For eack € M, there exists a coordinate chart U — R™
from the atlas foM and a coordinate chaft: V — R" from the atlas folN such thatx € U, f(x) € V and

yofogt: p(Un V) —R"

is of classCk.
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Thus in practice to show that a mapd% we just need to find collections of charts covering the maafin
terms of which the map is @ map between Euclidean spaces, rather than checking théioonzh the entire
maximal atlas. Another way of saying this is that the two @ppeces of the word “(maximal)” in Definitidn 3.9
are unnecessary—we can just use any atlases (possibly matg ® check theCk condition.

Example3.12 One can see that thedimensional sphere

S = {(xo, X1,..., %) € R™?

n
i=0
is a smooth manifold by using stereographic projectionscddfse the subspace topology $hinduced by its
inclusion intoR™* makesS" into a second-countable Hausti@pace. We construct a smooth atlasS8rwith
two charts: define
U ={(X0,..., %) € S"Ix0 # 1}
Ui ={(%:- .. %) € S"xo # 1)

In other wordsJ_ andU, are the complements of the north and south poles, resplgcilearlyS" = U_uU,.
Now defineg_: U_ — R" by

X1 Xn )

¢(><o,...,xn)=(1_X0,...,1_X0

and similarly define, : U, — R" by

_ X1 Xn
¢+(XO""’X“)_(1+XO""’1+xo)

Sog¢_ can be visualized as sending a pgirg S"\{north polg to the point of intersection between the hyperplane
{xo = 0} and the unique line through the north pole gmdlt is clear from the formulas that_ and ¢, are
continuous. Both of them are in fact homeomorphism&oone finds that the inversggR" — U, are given

by the formula

1-Yy?
¢;1(y1,--~,)’n):[i Zyl’ 2y1 2t 2yn 2)'
1+3y2 1+ Ny? 1+ 3y
Since the inverses are continuous ¢heare indeed homeomorphismsR8. What remains is to check that
the “transition function’, o ¢~1: ¢_(U, N U_) — ¢,(U, N U_) is C*, and likewise thatp_ o ¢;* is C* (of
course, the second of these is the inverse of the first). Now U_ is the complement of the two (north and
south) poles 08", i.e. U, nU_ = S"\ {(x1,0,...,0)}. Now

¢+(1,0,...,0) = ¢_(-1,0,...,0) = (0,...,0),

so
¢-(U,nU_)=9¢,(U,nU)=R"\{(0,...,0).
Forany §1,...,¥n) € R"\ {(0,...,0)} we have
L¥-1 2 2 )
S+ N+ Ny 41
_(zzyf )‘1 2y (22y? ]_l 2y,
T\Zy2+1) T+ SR+l ByP 4l

:(L yn]
YR

Since this map is defined only on the complement of the origis clearlyC*® (the components are quotients of
nonvanishingC®™ functions), and its inverse (which as noted earlief i ¢72) is evidentlyC* as well (actually

¢+ ° ¢:l(yl7 e ’Yn) = ¢+(
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if you look at the formula you see that it turns out that thigpneequal to its own inverse). Thus we've shown
that the transition functions for our atlas &8, completing the proof tha&8" is a smooth manifold.

Example3.13 Recall that ther-dimensionateal projective spac&P" is the space of lines through the origin in
R™1, This is given the structure of a (second-countable, Hati§dopological space by identifying it as

B Rn+l\{6}
TV~ AV WeRML\ {0}, €R\ {0}

and using the quotient topology. Thus a general eleme®RSf! can be written as an equivalence class
[Xo,...,Xn] for somex; € R with not all ¥ = 0, and we havexy : --- @ X)) = [Yo : --- : Y] iff there is
A # 0 so thaty, = Ax; for all i. (Thex; are called “homogeneous coordinates.”)

We now put a dierentiable structure dRP", making it a smootim-manifold. Fori = 0,...,nlet

Ui = {[X0, ..., %] € RP"|x # 0}

(of course, the truth or falsehood of the statement that 0 is independent of which representative of the
equivalence class we choose). Theare open sets (why?), aifdP" = U U; since any element GiP" has at
least one of its homogeneous coordinates nonzero.

It shouldn’t be too hard to convince yourself that each of dpen setdJ; is homeomorphic t@R": for
example fori = n, an element ok € U, has form ko : --- : %3] wherex, # 0, and sincex, # 0 we
can simultaneously multiply all of thg by %—this doesn’t change the equivalence class, but changes the
last homogeneous coordinate to 1. Thiyscan be identified with the set of tuplesy(..., X,_1,1), which is
equivalent taR".

To make the discussion in the previous paragraph more pregisintroduce chartg: U; — R". Namely,
define

RP"

¢i: Ui - R"

(T e x]) = [ 2 %n
oi([%o : )] < U % %%

This map is certainly well-defined, since multiplying alltees of (x, ..., X,) by the same scalat does not
affect the ratios¢;/x;. Moreover we see tha; is bijective, with inverse given by

67 Yo, Yiet Yists - oY) = Yo i Yic T 1 i Yia e DL
Both ¢; andg* are continuous—of course to see this one has to think a littebout the quotient topology, but

it's not hard and is left to you.
So we have a coveringP" = Ul JU; by open sets with homeomorphisgs U; — R". It remains to check

that the transition functiong; o ¢>j‘1: ¢j(Ui nUj) — ¢i(U; N U;) are smooth. This follows quickly from the
formulas that we've already written down: assuming thatj

¢ 07 Yoo Yj-1 Yiets- oY) = di(Yo i - 1 Yjea t L iyjaa e 1))
_(Yo Y Y Y 1Yo v
RSV A VIR VA ARR )
Of course the case that- j differs from this only in the ordering @fand j in the above formula. Now on the
open subset;(U; NU;) c R" we will havey; # 0, sog o¢j‘1 is indeed smooth on;(U; N U;), as required. Thus
{(¢i,U;) ;i =0,...,n} forms aC* atlas forRP", makingRP" into a smooth manifold.

Fairly easy modifications of this argument show that the demprojective spac&€P" is a smooth 8-
manifold, and that the quaternionic projective spa&® is a smooth A-manifold.

Xi1 X1 Xn)

Exercise3.14 Recall that another way of describi®P" is as a quotient o8" by the equivalence relation
which identifies anyx € S" ¢ R™?! with —x. Thus we have a quotient projectian S" — RP". Prove that
e C®(S",RP").
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Exercise3.15 (a) If M andN are smooth manifolds, construcC& atlas on the produd¥l x N (thusM x N has
the structure of a smooth manifold).

(b) Let M be a Hausddf space, and suppose that we can wkite- U U V whereU andV are open sets, and
bothU andV are smooth manifolds. SinéénV is an open subset &f, it inherits a diferentiable structure from
U; likewiseU NV inherits a diferentiable structure frond. Assume that these twoftirentiable structures on
U NV are the same. Prove that one can then construct a smoottusérooM such that the inclusiond — M
andV — M are both smooth maps.

(c) Prove that for anyg the compact surface of genggand no boundary) can be given the structure of a
smooth manifold (Hint: The cagg= 0 is covered by Example_3112, agd= 1 follows from Example3.72 and
part (a). Now repeatedly use (b) together with the fact thab@en subset of a smooth manifold is naturally a
smooth manifold.)

Remark3.16 In our examples we've brushed over the question of whetleesfooth structures on these spaces
are unique. This is an important buffitult question; a fair amount is now known, but the proofs aneegally
beyond the scope of this course. It's known that in any dinoens < 3, every topologicah-manifold has a
unique smooth structure; in particular the smooth strestuum surfaces from the exercise above are the only
possible ones. Things become more complicated beginnifenih especially in) dimension 4: in fact there are
uncountably many distinct smooth structure®dnand there are many compact 4-manifolds with infinitely many
smooth structures, and none that are currently known to justeone smooth structure (though as mentioned
earlier there are some topological 4-manifolds withsmooth structures). For spheres, omce 7 there is
typically more than one smooth structure ®h the first “exotic” structure o1’ was a big surprise when it was
discovered by Milnor in 1956. It's still a major open questiwhether there are any smooth structuresSén
other than the standard one.

We now record a result asserting the existence of partitbosity subordinate to covers of smooth manifolds:

Theorem 3.17. Let M be a smooth manifold and |1€¥,|a € A} be a collection of open subsets of M with
UeseaVe, = M. Then there is a smooth partition of unity on M subordinateite cover{V,}, i.e,, a collection
{x.la € A} where

Eachy, € C*(M), with0 < y,(X) < 1forall x e M
For all @, supfiy.) Cc V,
For any xe M there is a neighborhood of x such that @ N supy.) = @ for all but finitely many

2aXe=1

Proof. The special case in whiddl is an open subset &" was proven as Theordm 2.6. That proof carries over
directly to the more general case now that we have the agptepfefinitions. Indeed, a smooth manifditis

by definition second-countable and Haudgtjcand is certainly locally compact (any point has a neighboch
whose closure is homeomorphic to a closed baRinand so is compact), so Lemial2.9 applies to produce a
sequence of compact sds and open setbl;. These sets can then be used just as they are used in the proof
of Theoren{2.6. Basically all that needs to be changed is thedaragraph of that proof: ¥ € K; we can

find a neighborhood ok having the formg=1(By, (¢(X))) which is contained inV,, N W; for someay, where

¢: U — R"is some chart (depending o9 whose domairJ containsx. The setsp~1(B;,(x)) then coverK;,

and this cover has a finite subcover. Aggregating these Balbeovers gives a countable sequefig of open

sets coveringMl; the B, are preimages of balls iR" by local chartsp, and whereB, is the preimage of the ball
with the same center and twice the radius we will hBye: V,, N W, for appropriatey, ix. Moreover there is a
smooth functiony, supported irB, and identically equal to one dB—just precompose an appropriate smooth
function onR" given by Corollary 25 withyp~1. The proof of Theorem 216 then applies verbatim. m]

Partitions of unity are very useful in the study of smooth if@ds. For a brief indication of why, consider the
case in which the covdW,} consists of the domains of coordinate chayts V, — R" (of course, by definition,
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any smooth manifold admits such a cover)f I€ C*(M), then we can write

f= (;Xa]f = ;w).

Now for anya the functiony, f is supported in the sé&f,, which is identified by, with an open subset iR".

So we can hope to analyZeby decomposing it as a sum of smooth functigp$, where each of these smooth
functions can (at least individually) be treated as thougtere just a compactly supported smooth function on
R". To get slightly ahead of myself, the same applies whe) instead of a smooth function, aidirential form.

3.1. Tangent spaces.If M is a smooth manifold anth € M, we will define a vector spacé,M called the
tangent space to M at mAs suggested at the start of these notes, there are variays of trying to do this,
any of which can be considered to be inspired by the spec& cawhichM is an open subset &". For
instance we could define a tangent veat@t mto be an equivalence clasg| wherey: (-€,e) —» M is aC®
map from an open interval around 0 k& with y(0) = m, with two curvesyi,y, considered to be equivalent if
dﬁl(% o v1)(0) = d%(% o v1)(0) (as vectors iR") for one (and hence every—why?) chast: U, — R" whose
domain containsn. However, for definiteness we will adopt the third interptin from the start of the notes:
a tangent vector at will be, by definition, a derivation from the algebra of gerofssmooth functions defined
nearmto R.

So just as earlier we consider paiffs{) whereV is an open neighborhood afin M andf: V —» RisC®
(this notion is well-defined sincé, being an open set in a smooth manifold, is itself a smoothfisldnand we
have defined the space G functions on a smooth manifold). Say th#t,V1) ~ (f2, V,) if and only if there is
an open se¥V with me W c V3 nV, and filw = folw. LetOn, denote the set of equivalence classes; this inherits
addition, multiplication, and scalar multiplication fro@i°(M) (for example, [, V][g,W] = [fg,V N W]).

Definition 3.18. T,M is defined as the space of derivations®,, — R, i.e,, maps v such that
o v(cf+g)=cf)+v(g)ifceRand f,ge O
e v(fg) = f(Mv(g) + g(m)v(f) if f,ge Om
As indicated in the above definition we will often abuse riotaslightly by just writingf for [f, V]. Compat-
ibly with this abuse of notation, ##: M — N is a smooth map whemd is another smooth manifold amde M,
if we write f for an elementf{, V] € Oy (thus f is a function defined on a neighborhoodfdgfn) in N), then
we will write f o ¢ for the element { o ¢,¢1(V)] € On. These sorts of abuse of notation are justified by the
fact that replacing the open sétby a diferent neighborhood af(m) will not change either the element, V]
(denotedf) or the element{ o ¢, »~1(V)] (denotedf o ¢).
We record here the fact that,uf c M is an open subset amde U, there is a canonical identification ©f,U
with TM (convince yourself of this if it's not obvious). Also, in @b is an open subset &", our definition
coincides with the one from the start of these notes.

Definition 3.19. If ¢: M — N is a smooth map between smooth manifolds anddfih, thederivative of¢ at
m (sometimes called thimearization ofp atm is the map

defined by

(@ (WM)(T) = V(T o ¢)
whenever fe Oym and ve TpM.

Sometimes it's helpful to indicata within the notation fows.., in which case we’ll write §,)n. One also sees
the notatiord¢ or dn¢ used to denote what we have calld

Proposition 3.20. Wherely, is the identity map then for all m M, (1m).: TmM — TM is the identity map.
Also, if¢: M — N andy: N — P are smooth maps then

Wod)=.00.
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Proof. The first statement (about the identity) is obvious from teérdtion. For the second, we have, fife
Oyop(m)
(( 0 @) V)(f) = W(f o (¥ 0 ¢)) = V((f 0 ¢)) 0 ¢) = (. V)(F 0 ¥) = (Y. V)(f).

Corollary 3.21. If m e M where M is a smooth n-manifold, thdimT,M = n.

Proof. We can choose a coordinate chartU — ¢(U) whereU is an open neighborhood of. As noted earlier
we haveT,M = ThU. By Propositio 3.20,4 1), o ¢, = (¢~ o ¢), is the identity map fronrT,,U = T,yM to
itself, andg. o (¢71). = (¢ o ¢71). is the identity map fronTym¢(U) to itself. Thusg. is an isomorphism of
vector spaces froffimM to Tyma#(U), with inverse ¢1),. We showed in Sectidn 1 that, sing@J) is an open
subset oiR", dimT,m@(U) = n, so the conclusion follows. m|

Expanding a bit on the above proof, recall that we showedTthafp(U) consists precisely of majgkm — R
taking the formg - >, vig—glq,(m). So since ¢™1). is an isomorphism, we conclude that, in the presence of a
chosen coordinate chaft U — R" aroundm, a general elemente T,M will be given by the formula

N9
() = ) vig (T o 6™l
i=1

When this is the case, we will say something along the lines\ofs given in the coordinate cha¢t by
V=2V %.” Of course, the ca@icientsy; will depend on the coordinate chart, not just on the tangeatorv.

Exercise3.22 Letg,y: U — R" be two coordinate charts whelkis an open subset of a smooth maniftvig
and letm € U. If vis given in the coordinate chagtby v = Y vi-2, and is given in the coordinate charty

ax !
v= Y wiz, find, with proof, an expression for tive in terms of they; and the mapg o y* andor y o ¢™*.

So if M is a smoottn-manifold, we have associated to every paime M an n-dimensional vector space
TmM. A diffeomorphismy: M — M’ induces an isomorphism of vector spages TnM — TymM’. However
there is (in general) no canonical way of identifyifig, M with T, M for distinct pointmy, m, € M (of course,
since the two vector spaces have the same dimension, thesoamerphic as vector spaces, just not canonically
S0).

Relatedly, while choosing the poimt € M canonically determines thedimensional vector spack,M, it
does not canonically determine a basis for this vector sgane way of choosing a basis fof,M is suggested
above: choose a local coordinate cliartU — R" aroundU; then a basis is given by the derivatiohs- ai)q(f o

¢ H)(p) fori = 1,...,n (the members of this basis are typically denotedﬁ—’agi)y Different choices of coordinate
chart of course give rise toftierent bases; the relationship between the bases is detettmyrExercisg 3.22.
Thetangent bundlef a smooth manifold is, as a set, defined to be the union

TM = Upem{m} X M.

For any subse® € M (typically S will be open or closed) we define the “restriction of the tamtdaundle toS”
as

TM|s = Unes{m} X TmM.
Given a coordinate chagt: U — R" whereU c M is open, we have a bijectioh: TM|y — ¢(U) x R" given
by

o(m Y vam | = m.a ...

We can then define a topology dnM by requiring that each of these bijections be homeomorphismore
precisely, we take as a base for this topology the colleatfsubsets of the forrd~1(V) whered®: TM|y —
#(U) x R"is a map as above constructed from a coordinate ¢handV c ¢(U) x R" is open.
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The various homeomorphisnds. T M|y — ¢(U) x R" associated to coordinate chagts U — ¢(U) in fact
form aC® atlas forT M. Indeed the domainEM|y certainly covefT M (sinceM is covered by coordinate charts)
and so we just need to check that the transition functionsramoth. This latter fact follows from Exercise 3.22.
Indeed, if¢,: U, —» R"andg¢z: Ug: Ug — R" are two coordinate charts, then it should follow from your
computation in Exercide 3.P2 that the transition function

Dg o @1 (U, NUR) X R — ¢hp(U, N Ug) x R"
is given by

) D 0 D%, V) = (¢ © 6, (%), Gap(X)V)
whereg, is a certain smooth function which takes values in the grdupwertible n x n matrices. Thus the
transition functions are smooth, and so determine a smoattifaid structure ol M.
Of course, we have a projectian TM — M which sendsr, v) to m. In terms of the local coordinate charts
® onT M andg on M, r just acts by the projection @f(U) x R" onto its first factor; thug is a smooth map.
Summing up, out of am-dimensional smooth manifol we have constructed anlimensional smooth
manifold T M, equipped with a projection: TM — M. The “fibers”z~1({m}) of = are canonically identified
with the tangent spacds,M, and thus ar@-dimensional vector spaces. Moreover there is an atlasMrsuch
that the transition functions respect the vector spacetstress on the fibers in the sense that they are given by
a formula of the shap&l(4) where eagh(x) is a linear mapT M is thus an example of what is calledractor
bundle we will see more examples of vector bundles as the coursepds.

3.2. Vector fields. Consistently with what was done in Sectidn 1, we make theviolig definition:

Definition 3.23. Let M be a smooth manifold and 0 M an open subset. Rector field onU is a derivation
X: C®(U) - C*(U) (i.e., X obeys Xcf + g) = cXf+ Xgand Xfg) = fXg+ gXfif f,ge C*(U), ce R). We
denote the space of vector fields on UXy).

Just as in Sectionl 1, we can scalar multiply, add, and takedhenutators of derivations fro@*(U) to
itself, soX(U) naturally has the structure of a Lie algebra.

A vector field onU should have another interpretation as a “smoothly-vafysiice of tangent vector
at m for eachm € M. We now lay out how this works. Fdd c M we have a (restricted) tangent bundle
7. TM|y —» U.

Definition 3.24. A smooth sectioof T M over U is a smooth map 4J — T M|y such thatr o s is the identity.
We writel'(U, T M) for the space of smooth sections of TM over U.

In other wordss(m) € T,,U for all p € U; the notion that the tangent vectors should vary smoothdneoded
in the requirement that should be a smooth map. Sin€gU is a vector space, we get vector space operations
onT'(U, T M) defined by ¢9)(m) = c(s(m)) and & + )(M) = s1(m) + s(m) (there’s something to show here,
namely that for instance the sum of two smooth sections lissgtiooth, but it's not hard to check this). One
important example of a section @fM (or more generally of any vector bundle) is thero sectiondefined by
s(m) = 0 € T,,M for all p. (To see that this is smooth, just note that in the local doatdss(U) x R" c R?"
described earlier the map is given ky- (x, 0) which is obviously a smooth map froRf' to R?").

Recall Exercise 2,11, to which the following gives a solntio

Proposition 3.25. Let M be a smooth manifold, & M open, me U, and X € X(U). Then the following
prescription uniquely specifies an elememnt X TyM. For any[f,V] € Om, choose af € C*(U) such that
[f,U] = [f,V], and define X([f,V]) = (Xf)(m).

Proof. First of all we need to show that for any,[V] € On, (in other words,V is an open set arounu and
f is a smooth function o) there is a smooth functiof defined throughout and coinciding on withf
on some neighborhoo@ of m. To see this, note that we can find a coordinate chartvV.— R" around

mandr > 0 so thatg~1(Bx(¢(m))) c V. Take a partition of unity{y1, x>} subordinate to the open cover
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{67 1(Bor (6(M))), M \ ¢~1(B;(¢(m)))} of M. Then letf = y,f; initially this function is only defined oV, but
since it has support contained in a compact subsetwé may extend it by zero to obtain a smooth function on
all of M. Sincey: + x2 = 1 andy» vanishes o~1(B.(¢(m))), f coincides withf ong~ LB, (¢(m))), as desired.

We now show that the valu&)(m) is independent of the choice dfwith [f,U] = [f,V]. If G is another
such choice, there is a neighborhodtof m such thatfly = dlw- Let O be a neighborhood ah such that
m € O c W (for instance takeD to be the preimage of a small ball in a coordinate chart, abénprevious
paragraph). Just as in the previous paragraph we can find @tlsriumctiony: M — R such thajy|o = 1 and
supfy) c W. LetB = 1 - y, soB vanishes identically on the neighborho@df mand is equal to 1 outsidé.
Hence .

1-pf=(1-p5

(both sides are zero everywhere tliat §). On the other hand

(X@B2)) (m) = B(m) (X(BT)) (m) + Bm) F(m) (XB) (M) = 0
and similarly
(X(8%§)) (m) =0
Hence
(xF)(m) = (X)) (m) + (X(@ - gAY ) ()
= (X((@- D) (m) = (X(@ - p2d)) (M)
= (X(8%9)) (M) + (X((1 - £A@)) (m) = (XG)(m).

This confirms that the prescription of the proposition gigesell-defined mapXy,: On — R. It remains to
check thatXy is a derivation. But this follows easily from the derivatiproperty forX. Given [f,V],[g,W] €
Onm, if we usef € C°°(U) to computeXq[ f, V] = (Xf)(m) andg € C*(U) to computeX[g, V] = (Xg)(m) then
we can usd‘g = fg to computeXnm([ f, V][g, W]) (of course we could make other choices fay, but the start of

the proof ensures that this would result in the same valugf¢irf, V][g, W])). Then the derivation property for
X shows

X([, VI[g, W]) = (X(Fg)) (m) = F(m)(XG)(m) + g(m)(X F)(m)
= F(M)Xa[g, W] + g(m)Xei[ £, V].

R-linearity is proved in essentially the same way, comptethre proof thaXy, € T\M.
O

We now show that giving a vector field (in the sense of a dadwadn the space of smooth functions) is
exactly the same as giving a smooth section of the tangemliéun

Theorem 3.26. Let U be an open subset of the smooth manifold M. A bijedtionX(U) — I'(U, T M) may be
defined as follows. For X X(U), setF(X) equal to the map,s M — T M defined by g(m) = X, (where X%,
is given by Proposition 3.25).

Proof. First we need to show th&t is well-defined—we certainly have a well-defined functign M - TM
for any X € X(U), andsy is a section in the sense that sx = 1y, but we also need to check thgtis smooth
in order forF to take values in the spat€U, T M) of smooth sections.

To see this, note first of all that a functidrbetween two smooth manifolds is smooth if and only if the dioma
can be covered by open sets to each of wHiglestricts as a smooth function.ff € M, let¢: V — R" be a
coordinate chart wittm € V c U, and forr > 0 small enough thaB, (¢(m)) c (V) let Wi, = ¢~ (B (¢(m))).
We will show thatsx|w,, is smooth, which sfices since any point iM has a neighborhood of the fortiy,.

In this direction, lefy: M — R be a smooth function witllz- = 1 andsupgy) c V. For anyq € W, and
f € Oq we have

(sx(@)(f) = Xq(F) = Xqlx F)
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sincef andy f coincide on a neighborhood (naméty,) of g.

Now for eachj = 1,...,nwrite g; = (Xj o) -y € C*(M). Then orWp, g coincides with thgth coordinate of
the chartylw, : Win — R". We know that, for eachl € W, sinceXy € TqM we can expresX in the coordinate
charty asXq = i \/i(q)aixilq for somev;(g) € R. Evaluating on the functiong; we see that, for each

vi(a) = (Xgj)(a).
Thus the functions;: Wi, — R are each smooth. Now in terms of the local coordinates fotathgent bundle
described at the end of the previous subsection, the spdp given within W, by the formula (wherex e
¥(Wm) C R")
x> (Ve ), Ve ().
This map is smooth since tivg are smooth. Thusklw, is smooth, and sex is smooth sincéJ can be covered
by open sets of the formy,.

Now that we have shown the m&ap: X(U) — I'(U, T M) to be well-defined, we show that it is bijective.
Suppose thaX,Y € X(U) are two distinct vector fields od. Then there isf € C*(U) andm € U such that
(XF)(m) # (Y f)(m). But then [f,U] is a well-defined element ad,, with Xpy([f,U]) # Ym([f, U]), and thus
Xm # Ym, i.e. sx(m) # sy(m). Thus¥ is injective.

Finally suppose that € T'(U, T M); we must findX € X(U) so thatsy = s. If f € C*(U) then for allmwe
have an elementf[U] € O, and so a real numbes((n))([ f, U]). This determines a functioKf: U — R by
the formula K f)(m) = (s(m))([ f, U]). The derivation propertieX(cf + g) = cXf+ XgandX(fg) = fXg+ gXf
follow directly from the fact that each(m) is a derivation fromO,, to R; however we still need to check that
Xf e C®(U) forany f € C®(U). In a local coordinate chat: V — R", the tangent vectorg§m) form e V
are represented &m) = > v (m)a%, where the functionsg; areC> by the fact thasis a smooth map. But then

Xflv =2V g—y:, which is a smooth function. Thusf restricts to each coordinate chart as a smooth function, and
so is smooth. It is clear from the definition thgt= s. O

So we have two equivalent characterizations of vector fietds!: as derivation€€> — C*, and as smooth
sectionsM — T M (which in coordinate charts can be locally expressed indhe ) v; % for suitable smooth
functionsy;). Both characterizations are often useful.

4. DIFFERENTIAL FORMS

As the title of the course textbook suggests, a very importae will be played in the rest of the course by
what are called thdifferential formson a smooth manifold. 1M is a smootm-manifold, we will develop the
notion of a ‘p-form” on M for p = 0,1,...,n (and also forp > n, but for algebraic reasons it turns out that
the only p-forms with p > n will be zero). Thesg-forms will form a vector spacP(M), and we will have a
very important magl, called theexterior derivative which maps the space of allftBrential forms to itself and
restricts for eaclp to a mapd: QP(M) — QP*L(M).

To ease into this, let’s start with= 0 andp = 1.

Definition 4.1. A O-form on M is a smooth function:fM — R. In other wordsQ®(M) = C*(M).
The case of 1-forms is a bit more interesting. First we infic@dthe notion of theotangent space

Definition 4.2. ¢ If M is a smooth manifold and ra M, thecotangent space at, denoted by JM, is the
dual space to the tangent spacgM.
e Thecotangent bundlef M is
T*M = Upem{m} x T;;M.

In other words;T ;M consists of linear functionals: T,M — R. Since a vector space and its dual have the
same dimension, i# is ann-manifold then dimT;M = nfor allme M.

Definition[4.2 identifies the cotangent bundléM as a set. One can equip it with a topology and then with
a smooth manifold structure, in such a way that the projactio T*M — M (sending (n, @) to mif @ € T M)
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makesT *M into a vector bundle, just like the situation with the tangamdle. At least for now we won't really
need to use this fact, but note that we have (at least at asetetic level) the notion of sections M — T*M,
i.e.afunctions: M — T*M such thatros= 1. A sections: M — T*M associates to eache M an element
Sm € T;;M.

Definition 4.3. A differential 1-formon a smooth manifold M is a sectian M — T*M which satisfies the
following smoothness property: Whenevee X (M) is a vector field on M, the function

a(X): me am(Xm)
is a C* function on M. We denote i§y*(M) the vector space of fierential 1-forms.

To unpack the above, note that the sectioof the cotangenbundle determinesovectorsan, € T;,M for all
m, while the vector fieldX (which by Theorem 3.26) is equivalent to a section oftdregentbundle, determines
for eachma tangent vectoX, € T,M. Hence we can evaluatg,(Xn,), and the smoothness requirementois
that (as long a¥X is smooth) the result of this evaluation varies smoothihwit If we had gone ahead and put
a smooth manifold structure dri*M it turns out that this would be equivalent to requiriag M — T*M to be
a smooth map.

As mentioned earlier, for afp we will define a mam: QP(M) — QP*1(M). | can now fulfill this promise for
p = 0. Actually if one thinks of tangent vectors as derivatidmes definition may seem strangely simple:

To any f € Q°(M), i.e., any smooth functiorf, we are to associate a sectidh: M — T*M. In other words
for eachm we should obtaindf)m: TnM — R. Well, bearing in mind that an element ©f,M is a derivation
from functions defined neanto R, we use the formula

(5) dHm(V) = V() if ve TmM.

Suppose now that: U — R"is a coordinate chart, wheté c M is open. NowU is a smooth manifold in
its own right, so we can consid€'(U). The coordinate cha distinguishes some special smooth functions
on U, namely thecoordinate functions . .., X, (perhaps we should really writg o ¢, ..., X, o ¢, or we could
just agree that the decompositionginto coordinates is given bg(m) = (xo(m), ..., X,(m))). Since thex are
smooth functionsi(e., 0-forms) onU, we obtain ¥forms dx,...,dx, € Q%U). So for eachm € U we have
covectors§x)m e T,U = Ty M.

On the other hand, recall that the tangent splaglél at m has basis given byf(—llm, el %hn. We have

0 0
(dx)m(a—xj|m) = ) =6

Thus the @x)m form adual basisto the cotangent spadé, M with respect to the bas[%%hn} for ToM.
Since the §%)m form a basis foif;,M at allm, it follows that any 1-formy € Q1(U) can be written as

a= Zn:aid)q
i=1

for some functions; € C*(U) (which may be recovered by evaluatiagn % .
Exercise4.4. Suppose that we have twoidirent coordinate charts

¢: M (xa(M),....x(M) and ¢: me (yi(m),.... yn(m))
each with domain given by some open sulisetf a smooth manifold. Ifr € Q'(U) can be written as

a= iaid)q = Zn:ﬁidyl
i=1 i=1

find a general formula (in terms of the derivatives¢o$ y~ andor ¢ o ¢1) for the relationship between the
codticientsa; andg;.
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The above exercise is designed to be compared to ExércBefsingle coordinate chart aroungproduces
distinguished base{%%lm} for TwM and{(dx)m} for T;,M, allowing one to parametriz&,M or T;;M by R".
Changing the coordinate chart changes the appropriateng#tiaation for eithem,M or T;,M, and you should
have found that the way in which the parametrization trams$ounder a coordinate change iffelient forT,,M
than itis forT M. This reflects the fact that vector fields and 1-forms reakyfandamentally dferent kinds of
objects.

If (Xg,...,%): U —> R"is a coordinate patch and € U, we see that

d of L of d
dfm(a—m) - L - (J_l a—xj<dx;)m](6—m),

and thus, throughout the coordinate cRartwe have
n
(6) df = Z ﬂo|xj.

In principle we could also have defined Q°(M) — QM) by saying that iff € Q°(M) has support in a
coordinate chart thedf is given by formula[(6), and requiring thdtbe linear oveiR—this would determine
df for any f (not necessarily supported in a coordinate chart) sincestmgua partition of unity we can write an
arbitrary function as a sum of functions each of which is sufgul in a coordinate chart. (Of course, with this
approach one would need to make sure thiatlidn't depend on the way in which is decomposed as such a
sum—our more natural and coordinate-free definitiod efades this issue).

Having defined the mag: Q°(M) — Q(M), one could ask whether it is surjective. A little thoughosh
convince you that the answer must be no (if dim> 2)—indeed this may be familiar from multivariable
calculus. Consider just a 1-formwhich is supported in a coordinate chiktso in coordinateg|y = > @idx
for some smooth functions; supported inJ, anda vanishes elsewhere. Evidentlydf= df then, onU, we
would havea; = %. Sincef is assumedC®, its mixed partials are equal and so if we had df we would
needg—‘;; =2

= 55 for alli, j, and of course these equations have no reason to hold foreaajenllection of smooth

functionsa; supported irJ.

Thus we obtain aobstructionto a 1-forma being in the image o, which in local coordinates can be seen
as coming from the partial derivatives of the various congme ofc. If « is in the image ofl it is calledexact
Once we define the space of 2-for28(M) and the exterior derivativd: Q'(M) — Q?(M), we will see that
the above obstruction vanishes in the sense that the r¢lpsatial derivatives coincide if and only dfe = 0.
Indeed,d o d: Q°%(M) — Q?(M) is zero (as, more generally, dso d: QP(M) — QP*2(M)). One can then ask
whether everyr for which the obstruction vanishedq = 0) is indeed exact. We’'ll see that the answer to this
guestion depends on the topologyMf(as measured by tlie Rham cohomology group3

4.1. The alternating algebra.

Definition 4.5. Let V be a vector space ovir, and let p be a positive integer. Aalternatingp-formonV is a
functionn: VP — R with the following properties:

e pis p-linear: Foranyi,ifce Rand v,...,vp e Vandw eV then
Vi, ..., Vicl, OV + Wi, .., V) = Cp(Va, .o, Viet, Vi oo, Vp) +17(Va, - Viet, W, ., V).
e V is antisymmetric: if wv € V then, for any i jand any u, ..., Ui_1, Uis1, . . ., Uj—1, Uj+1, ... ,Up € V
(U1, ..., Ui—1, Vs Uisg, - o, Ujm1, W, Ujgt, . o, Up) = =79(Us, .« oo, Uimg, W, Uit -« o, Uj—1, V, Ujsa, ..., Up).

We will denote the vector space of alternating p-forms on WBY*. We extend the notatioRPV* to p = 0 by
settingA°V* = R.
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Implicit in the above is that the alternatimgforms do indeed form a vector space, which should be clear. O
notationAPV* reflects a number of algebraic facts, not all of which we wéled or use: for any vector spade
there is a certain standard vector spA€¥ (“the pth graded part of the exterior algebra”), and (at least asgym
thatV is finite-dimensional) what we denote BWV* can be canonically identified both witihfV)* and with
AP(V*) (so our lack of parentheses is in writindV* is deliberate). There is an obvious identificationA\dH/*
with V*.

With this definition, there is for alp,q > 0 a map

AL APVF x AV — APHAV*
(@.B) > anp

called thewedge productwhich satisfies various important properties. Let us dieedefinition gradually. The
first interesting case is whem = q = 1: in this case we define the wedge product by,dg8 € A'V*, and
v,weV,

(@ A B)(V. W) = a(V)B(W) — a(W)B(V).
It is not hard to see that, with this definitiom,A 8 does indeed belong t?V* (the minus sign ensures that the
antisymmetry condition holds). We then extend this to treedhatp = 1 butq is arbitrary by, forx € A'V*, 3 €
AV,

(@ AB)(V1, V2, ..., Vgr1) = @(V1)B(Va, - - -, Vge1) — @(V2)B(V1, V3, - - -, Vgr1)

+ (V3)B(V1, V2, Vs, ... Viger) + -+ + (1) @(Vge1)B(V1, . . ., Vo)
g+l .

= Z(—l)kla/(Vj)ﬁ(Vl, U VT Y/ T T Vq+1)
=t

We introduce a notation for “omitting” inputs intk-forms as we often need to do: instead of writing
BVL, .. Vo1, Vjuds - - -, Vge1) We Will write B(vs, ..., Vi, ..., Vg+1); thus the hat signifies that thgh term has
been omitted.

We should check that A8 as defined above is actually an elemem&flv*, It's fairly obvious from this def-
inition thata A B is (q+ 1)-linear. As for antisymmetry, if we switcl andv; with k < | then the antisymmetry of
B shows that all terms in the sum change sign except for thabejwi k, |. Meanwhile thekth term changes from
(=1 (Vi)B(V1, - - Vis - > Wiy -+ -5 Vo) 10 (1) L(M)B(V1, .. .,V - .., Vi - - -, Vge1), @nd thelth term changes
from (=1)2e(W)B(V1, - - - Vi -+, Vis - s Vgr1) 10 (1) La(V)BMVL, - My -,V - - -, Vgea)- | Claim that the new
[th term is the negative of the oldh term, and vice versa. Indeed to convert the fhi#vwerm to something that
looks like the oldkth term we can “move the pastvg,1, . .., Vvi—1"—in other words we should switch with v, 1,
then switchv; with v,», and so on, until we switchy with vi_1. SinceB is antisymmetric each of these switches
produces a factor of1, and so since there are a total efk — 1 numbers fronk + 1 tol — 1 the whole procedure
produces a factor of-(1) 1. So the newth term is equal to{1)"-(-1)"*La(wW)B(Vi, . . ., V. - - , Vge1), Which
is indeed equal to the negative of the &tti term. Similarly, the newvkth term can be equated with the negative
of the oldlth term by “movingv | —k— 1 slots to the left.” Summing up, switching with v; causes all the terms
with j ¢ {k, I} to change signs, and also causes the sum dftthandIth terms to change sign. This proves that
a A B is alternating, so our map'V* x A9V* — AT+ is well-defined.

Finally we extend the definition of the wedge product to gahealues ofp andg. One way of characterizing
this extension is that, given our definition for the case 1, there turns out to be a unique way of extending the
definition to generap so that the operation will be bilinear and associative (for instancepifg € A'V*, so
thata A 8 € A?V*, we take the wedge product witha 8 (on the left) by insisting thai(AB) Ay = a A (BAY)
for y € A9V*—since we've already decided how to take wedge product witbritis the right-hand side is
well-defined).

Instead of showing that this indirect argument gives a wefined prescription, we give a formula. Given
nonnegative integerp andg, let S, 4 denote the collection op-element subsets dfl,..., p + g}. Then for
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S € Spqletthe positive integeri§ < i3 < --- < i} be the elements &, and let the positive integei$ < ... < jg
be the elements dfl,...,p+ g} \ S. Defineps: {1,...,p+q} = {1,...,p+ql by, for 1<k < p, ps(k) = if,
andforp+1<k<p+q,ps(k) = jffp. In other wordgs is the permutation ofd, ..., p + g} gotten by writing
all the elements o8 in increasing order, and then all the element$lof.., p+ g} \ S in increasing order. Let
(-)S be 1 if the permutatiops is even and-1 if ps is odd. The general formula for the wedge product is then

) @AB)(V1,... Vpig) = Z (=)%a(Vis. .- Vig)B(Vis. ... Vig)

SeSpq
In other words, ¢ A B)(v1, ..., Vp.q) IS gotten by looking at all the fierent products gotten by plugging fnof
thev; into @ andq of them intoB, and summing these up with a naturally associated sigmdtfiard to see that
this coincides with our previous definition in case- 1.

To help verify some other properties of the wedge productpérticular the fact that the wedge product
of alternating forms is alternating) we rewrild (7) as a surarall permutations omp + q letters. LetSp,q
denote the group of permutations pr- g letters. IdentifyS, x G4 with a subgroup ofS,,, 4 by associating to
(0, 7) € Sp x Sq with the permutation op + g letters (still denotedd, 7)) such thatd, 7)(i) = o(i)for1 <i < p
and g, 7)(p+ j) = p+7(j) for 1 < j < g (in other wordsg acts on the firsp letters andr acts on the lasy). Any
permutation in; € Sp.q can be written uniquely in the form= ps o (o, T) whereps is one of the permutations
from the previous paragraph: namely, 8t {n(1),...,n(p)}; let o sendj tor if 5(j) is therth largest element
of S; and letr sendj to sif n(p+ j) is thesth largest element &\ {(2), ..., n(p)}. If n = ps o (o, T) we see that

a(Vy), - - - V(p) = SIN@)(Vy(o12)), - - - » Vy(o2(pp) = SN (Vis, . .., Vis)
wheresgn(o) is one ifo-is even and-1 if o is odd, and similarly
BVop+1)s - - > Vi(pr)) = sgr(r)ﬂ(v-ie,, ... ’VJ'E‘)'
Now evidently ify = ps o (o, 7) thensgn(n) = (-)Ssgn()sgr(r), and so we deduce
SGa(Vy(w), - - - Vo @)BOn(ps1) - - > Vipra)) = () 3a(Mis, ., Vig)B(Vjs, ..., Vig)  if 7 = ps © (0, 7).

Now as mentioned earlier anye Sp.q can be expressed uniquely @so (o, t) for someS, o, 7, and so since
the pair ¢, 7) varies through the groug, x &4 which has ordep!q!, we deduce the following (more symmetric
and redundant) version dfl(7):

(8) (@AB)Vi, ... Vpig) = —

From [8) it is not dificult to see thatr A 8 (which is obviously p + g)-linear) is antisymmetric and hence
is an alternating§ + g)-form: indeed, letry, be the transposition which switches letterandl; of course any
permutation can be written uniquely in the form 7y, and so we have

1
(@ ARV, - Vpra) = T D, S 0 Tkn)a(Vyery)s -+ ViorgBera (@1 -+ Voo (p+)

N€Cpiq
1 . .
= w Z (=1)sgrm)a(Vywy, - - - » Vap))BMy(p+1)s - - - » Vin(p+q)) but with the places af(k) andz(l) switched
" neCpiq
= _(a /\ﬁ)(V]J sy Vk—la V|s Vk+1’ IR V|—1’ Vks V|+l9 ey Vp+q)-

This proves that the map: APV*xAV* — AP*AV* defined by the equivalent formulas[{]7,8) is well-defined.
The definition is still valid wherp andor q is zero (recalling thah®Vv* = R by definition): wedge product with
a 0-form is just multiplication by the corresponding number

We define thalgebra of alternating forms on ¥s the direct sum

AV = GB(;:OADV* .
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This is equipped with the obvious vector space structure,adso with a multiplication operation induced by
extending bilinearly from the above-defined operationsAPV* x AV* — AP*aVv*

Proposition 4.6. The wedge product obeys:
(a) For @ € APV*, B € A9V*,
BAa= (-1 AB.
(b) Forall @,B,y € A*V*,
aA(BAy)=(aAB)AYy.
Proof. (a) Letnpq € Spiq be the permutation given by(i) = g+iforl < i < pandn(j) = j— p for
p+1<j<p+a. Note thatsgnnpg) = (-1)P (why?). Any permutation irg,.q can be written uniquely in the

formn o npq, SO We have
a A ﬁ(vl’ R Vp+q) = Z Sgr(f] o npsq)a(vﬂoﬂpq(l)’ cee V’7°’7p.q(p))ﬁ(vﬂo’ip,q(p“'l)’ ceeo V’]"Up.q(p"'Q))
n€Cpiq

plia!

1
= ﬁ Z (_1)pqsgr(’7)ﬂ(vn(l), cees Vr}(q))a'(vn(q+l)’ cees Vn(p+q))
T nEGpig

(-1)PB Aa,

proving (a).

(b) Using the bilinearity ofA we may assume that, for sonmpeq,r, we havea € APV*, B € A%V*, and
v € A"V*. Consider ways of writindl,..., p+ g+ r} as a disjoint uniorfl,...,p+qg+r} = S1[[S2]]S3
where #8; = p, #S, = q, #S3 = r. For any such decomposition, write the elementS§pfn increasing order
asa < -+ < ap, those ofS; asby < -+ < by, and those 083 asc; < -+ < ¢. Also let (-)552% for the sign
of the permutation obtained by sendintp g for 1 <i < p, tobi_p for p+1 <i < p+ @, and toc;_p_q for

p+q+1<i<p+q+r. Then after repeatedly applying our original formudla (7)l amraveling the notation it
is easy to check that both

(@n@BAY) VL., Vpiger) and ((@Ap)Ay) (V.. -, Vpigsr)
are equal to
Z (=)355%(Vay, - . ., Va JB(Vby - - - Vo )Y (Veys - - -5 Vi, ).
S1,52,Ss
i

Of course, one consequence of associativity is that if. . , am € A*V* we can unambiguously write; A- - - A
am. The results of Propositidn 4.6 can be summarized as séhytV* is an associative, graded commutative
algebra.

We now observe that the exterior algebra behaves nicelyrdimdar maps. Suppose that we have two real
vector space¥, W and a linear mag\: V — W. For anyp, we obtain a linear map*: APW* — APV* (called
thepullback of A) by setting

(A"@)(va,...,Vp) = a(Avy, ..., Avy).

Note that since we don't assumeto be invertible it is necessary fé* to “go in the opposite direction” to get
a well-defined map. Extending by linearity produces a limeap A*: A*W* — A*V* defined on the whole
alternating algebra.

Proposition 4.7. If A: V — W is a linear map and, 8 € A*W* then
A'(a AB) = (A'a) A (A'B).

Proof. This is an immediate consequence of our formula (7) for thégeeproduct. m]



MATH 8210, FALL 2011 LECTURE NOTES 25

In other words, a linear mafd: V — W induces not just a linear map but in fact an algebra homoniemph
AN*W* — A*V*. Looking at how compositions behave, one sees easily teadlthrnating algebra construction
V — A*V* defines a contravariant functor from the category of realorexpaces to the category of real associa-
tive graded commutative algebras. (Given what we've prpwee just needs to check thaf £ 1,-y- and that
(Ao B) =B*o A")

In the discussion of alternating forms so far, we have awbitiosing a basis for the vector spatéand
we haven't even assumed thais finite-dimensional). This has been deliberate, as weanihte apply this with
V equal to the tangent spa@gM at a point on a smooth manifold, and as mentioned beforewathave can
impose a basis oM by choosing a coordinate chart arounddifferent coordinate charts yieldfférent bases
and so there is no canonical choice. However to actually gocamputations on a specific vector space one
typically does eventually have to choose a basis, and so weura to discussing how a basis fdrallows one
to do calculations i\*V*.

So letV be a real vector space with finite dimensioand basige;, ..., e,}. Let{e!,...,€"} denote the dual
basis forv* (so€(g;) = §jj), and recall thav* is equal toAlV*, so that theg can be viewed as elements of the
alternating algebra*Vv*.

Proposition 4.8. Lety; € APV* and suppose that for all p-tuples of integéits . .., i) with1 <i; <--- <ip<n
we have

ne,,....e,) =0.
Thenp = 0.

Proof. Suppose to the contrary that# 0. Then we can choose somg...,vp € V with n(vy,...,Vp) #

0. Now thev; can be written in the fornv = }’; vjie; for some real numberg;. Repeatedly using the-
linearity of » we then find that the nonzero numbg, ..., Vv,) can be written as a linear combination of the
real numbergy(e;,, . . ., €j,) for variousk-tuples (i,..., jp). So the fact thag(vy, ..., vp) # 0 implies that some
n(e,..-.e,) # 0wherejy, ..., jp € {1,...,n}. Now if two of the numberg; are equal to each other then it
follows directly from the antisymmetry property pthats(e;,, . . ., €j,) would be zero, so the numbejs ..., jp
makingn(e;,, . .., €j,) # 0 must all be distinct. But again using the antisymmetry prgp any reordering of the

numbersjy, ..., j, causes;(gj,, . .., €;,) to change only by multiplication by1. So if we choosé < --- <'ip
to be the result of writings, ..., jp (which we know to be distinct) in strictly increasing ordewill hold that
n(e,....,a,) # 0. This proves (the contrapositive of) the proposition. O

Proposition 4.9. Suppose that < p < nandthatl <i; <--- <ip<nandl< j; <--- < jp <naretwo
strictly increasing sequences of integers frbto n. Then

(eil/\.../\eip)(ejl,.--,ejp):{

Proof. We can use induction op. For p = 1 this is just the definition of the dual basis, so assume thaltre
holds forp and consider increasing sequenes: --- < ip.g andj; < --- < jpi1. If these sequences are not

1 ifij=jforalll
0 otherwise

identical to each other, then there is sorsich thatj, ¢ {i1,...,ip+1}. We have (using~to signify omission)
p+1

@ @A A, = ) (DTEE)E A A (E S E ).
s=1

Therth term vanishes becauge # i;, and all of the other terms vanish by the inductive hypothesicause
jr € {i2,...,iks1}. This proves the “otherwise” part of the proposition.

On the other hand if eadhcoincides withj;, then since th@ form an increasing sequence it follows from the
inductive hypothesis that, ifil(9), the first terme(the one withs = 1) equals 1 and all others equal zero. O

Corollary 4.10. If | = (iy,...,ip) is a p-tuple of integers with < i; < --- < i, <n=dimV, and if we write
e =din---n€r,



26 MIKE USHER

then the various'eform a basis forAPV*. In particular dim APV = (7) = 5ibes

Proof. The variouse' are linearly independent: if some linear combinatinc e = 0 then, for anyd =
(J1.-- - Jp), evaluating both sides on the tupkg(. .., e;,) shows that; = 0 by Proposition 419.
To see that the' spanAPV*, if 5 € AKV* andl = (i1, . ..,ip) is an increasing sequence, fgt= n(e,., . . ., €,)
Then by Proposition 419 we have
(77— Zn.e'](ejl,...,ejp) =0
|

for all increasing sequencgs< --- < j,. So by Proposition 418 it follows that= Y, n€'.
The statement about dirxPV* just follows from counting the number of increasing seqesnaf p-tuples
| drawn from the setl,...,n}, which is evidently the same as the numbempedlement subsets ¢i, ..., n},
which of course ig?).
m]

Of course, the formula dimPV* = (dirgv) continues to hold fop = 0 for trivial reasons. We note in particular
that, if dimV = n, APV* is trivial for p > n, andone-dimensiondior p = n. Evidently a generator for the one-
dimensional vector spage™V* is given bye! A ... A € where thed form a dual basis to a basig} for v. For
some other basigf;} the elementf A --- A £" will then be a multiple of! A --- A €; this multiple is given by
the determinant of a certain basis change matrix, as you maple to see from the following exercise:

Exercise4.11 LetA: V — V be alinear map, whené is ann-dimensional real vector space. We then have an
induced mapA*: A"V* — A"V*, which is a linear map from a one-dimensional vector spadsétf and hence

is given by the formulaA*x = cax for all x wherecy, is some number depending @n Prove thaty = detA.
(Hint: Choose a basis in terms of whiéthas Jordan normal form)

Exercise4.12 LetV be a finite-dimensional real vector space andletAPV*, with 2 < p < dimV. Let us say
thata is decomposablé there areay, ..., ap € AWV sothate = a1 A--- A ap.

(a) Prove that ifr is decomposable thenA « = 0.

(b) Prove that if dinV = 2 or 3 then (for 2< p < dimV) everya € APV* is decomposable.

(c) If dimV > 4, construct (with proof, giving an explicit formula) somee A2V* such thata is not
decomposable. (Hint: By (a) it is enough to arrange thata # 0.)

4.2. Higher-degree dfferential forms. If M is a smooth manifold anch € M we letAPT;;M denote the space
of alternatingp-forms on the tangent spa@g M (strictly speaking in the notation of the previous subsectie
should instead writd PT,M*, but we do not), and let

APT*M = Upem{m} x APT M.

Thus projection onto the first factor gives a function APT*M — M, and so we can consider the notion of a
sections: M — APT*M, i.e. a maps obeyingr o s = 1y, and thus associating to eache M an alternating
p-form s, on the tangent spadg,M.

Definition 4.13. A differential p-form on M is a sectiom;: M — APT*M obeying the following smoothness
property: If X, ..., X, are any smooth vector fields on M, then the function

M= 77 (X2, - (Rp)m)
is of class C*. We denote the vector space gfliential p-forms on M b2P(M).

Note that this coincides with the previous definition foe 1, recalling the general fact thatV* = V*. We
also earlier define@°(M) to be the space of smooth functions frdto R; sinceA°V* = R this new definition
is equivalent (albeit slightly notationally fiérent, but this shouldn’t cause a problem) to the previoes on
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Assume that dinM = n. Choose a coordinate chast;(...,X,): U — R" with m € U. Recall that, for
eachm € M, the covectorsdxi)m, ..., (d%)m form a basis fofT;,M, dual to the basi#ai)qlm} for ThWM. For
I =(i1,...,ip) €{1,....nPwithi; < ... <ip, write

dXy = [@dX)m A+ A (@X)m.

According to Corollary4.T0, the variowsd, form a basis forAPT;,M. Consequently, for any € QP(M), for
eachq in the coordinate patcd we can write

= fi@dx,
|

for some functionsf;: U — R. Moreover, by evaluating on tuples of vector fields whose restrictionsido
coincide with some of thg%, we see that the functiorfs are smooth. Thus, afiérentialp-form restricts to a
coordinate chartl, xs, . .., X,) as an object of the form

nlu = Z fidX wheref; € C*(U).
|

In less abbreviated notation, we could write

o= > FiadX A Adg.

i1<-<ip

Having defined the spaces pfforms QP(M), we can letQ*(M) = ea"’)":OQp(M); adifferential formon M is
then simply an element @*(M).

For eachm € M andp,q > 0 we have a wedge product operationT,M x A9T;M — AP*T M. This
then induces a wedge produee(M) x Q4(M) — QP*9(M) in an obvious way, settingy(A B)m = @m A Bm. SO,
extending bilinearly, we get a wedge product Q*(M) x Q*(M) — Q*(M). In view of Propositiori 416, the
wedge product on éierential forms is associative and graded commutative.

We now complete the definition of trexterior derivative d Q*(M) — Q*(M).

Theorem 4.14. There is a uniqu®-linear map ¢ Q*(M) — Q*(M) obeying the following properties:

(i) Forall p, the restriction ¢he(vy has image contained iQP*1(M).
(ii) digoeumy coincides with the map dQO(M) — QY(M) defined in[(5).
(i) If w € QP(M) and¢ € QI(M) we have

d(w A ¢) = (dw) A ¢ + (~1)P¢ A dow.

(iv) dod=0.
For any coordinate charfxy,...,%,): U = R", if |y = 3, fidX, then
(10) dwly = an Z LA,
U 242 ax; i .

Proof. We start with the following lemma. Of course, thapport supfy) of a p-form n is by definition the
closure of the set ah € M for whichn, € APT;; M is nonzero.

Lemma 4.15. Assume that the linear map. d2*(M) — Q*(M) satisfies properties (i)-(iv) and suppose that
w € QP(M) has supfy) equal to a closed subset of M which is contained in the domairi &coordinate chart
(X1,..» %) U = R Ifwly = 3 fidX, then dv has support contained in U anddl, = X7, 3, %dxj AdX.
The same conclusion continues to hold if we only assume d¢imatittons (i)-(iv) hold for d when d is restricted
to forms whose supports are contained in U.
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Proof. Let3: M — R be a smooth function such thait,p.) = 1 andsupgB) c U. Note then that for each

i the smooth functioBx: U — R" has closed support withid, and therefore extends to a smooth function
on all of M by setting it equal to zero outside bf. Also the functionsf, each have support contained in the
support ofw (on whichg = 1), so thef, also extend by zero to smooth functions on al\df and moreover if

I =(i1,...,1p) we have (at least od, where both sides are defined)

fidX = fid(Bx,) A A dBx,).
Thus
w= ) fidBx) A Ad(Bx,)

(the two sides coincide dd, and are both zero outside df).
Now by induction on the integerit is easy to see from conditions (iii) and (iv) that, for amyaoth functions
o1, -...,0 we have

d(dg Adgp A---Adg) =0.
Applying this fact together with (iii) again (and the linégrof d) shows that

dw = de. Ad(BXi,) A -+ A d(BX,).
|

Sinceg is identically 1 on the union of the supports of thgwhich is contained i), and sincel f = 3 g—)f('idxj
on U, the result follows. mi

Motivated by this lemma, choose once and for all a cg\gs by domains of coordinate chartg(. .., x;): U, —
R, and let{y,} be a partition of unity subordinate to the covel,}. Forl = (iy,...,ip) letdx, = d>§§ A A dx?p.

Lemma 4.16. For any« let Q;, (M) denote the space offf#rential forms on M whose support is containedin
Define d: Q; (M) — Qi (M) by setting, ifw € Q; (M) with w|y, = ¥, fidX,,

dewly, = Y dfi AdX,
|

(and d,w = O outside ). Then ¢: Qi (M) — Q! (M) satisfies (i)-(iv) of Theorein 4114 when restricted to
Q: (M), and is the unique such map with these properties.

Proof. Uniqueness is already proven in (the last sentence of) Leffifa so we just need to check that (i)-(iv)
are satisfied. (i) is obvious, and (ii) is given by EquafidbrT&e fact that (iii) holds outside df, is trivial (both
sides are zero); inside &f, let us writew|y, = ¥, fidx, andgly, = ¥ ;9;dx} (where the multi-indices have
lengthp and the multi-indiced have lengthg). We then have, ob,,,

do(w A @) = d, (Z figsd, A dxi] => X094y n ¥, 2 dx;
1,J

kI.J %
of,

S (201,09
- k’IZ’J(angJ + f a)(ﬁ)d){j/\d)(ﬁ,/\d)d

. (a—f'dﬁ: 2 d%) AGdd) + D (1P(RidX) A (g%)dx; A d

a3 \9%¢ k9
= (dow) A ¢ + (-1)°w A doip
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where the £1)° comes from applying Propositign 4.6 (a) to the wedge produgta dx,. This proves thatl,
satisfies (iii). As for (iv), ifwly, = 3, fidX,, then clearlyd,(d,w) vanishes outsidg,,, and onU, we have

du(dew) = d, [Z > %dx{f A d>¢,)

=1
n n (92f|
Zza)qlaxgdﬁ/\dﬁ AdX,

| |I=1 k=1
n a2, 821,
= - dx* A dxt dx =0
5305 (s - e ne

since the mixed partials of the smooth functifnare equal (of course in the second-to-last equation we've
switched the indicek andl in the terms that initially haé > | and used the fact thalx; A dx* = —dx" A dX;).
This proves (iv) and so completes the proof of the lemma. m]

We now move from these local considerations to prove theajldheoreni 4.14. We have fixed a (locally
finite) partition of unity{y,} subordinate to a cové#,. Then ifw € Q*(M) we have

w= me) where each y,w € Q’(M).

So for eachr we have a well-defined fierential formd, (y,w), whose support is contained in the suppory of
(in particular any point irM has a neighborhood meeting the supports of only finitely nadritie d, (v,w), SO
the sumy, d,(y.,w) is a well-defined dferential form). So define

do = Z o (Yaw).

This is clearlyR-linear since each of th&, are, and conditions (i), (ii), and (iv) are each also matiifésherited
from the corresponding facts fdl, (together, in the case of (i), with the fact that the ntapQ°(M) — Q(M)
defined earlier in[{5) is alsB-linear). Condition (iii) (the form version of the Leibnizle) takes just a little
more work. For each lety,, be a smooth function which is equal to onesampy,,) but such that we still have
SUPY,) C U,. If w € QP(M) and¢g € Q9(M), we have by definition

dw A ¢) = > dalialw A ).
Note thaty,(w A ¢) = (y.w) A (W) (both factors of which have supporth,), so
do(xa(w A 9)) = do(xaw) A (Wed) + (=1)Pxaw A Ao (Yath)

and so (freely using associativity and distributivity obtivedge product, as well as the fact thigtp = ¢
whereved(y,w) # 0)

dw A g) =) dulraw) A ¢+ (~1)Pw A (Zxadc,(m)]

Zxada(m))

= (dw) A ¢ + (-1)Pw A

So evidently it remains only to show that

(11) D KeGaWed) =7 do.

@
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Note also that ¥, = y, andy,dy, = dy,, SO

da(Xa¢) = da()(a/war(p)
= XaOo(¥e®) + Axe A (Wad) = XaOo(Ye®) + dye A @,

X(lda(W(xqj) = d<y()(<x¢) - d/\/oz A .
Thus

Z)(ada(l//atﬁ) = Z do(xa®) - Z dye A ¢

=d¢—d[2)(a]/\¢=d¢

since},, dy, =1 and sd (3, xo) = 0.

This completes the proof thdf as we have defined it, satisfies the desired properties.orheufa [10) given
at the end of the theorem for the behaviodafn an arbitrary coordinate chart then follows from Lenimas4.1
If m e U choose a cutd function3: M — R equal to 1 on a neighborhood of and with compact support
contained ifJ; thenw = Bw + (1- B)w and we haved((1-B)w))m = 0 while Lemmad 415 ensures tha(fw))m
is given by evaluating the right-hand side [of]l(10)rat m]

It is not initially obvious that the formula fad given in the proof, nameldw = Y, d,(y.w), would give an
answer which is independent of the partition of urjty} or of the open covefU,}, but the uniqueness part of
the theorem implies that this independence property holds.

In practice, one does not calculade by choosing a partition of unity; rather one covers the nadiby
coordinate chartt)l and uses the formul@{lL0) to exprehs in each of these coordinate charts. Again, it is not
initially obvious that, ifV is another coordinate chart with NV = @, the forms obtained by using([10) with
reference to the two ffierent coordinate charts would give both give the same anstven restricted t&J N V.
However, the theorem ensures that this is in fact the caged@amalso verify this somewhat tediously by a direct
computation).

Sinced o d = 0, we can make the following definition:

Definition 4.17. Let M be a smooth manifold, and p a nonnegative integer.pthele Rham cohomologyf M
is the real vector space

kerd: QP(M) — QP*Y(M))

Im(d: QP-1(M) — QP(M))’

(For the case p= 0, we regardQ (M) as the trivial vector space, so thaf]i{M) = ker(d: Q°(M) — Q'(M)).)

HiR(M) =

Remark4.18 A form w such thadw = 0 is calledclosed and a formw such thatv = d¢ for someg is called
exact. Thus the fact thato d = 0 expresses that every exact form is closed, angthele Rham cohomology
group measures the extent to which it fails to be true thatyexsely, every closeg-form is exact.

I would also like to record a fact which we will make use of shprand which basically was proven in the
proof of Theoreni 4.74:

Proposition 4.19. Letw € QP(M). Then we can writey as a locally finite sunw = 3, w, (i.e., any point has
an open set intersecting only finitely many of the supp such that eacl, is given by

wy, = f,dgi, A--- Adgp,

for some functions,fgi,, ..., gp, € C*(M).



MATH 8210, FALL 2011 LECTURE NOTES 31

Proof. Let {U,} be an open cover d¥l by domains of coordinate chartg](..., xi) and{y,} a (locally finite)
partition of unity subordinate tgU,}. We can then writev = },,(v.w) Where eacly,w is supported irJ,.
In turn, it was shown in the proof of Lemma 4115 that eggh can be written as a finite sum of forms of the
desired typef, 1 d0iq1 A --- A dQpe, (asl varies over multi-indice$ = (iy, ..., ip)), namely one setgj,, = ﬁ)ﬁ
whereg is a smooth function supported i, and equal to 1 osupfy.). So by having the index vary over
pairs @, |) the result follows.

O

To get a sense of what the exterior derivatil/és measuring, it is instructive to consider the special sase
where the smooth manifold is an open suli$etf R? or R®. As mentioned earlier, for any open subseR8fthe

degree-zero part afacts bydf = 37| g—;dx. So if we use the standard basisrdfto identify vector fields with

1-form§, the exterior derivative of a function is essentiallygtadientin the sense of multivariable calculus.
For open subsetd c R?, the only remaining interesting part dfis that acting on 1-forms. A general 1-form
onU has the shape

w = P(x y)dx+ Q(x, y)dy
for functionsP, Q € C*(U), and we see that

_ 0P oP 0Q 0Q
dw = adeAdX+ é)ydy/\dx+ dxA dy+ aydy/\dy

X
_(0Q 0P
_(6x 6y)dX/\dy'

So if we consider as corresponding to the vector field with compond®, thendw is obtained by mul-
tiplying the standard 2-formdx A dy by what is sometimes called tisealar curl of this vector field,g—g - %, a
function which is probably familiar from Green’s theoremmiultivariable calculus.

Moving up a dimension to open subsets- R3, a general 1-form ot has the form
w = Pdx+ Qdy+ Rdz

and we find that in this case

_(0R 0Q 0P  OR 0Q dP
dw = (ay 6Z)dy/\ dz+ (62 ax)dZ/\ dx+ (6)( 8y)dX/\ dy.
We see that the three diieients above are the components of ¢the of the vector field P, Q, R).
Meanwhile, a general 2-form dd can be writtem = PdyA dz+ QdzA dx+ RdxA dy and so (because we
are working inR®) also corresponds to a vector figll Q, R). We see that

(P 9Q 4R
dn—(&ﬁ'a—y*‘E)dXAdyAdZ

and recognize the céicient from multivariable calculus as tldévergenceof the vector field P, Q, R).

Thus in dimension 3 the mags Q°(U) — Q(U),d: QY(U) — Q?(U), andd: Q?(U) — Q3(U) correspond
respectively to the gradient, curl, and divergence opesdtom multivariable calculus. The fact thdio d = 0
expresses the facts that the curl of a gradient is always aatbthat the divergence of a curl is always zero.

Again for open subsetd c R3, the first de Rham cohomology grou:n}R(U) will be zero if and only if,
conversely, every vector field whose curl is equal to zemo faét the gradient of a function. You probably learned

2As I've emphasized elsewhere, on a general smooth manifoldngelds and 1-forms are fiierent kinds of objects and one shouldn’t
try to identify them since they transformftérently under coordinate changes, butiRshone can decide to only ever work in the standard
coordinate chart and then there won't be any harm in makirggdeintification
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in multivariable calculus that it) is all of R3 then this statement holds. Howeverlfis more topologically
interesting it may not hold: for example there is the (midiegly labeled) d¢” form, given by

_ xdy-ydx

do = Ty

defined onlJ = {(x,y, 2) € R¥x? + y? # 0}, which you can verify to be closed, but which (despite thetion) is
not exact since it has nonzero integral around closed cuvtiesh enclose the-axis (d@ wants to be the exterior
derivative of the polar coordinatg buté is not a well-defined smooth function &h).

Similarly, the second de Rham cohomology group of an opesetlib ¢ R3 vanishes if and only if every
vector field onU which has divergence equal to zero is in fact the curl of sotherosector field. U = R3 then
this is true (we'll prove a much more general statement neidgag from now), but this statement is false for
U = R3\ {(0,0,0)}. A standard example illustrating this is the form

_ XdyA dz+ydzA dx+ zdxA dy

Physically,y corresponds to the electric field &1 \ {(0, 0, 0)} generated by a point charge located at the origin.
The statement that this vector field is not the curl of anotieetor field can be shown using Stokes’ theorem, by
taking the flux integral of the vector field over a sphere adbtlne origin. Later we’ll develop language for this
that generalizes such arguments substantially and stadlgghe realm of dierential forms rather than vector
fields.

Exercise4.2Q (A coordinate-free formula fad): Let M be a smooth manifoldy € QP(M), and letX©, ... X(P
be vector fields oM. Prove that

(d)(XO,....XP) = Y (-1 xO (a)(X(O), X0 X(p)))+Z(—1)'”w ([x('>, X0, X0, X0, X0, x<p>) .
i=0

i<j

(To clarify the notation, if we have afiierentialg-form a and vector field&™®, ..., Y@, the function

m an(Y®, ..., Yr(r?))
is a smooth function, which we denote bY@, ..., Y@). In particular since vector fields are derivations on the
space of smooth functions 4fis another vector field we get another smooth function giwe (m(Y(l), e Y(q>)).

To do this problem, | would suggest first showing that the @aitithe function on the right-hand side at a pomt
is unchanged if some (or al§®) are replaced by another vector fielé) such thatx®) = X¥, and then proving
the result when th&® are (at least on a neighborhood of a given point) equal todstahcoordinate vector
fields.)

4.3. Pullbacks of differential forms and the naturality of d. Let¢: M — N be a smooth map between two
smooth manifolds. Recall then that for eaohe M we have a derivative mag,: TnM — TymN, defined in
terms of the derivation formalism by the simple formula

(@.v)(f) = V(f o ¢)

wheneverf is a germ of &C® function defined neap(m) € N. As described just before Proposition]4.7, this
induces for allm € N a pullback operation

o ApT;(m)N — APTEM
N andvy,...,vp € ThM,
(@"@)(Va, ..., Vp) = PV, ..., P.Vp).

In particular, wherp = 1, so thatAPT;M is just the cotangent spa@gM, ¢* coincides with the adjoint map
to ¢. from linear algebra.

: T
by setting, fore € A T¢(m)
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Theorem 4.21. Let¢: M — N be a smooth map and let € QP(M) be a djfferential form. Define a section
¢*w of APT*M by
(¢*‘U)m = ¢*(w¢>(m))~

Theng*w is a djferential form on M, and
(12) d(¢*w) = ¢"(dw).

The fact thap*w is a diferential form requires proof, since there is a smoothnesdition to check. In case
p = 0 (so thatw € C*(M)) the definition above should be read as saying that

Ppw=wog (if weQOM)).

Proof. Step 1: We prove the theorem whea . Leth € Q°(M) = C*(N) be a 0-form. By definitiog*h = hog,
which is certainly a smooth functiomé. a 0-form) onM since compositions of smooth functions are smooth.
For allv e T,M we have, by the definition af on O-forms:

(d(@"M)m(V) = V(¢"h) = W(h o ¢) = ($.V)(h) = (AN (4.V) = (¢"dN)m(V).
This confirms that(¢*h) = ¢*dh (It also confirms thap*dh satisfies the smoothness condition required of a
1-form, sinced(¢*h) certainly does so.)
Step 2: We prove the theorem in case= fdg, A --- A dgp for some fgi,...,0p € C*(N). In this case, if
me M, we have (using Propositian 4.7 and Step 1)

(¢"@)m = T (Ao A -+~ A (o))
= (f o g)(m) ((¢6"dgr)m A -+ A (¢"dGp)m)
= (f o ¢)(M) (d(g1 © #)m A - A d(Gp © B)m) -
ie.
¢p'w=(fog)d(@rog)A-- Ad(gpo ).
Now the space of diierential forms is closed under wedge product (as the smesshtondition is easily seen to
be preserved), and the zero-fofm ¢ and the 1-formsl(g; o ¢) are all diferential forms by what we have already
done, so this proves thatw is a diferential form. Using the Leibniz rule and the fact tdat= 0 we see that
d(¢*w) = d((f o p)d(gro @) A+ Ad(gp o ¢))
=d(fog)Ad(grog) A---Ad(gpog)
= (¢"df) A (¢°dgr) A -+ A ¢7(dgp)
=¢* (df Adg A~ Adgp)
=d(fdgy A+ A dgp) = do.
Step 3: We prove the result in gener8ly Propositior 4.19, any flerential formw € QP(N) can be written
as a locally finite sum of forms of the type considered in Stepl@w the smoothness condition required of a
differential form is preserved under locally finite sums (sifeedmoothness of a function can be checked by
looking at its restriction to each member of an open covercarereduce to the case of genuinely finite sums),

so using the linearity ap* it follows that¢*w is a diferential form. Similarly théR-linearity ofd, together with
Step 2, implies thalg*w = ¢*dw m|

Corollary 4.22. A smooth map: M — N between two smooth manifolds induces by the pullback tpera
mapg¢*: Q*(N) — Q*(M). If w € Q*(N) is closed, the*w € Q*(M) is closed, and ifv € Q*(N) is exact, then
¢*w € Q*(M) is exact

Proof. The first sentence has already been provewn.if closed].e. dw = 0, thend(¢*w) = ¢*dw = ¢*0 = 0. If
w is exactj.e. w = dn for somen € Q*(N), theng*w = ¢*dn = d(¢*n). m]
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Recall that we have defined thth de Rham cohomology of a smooth manifditias the quotient vector
space {closedp-forms}
p _

Har(M) = {exactp-forms}
If we write Hj(M) = ea;":ngR(M), the wedge-product inducesiag structure orH;(M): if a € HgR(M) and
be HgR(M), then we can find closed forms € QP(M), n € Q%(M), representing the classasandb. Then
d(w An) = (dw) An+(=1)Pw A (dn) = 0, sow An represents some cohomology class (denatet) in Hi;(M).
Moreover this cohomology class is independent of our pagiachoice of representativesandnp—for example
if we replacedw by some other forrw = w + da, then

wAn=(w+da)An=wAn+(da) An=wAn+dlaAn)

(we've used thatl; = 0), i.e. the de Rham cohomology classwfi 7 is the same as that af A 7 (they difer by
an exact form).

Using Propositio 416, one easily checks that this muttgilon onHj(M) (called thecup produc} gives
Hjir(M) the structure of an associative, graded commutdtiedgebra.

Corollary 4.23. If M and N are smooth manifolds agd M — N is a smooth map, we obtain a homomorphism
of gradedR-algebras (in particular a ring homomorphism): Hj(N) — Hjo(M) by settings*[w] = [¢*w] for
any closed fornw on N. If¢ is a djfeomorphism thet* is an isomorphism.

Proof. The first sentence follows directly from various things tivathave already done (check this for yourself
if it's not clear). For the second, note thit(acting either on forms or on cohomology) satisfies the fonality
conditions (d)* = (Id) and ¢ o ¥)* = y* o ¢* (note the order on the right hand side, reflecting #iatgoes
in the opposite direction” t@). From this it follows immediately that i$ is a difeomorphism the* is an
isomorphism with inversas(*)*. m]

Exercise4.24 If M is a smooth manifold, give an explicit formula, in terms o ghoint-set topology oM,
for the degree-zero de Rham cohomologgﬁ(M). (As a point of convention, since there is no such thing as a
(-1)-form, we regard the exact 0-forms &hto consist only of 0.)
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