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CONVENTIONS

e The word “space” means “topological space.”

e If X andY are spaces, any time | refer toreap f: X — Y, unless otherwise specifically noted, the word
“map” should be interpreted as “continuous map.”

¢ If Sis a set thend denotes the identity map — S.

1. TOPOLOGICAL INVARIANTS AND HOMOTOPY

One of the most basic goals of topology is to develop toolstvhielp one, when presented with two spaces
X andY, to determine whether or natandY are homeomorphﬂ:.

If you think thatX andY are homeomorphic, then there is an obvious strategy foiipgdtais: try to construct
a homeomorphism. For example to show tRat (0,1] andY = [1, o) are homeomorphic, you just need to
write down the homeomorphisf(x) = 1/x (and then check that it's a homeomorphism, which in this éase
fairly easy). Of course, in general finding a homeomorphisay ive more dficult than this.

But suppose that you think thxtandY are not homeomorphic; how would you go about verifying thids?
viously, the fact that you can’t think of a homeomorphismaestn them, while it may be somewhat convincing
to you, does not dice for a proof, since there always could be a homeomorphiatrytiu just didn’t think of.

Here is the most powerful general strategy for showing thlatspaces areothomeomorphic: Using general
theory, define, forverytopological space, aninvariant |(X), which has the property that X andY are
homeomorphic thei(X) is equivalent td (Y). Then, for your two specific spac&sandY, determine the values
of 1(X) andl(Y). If (X) andI(Y) are diferent, then you can conclude thats not homeomorphic t¥.

I've left out telling you what sort of thing(X) should be. The answer is that it can be marjedent sorts
of things, depending on the context—for instance it could beraber, or a wordd.g, “yes” or “no”), or a set.
Algebraictopology is founded on the insight that it is often useful &wdil (X) be an algebraic object—for the
most part in this course it will be a group; there are alscasituns (which we may get to near the end of the

IRecall that a homeomorphish: X — Y is a continuous bijection whose inverse is also continudesom a purely topological
standpoint homeomorphic spaces should be regarded as besentally the same,” in the sense thaXi@ndY are homeomorphic then any
topological property that is possessedXwill also be possessed By (indeed, this can be taken as a definition of the phrase “tapcdl
property.”)
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course and will certainly discuss at length in 8210) whetis & ring. My plan is to go through a number of
examples where wdon't need algebraic invariants to distinguish spaces—numesicst-theoretic or “yes or
no” invariants are enough in many cases—en route to evepyetiing to examples where an algebraic invariant
(namely the fundamental group) is really natural and necgss

I should also briefly clarify the meaning of “equivalent” lmtabove statement, “¥ andY are homeomorphic
thenl(X) is equivalent td (Y).” If 1(X) is always a number then this just mea(X) andl (Y) should be the same
number. IfI(X) is a set then this means that there should be a bijection f{@hto 1(Y), while if I(X) is a
group (resp. a ring) then there should be a group isomorpfissp. a ring isomorphism) from(X) to 1(Y). If
you've been exposed to the language of category theoryighestatement is thdtshould be dunctorfrom the
category of topological spaces (with morphisms given bytiooilwus maps) to whatever category (sets, groups,
rings) | takes values in. However if you haven't been exposed to oagefyeory don’t worry about this.

Examplel.1 Let X = R andY = R\ {0}. You should already know tha¢ andY are not homeomorphic—the
easiest way of seeing this is to note tais connected and is not. To phrase this in the language above, for
any topological spack let

no if Xis not connected
Since the continuous image of a connected space is connédedasy to see that, in generalXfandY are
homeomorphic, theh(X) = 1(Y). But for our particularX andY we havel (X) = yes and (Y) = no, and soX
andY are not homeomorphic.

1(X) = { yes ifXis connected

Examplel.2 LetY =R\ {0} andZ = R\ {0, 1}. We can see thaf andZ are not homeomorphic as follows. For
any spaceX let [ (X) denote the number of connected component&.obne can check (and you should if this
isn’t obvious to you) that is an invariant—i.e. that homeomorphic spaces have the satue wofl. We have
[(Y) = 2 andI(Y) = 3, soY andZ aren’t homeomorphic.

A more “natural” way of saying this might be to instead h&{¥) be thesetof connected components &f
If X andY are homeomorphic, one can use the homeomorphism to conatbijection between(X) andI(Y).
Then sincd (Y) is a two-element set arldZ) is a three-element set, there’s no bijection betwiddh andl (2),
soY andZ aren’t homeomorphic.

1.1. Homotopy, simply connected spaces, and \ {0}. The motivating example for this section is the question
of whetherX = C andY = C\ {0} are homeomorphic (her@denotes the complex plane; thus topologically this
is the same aR?). With respect to the standard properties that one learastab basic point set topology
andY are rather similar spaces: both are connected, and norntehacompact, and second-countable, and so
on. We will see that they are, however, not homeomorpXiis what is called “simply connected,” antlis not.
In other words, informally speaking, every loopGrbe shrunk to a point, whereas this is not the cage \r{0}.

Let us make some definitions aimed at making this rigorous.

Definition 1.3. Aloopin a space X isa mﬁpy: [0,1] — X such thaty(0) = y(1).

Said diferently (and we will usually use this convention), wh&e= R/Z, a loop is a (continuous) map
y: St— X
Definition 1.4. Let V and X be two spaces and lgt fi: V — X be two maps from V to X.

e A homotopy from f,to fyisamap F [0,1] x V — X such that, for all ve V, we have O, V) = fo(V)
and H1,v) = f1(v).
e We say thatgand f, are homotopic if there exists a homotopy frorg t f;.

If F is a homotopy fromfy to fi, one can consider, for any € [0, 1], the mapfs: V — X defined by
fs(v) = F(sv). The fact thatF is continuous implies that these maps are each continuadsthat they vary

2recall the convention that maps are continuous unless | seywise
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continuously ins. Thus if fy and f; are homotopic then they can be joined to each other by a eantgfamily
of maps.

Exercisel.5. WhereS is the set of (continuous) maps — X, prove that homotopy defines an equivalence
relation onS. (In other words, prove that the relatienon S defined by saying thaty ~ f, iff f; and f; are
homotopic is reflexive, symmetric, and transitive).

Definition 1.6. A space X issimply connected if it is path-connected and if every logg S* — X in X is
homotopic to a constant map.

In other words, for any: S' — X there should be a continuous map [0, 1] x S* — X andxg € X such
thatF(0,t) = xg andF(1,t) = y(t) for all t. If you prefer to instead think of a loopas a map [01] — X with
v(0) = (1), there should b&: [0, 1] x [0,1] — X such thalG(0,t) = X, G(1,t) = y(t), andG(s,0) = G(s, 1)
for all s. Still another way of saying this is that, whedd@ = {z € C||Z < 1} is the closed unit disc in the complex
plane, there should be a continudds D? — X with H(e”™) = y(t). (This follows by converting from polar
coordinates—note that the fact tH&(0, -) is constant gets absorbed into the trivial statementHi{@¢?) = H(0)
is independent of.)

It is not hard to see that X andY are homeomorphic theX is simply connectedii Y is simply connected.
As stated earlier, we will see th@tis simply connected but that \ {0} is not.

Definition 1.7. If V and X are two spaces we denote[byX] the set of homotopy classes of maps from V to X.

(Here “homotopy classes” means “equivalence classes uhdeelation of homotopy,” which makes sense
since an earlier exercise showed that homotopy is an eguigalrelation.)

Exercisel.8 Prove that a (nonempty) topological spatés simply connected if and only i§*, X] consists of
just one element.

Proposition 1.9. Let X and Y be homeomorphic spaces, and let V be any spacethEmers a bijection between
[V. X] and[V, Y].

Remarkl.1Q Thus, if we fix our favorite spac¥ (for instanceVv = S?), we have arinvariant Iy(X) = [V, X] in
the sense of the previous section. So if we can somehow skaaiX] and [V, Y] are not in bijection with one
another then we can conclude tha@andY aren’t homeomorphic.

Proof. Let f: X — Y be a homeomorphism, with inverge Y — X. Define a functionf,: [V, X] — [V, Y] as
follows. An element of Y, X] is represented by some mhap V — X. Thenfohisamapv — Y. Moreover, ift/
andh represent the same equivalence clas¥jjiX] then they are homotopic, so that therédis [0,1] xV — X
sothatH(0,-) = handH(1,:) = h'. Thenf o H: [0,1] XV — Y is continuous (it is a composition of continuous
functions) and hasf(o H)(0,) = f ohand (f o H)(1,-) = f o i. Thus ifh andh’” are homotopic ther o h
andf o h’ are homotopic. So far € [V, X] we can seff,(c) € [V, Y] equal to the homotopy class éfo h where
h is any representative of the equivalence clas¥he above discussion shows that the resulting cta&} is
independent of the representativéhat we chose, sé. is a well-defined map.

Similarly, defineg..: [V,Y] — [V, X] by, for ¢ € [V, Y] letting g.(c) be the homotopy class of o q where
g: V — Yis any representative of the equivalence classhe exact same argument as before showsgifat
is independent of the representing ntggo this map is well-defined.

I claim thatf, andg. are inverses to each other, so tlfiais a bijection fromXto Y. If ¢ € [V, X], choose a map
h: V — Xthat represents. Thenf,(c) is the equivalence class 6f h, and say.(f.(c)) is the equivalence class
of go f oh. Butgo f = 1x, sogo f o h = handg.(f.(c)) = c. Likewise, ifc € [V, Y] and ifq: V — Y represents
¢, theng.(c) is represented by o g, and thenf.(g.(c)) is represented by o go q = . Thusf,(g.(c)) = ¢. So
sincef, o g. = 1jvyy andg. o f, = 1}y x this proves that, is a bijection with inverse.. ]
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Exercisel.11 (a) Generalizing the above, show thatyifs any fixed space, to any (continuous) mfapX — Y
of topological spaces we may associate a rhap[V, X] — [V, Y] such that (X). = 1;vx and, givenf: X =Y,
g: Y — Z, we have
(go ). =g. o f..

(In fancy language, this means th&t { is a covariant functor from the category of topological sgmto the
category of sets).

(b) Prove thatiff,g: X — Y are homotopic maps then the induced méps[V, X] — [V, Y]andg.: [V, X] —
[V, Y] are equal.

(c) If V is any fixed space, show that to any (continuous) mapX — Y of topological spaces we may
associate a map*: [Y,V] — [X, V] such that (X)* = Lixvj and, givenf: X — Y andg: Y — Z, we have

(@of) =fog".
(In fancy language, this means that\f] is a contravariant functor from the category of topologis@aces to

the category of sets). Deduce directly from these formagberies that iff : X — Y is a homeomorphism then
f*: [Y,V] = [X, V] is a bijection.

Here are the results that will realize our main goal in thigise:
Theorem 1.12. C is simply connected.
Theorem 1.13.C \ {0} is not simply connected. In fact, there is a bijection
deg: [SY,C\{0}] — Z.
Corollary 1.14. C is not homeomorphic tG \ {0}.

Proof of Corollary[I.14, assuming Theoreims 1.12 and]1Ti8s follows either from the fact that one of the
spaces is simply connected and the other isn't, or from thetfet there is no bijection betwee8'] C] and
[S1,C\ {0}] (as one has one element and the other has infinitely many). O

Proof of Lemma1.12Lety: S' — C be any loop. Defin&: [0,1] x St — C by F(s,t) = sy(t) (where we use
the standard multiplication operation@). ThenF is a continuous mag;(0,t) = 0 for all t, andF(1,t) = (t).
SoF is a homotopy fromy to the constant map to 0. Thus our arbitary lgojs contractible, so (sinc€ is of
course path connected)is simply connected. Indeed every m@ap— C is homotopic to the constant map to 0,
so [S%, C] consists of just one element: the homotopy class of thetaahaap to 0. m]

Exercisel.15 For anyn > 1, letC c R" be anyconvexset, endowed with the subspace topology. (Recall that
C is convex if for any two points, y € C the line segment connectingandy is contained irC: in symbols, for
anyt € [0, 1], tx + (1 — t)y € C.) Prove thaC is simply connected.

The proof thatC\ {0} is notsimply connected is, as one might guess, somewhat hardbwilfead us to some
ideas that will be important for much of the first part of theize. We will develop some of the necessary theory
in a general context in the next section. Here is a descnpifathe basic idea of the proof of Theorém 1.13,
intended partly to motivate the next section. A poin€in {0} can always be written, using polar coordinates, as
z = re', wherer € (0, ) andd € R. Now the value of is uniquely determined bg—it is the magnitudez].

On the other hand is not quite uniquely determined, as we could chafg adding a multiple of 2 without
changingz. Note also that since I've excluded= 0 it's never the case that one can add anything other than a
multiple of 2t to 6 without changing (this seemingly minor point is why the proof won't go througth C\ {0}
replaced byC).

Now suppose | have a continuous mapl[p— C \ {0}. The pointy(0) can be writteny(0) = r(0)é??: as
abover (0) is uniquely determined bé{0) is not, since | could change it by a multiple of.2n any case, choose
a specifid(0). | now want to write all of the othey(t) asy(t) = r(t)é’®. Of course necessarihft) = |y(t)|. As
for 6, the crucial point (which | don’t claim to have yet proven}list, having chose&(0), | now haveexactly
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onepossible choice for all of the othéft) if | want 6 to vary continuously with. (You should think about why
this is plausible.)

Suppose thay: [0,1] —» C\ {0} is a loop, so thay(1) = y(0). If you believe the above paragraph, we can
write y(0) = r(0)é’©, and then this determines just one possible way of wrififty = r(t)é’® in a way that
makes) vary continuously with (and where (t) = [y(t)]). Nowy(1) = r(1)é@ = r(0)e’© = (0). Butg(1) and
0(0) mightnot be the same—rather they have tffeli by a multiple of 2. “Define” thedegreeof y by

ded) = o (4(1) - 6(0)).

Evidentlydedy) is an integer. | put define in quotes because it's not obvimums this discussion thatedyy)
really just depends opand not on other choices (in particular the valug(@)) that we made, but this turns out
to be true. Moreover, deg) depends only on the homotopy clasypégain, | don’t claim to have proven this,
but an intuitive explanation is thaeq(y) is always an integer, while one would expect a continuoustian in
v to causaledy) to vary continuously—but a continuous map which is alwaymgeger is necessarily constant.

If you believe all this, then to show th&t\ {0} is not simply connected | just have to show that not all maps
have the same degree. Now it should be obvious (assumingthealto be well-defined) that a constant map has
degree zero. Meanwhile the logft) = € has degrededy) = 2—1”(27r—0) = 1. More generally, for any integer
n the loopy,(t) = €™ has degree. Thus all of the loops/, should belong to dierent homotopy classes. This
is all more than enough to show that {0} is not simply connected, and indeed th&t,[C \ {0}] is infinite; the
final ingredient necessary to prove everything in Thedreld & to show that two loops having the same degree
are homotopic.

1.2. Covering Spaces |.

Definition 1.16. Let X be a space. govering space of X is a pair(X, 7) whereX is a space and: X — X isa
map with the following property. There is an open covefidg}.ca of X such that, for each, U, is connected
and the preimage~1(U,) = {X € X|n(X) € U, } is adisjointunion

ﬂ_l(ua) = ]_[Va s
B

where each y; ¢ X is an open set such that
7lv,s© Vap — U, is @ homeomorphism

ExampLel.l?. A good example of this can be expressed in terms of polar goatels orC \ {0}. Let X = C\ {0}
and letX = (0, ) x R. Define
7. (0,00) xR — C\ {0}
by
a(r,6) = re'’.

Obviouslyr is continuous (since the cosine and sine functions areroamtis). For our open cover &fwe may
use

U ={x+iy e C\{0}jx> 0}
Uz = {x+iy € C\ {O}ly > O}
Uz ={x+iy e C\{0}|x < 0}
Us ={x+iy e C\ {0}y <O}
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Certainly each point irC \ {0} is in one of these open sets—indeed almost all are in two of tfieenonly
exceptions being the points on tker y axis). We have

717 (U1) = Unez(0, 00) x (2nmt — /2, 20 + 71/2),
77YH(U2) = Unez(0, 0) x (2n7r, 2nm + 1),

717 (U3) = Unez (0, ) x (2n7 + 71/2, 2n + 31/2), and
7171 (U4) = Unez(0, 0) x (207 + 7, 2nm + 2n).

Obviously each of the above is a disjoint union. Moreovehesst in each of the unions maps homeomorphi-
cally by to its corresponding;. For example, for one of the séfg, = (0, o) X (2n— /2, 2n + 7r/2), the map
v, Vin — Uj (again, this sends (@) — re'’) has inverse given by + iy — (/X2 +y2, 2nr + arctany/x))
(recall that arctan is conventionally defined as taking eslin /2, 7/2), and is a continuous function; also
note that onJ, arctany/x) is well-defined sincex # 0). We leave it to the reader to check the corresponding
facts for the sets in~1(U;) for i = 2, 3,4 (using the arccotangent foe 2, 4 and the arctangent for= 3).

Definition 1.18. Letx: X - X be a covering space of a space X and letYf — X be any map. Aift of f is a
mapf: Y —» X suchthatro f = f.

X

f 4
7 f

Y—X

One of the most important properties of covering spacesiédifowing:

Theorem 1.19(Unique Homotopy Lifting Property)Letz: X — X be a covering space of X. Let HO, 1] x
Y — X be a map where Y is locally connected, and dend@ F= fo: Y — X. Suppose thaly: Y — Xisa
lift of fo. Then there exists a unique IFt: [0,1] x Y — X of F having the property th& (0, y) = fo(y) for all
yeY.

Remarkl1.2Q0 The assumption that is locally connected (i.e. that for aryye Y and any neighborhood of y
there is a possibly-smaller neighborhdéd- U of y which is connected) isn’t really necessary, but does dlight
simplify the proof.

Proof. Let us begin by showing thét is unique if it exists. Suppose that we had two distinct Kt$: [0,1] x
Y - Xof F: [0,1] x Y — X, with F(0, y) = G(0, y) = fo(y) for ally € Y. Choose an arbitraryy € Y; we must
show that, for each € [0, 1], we haveF(t, yo) = G(t,Yo). LetU, c X andV,; be sets as in the definition of a
covering space; thus thé, are connected and covky theV,; coverX, andnly,, is a homeomorphism fro,s
toU,.

By the continuity ofF (or more specifically of the map— F(t, yo)), the sets

{t € [0’ 1]|F(t’y0) € Uaf}

form an open cover of the unitinterval,[0]. So since [01] is compact this collection of sets has a finite subcover.
Using this we can find & tg < t; < ... <ty = 1 such that, for each=0,. ..,k — 1 there is some; such that

F([ti, tisa] X {yo}) € Ug;-
For anyi the setdt € [t;, ti.1]IF(t, yo) € V,} are disjoint ag varies and are (relatively) open i, i.1]. But
then sincef, ti,1] is connected all but one of them must be empty (for otherwiseould split f;, ti,1] into two
disjoint nonempty open sets) Thie all i there isg; such thatF(t, yo) € Vyp forall t e [t;, ti,1]. The same
argument withF replaced byG shows that for all there isB; such thaG(t Yo) € Ve forall t € [ti, ti4].

Now (recalling thato = 0) the assumption tha&t(0, yo) = G(0, yo) = f(yo) shows thagy = B, where we have
again used that the variot¥ s are disjoint.
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Now we claim that if3; = 4/, then bothF(t, yo) = G(t, yo) for all t € [ti, ti+1], andBi.1 = B, ,. To see this, note
that for allt € [t;, ti,1], the assumption implies théi(t, yo) andG(t, yo) both lie iV, ; moreover the fact that
andG are both lifts ofF shows thatr(F(t Yo)) = 7(G(t, yo)) = F(t,yo) forall t [ti, tisa]. But the restriction of
7 t0 V5 IS One-to-one, so mded%{t Yo) = G(t Vo) for all t € [t;, tiy41]. In partlcularF(tHl, Yo) = G(tHl Vo). But
then since th&/,,, s are disjoint this implies thag;,; = 5/, ;, completing the proof of the claim at the start of this
paragraph.

By induction oni it therefore follows thag; = g/ for all i, and hence (by the previous paragraph) that for all
i F|[t. Taalxlyo) = GI [tta]xiyol» SO Since thet], ti.1] cover [Q 1] this shows thaF(t Yo) = G(t, yo) for all t € [0, 1].
Sinceyy was chosen to be an arbitrary elementothis completes the proof that the Iftis unique if it exists.

Now we prove existence, using the uniqueness proof as a guidew we might construdE. Choose an
arbitraryy € Y. Then, as in the uniqueness proof, the compactness df filows us to find 0=ty < t3... <
tx = 1 andq; such thatF(t,y) € U, whent e [t,t,1]; in other words,F([t;, ti11] x {y}) ¢ U,. Now since
U,, is open andF is continuousF~1(U,,) is an open set containing,[t.1] x {y}. Hence for each we can
find a neighborhoodNy; c Y of y such thatF([t;, ti.1] X Ny;j) € U,,. SettingN, = nrz‘OlNy,i (and, if Ny is not
connected, then replacing it by a smaller connected neitjidlod ofy, which exists sinc is locally connected),
we therefore have a connected neighborhNpdf y such that

F([tisti+l] X Ny) - Uai'

Choose3, to have the property thab(y) e Veoso- SlnceNy is connected and théyoﬂ are open and disjoint as
B varies it follows thatfo(Ny) C Vg, Now deﬂneFoy [0, ta] X Ny = Vs, C X by settmgFoy(t y’) equal to
the unique element of,, 5, which is mapped by to F(t,y’); in symboIsFo,y(t Y) = (7, )~ Y(F(t,y)). (Since
VA is a homeomorphism to its imagd#,, this map is well-defined, and continuous.) Moreoﬁqg,holx,\,y =
foln, -

Proceeding inductively, suppose we have construéteg/: [0,t] x Ny — X such thatr o Ifi,l,y = Flio.txn,
and ﬁi_1,y|{0,xNy = ﬂ)|Ny. Recall that~([t;, ti 1] X Ny) c U,,. SinceNy is connected and thé, ; are disjoint and
open there is somg such thatF_1y({ti} X Ny) € V5. So we can defin€&;y: [0,t.1] x Ny — X by setting
Fiy(t,y) = Fiaa(t,y) if t <t andFiy(t,y) = (nlvnﬁ‘)‘l(F(t y)) if ti <t < tj,1. This definition is consistent at
t = t;, and so gives a continuous function liftifdo ,,jxn,, With F; y(O y) = f(y)fory e Ny

Continuing the induction until = k — 1 and then settingy = Fx_1,, we obtain a magy: [0,1] x Ny — X
such thatr o Fy = Flo.1xn, @and Fy(O y) = foly) fory e Ny. All that remains now is to extend this to all of
[0,1] x Y, rather than just [QL] x Ny.

To do this, note first thay above was amrbitrary element ofY. Moreover, for anyz € Y, if y,y’ are two
elements ofY so thatz € Ny N Ny, then Fy ll0,1yx(z and Fy|[01 (z are both lifts ofF|jq, 1x(2) , which restrict to
{0} x {z} as fo(z) Thusby the already- proven unlqueness part of the theollé)nnm Xz = Fy|[o 1]x(z- Hence we
can definé=: [0, 1]xY — X by settingF(t,2) = Fy(t 7) wherey is an arbitrary point witlz € Ny (of course there
is always at least one point, namsly= 2). This definition is independent of the choiceypfas shown above;
thus the map is well-defined. Since the (relatively) opes E&tl] x Ny cover [Q1] x Y and sinceF restricts
to each such set as the continuous funcﬁgnthe mapF is continuous. Moreover, the properties that we have
proven forlfy show that~ obeys all other required properties in the theorem. m]

Using this, we can complete our earlier sketch by giving anelsb proof Theorern_1.13, which states that
homotopy classes of maps fra®t to C \ {0} are in bijection with the integers.

Proof of Theoreri 1.13To every loopy: S* — C\{0} we associate an integeedy) as follows. Viewy as a map
v: [0, 1] — C\{0} which satisfieg (1) = y(0). By exampl€ .17, we have a covering spac€0, co)xR — C\{0}

given byn(r,6) = re'’. Choose, arbitrarily,rg, 6o) such thatr(ro,60) = y(0). Then by the homotopy lifting
property (applied withy equal to a one-point set) there is a unique map[0,1] — (0, ) x R such that
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moy =vyandy(0) = (ro, 6p). If ¥(t) = (r(t), 6(t)), we set

deg) = o~ (6(1) ~ 6(0))

One issue needs to be addressed to confirm that this depegamadhe loopy: we made an arbitrary choice of
6o. Now all other possible choice differ from6y by 2rmfor somem € Z. So letd; = 6o + 2mr Wherey'is the
lift of the previous paragraph, the maf(t) = (r(t), 6(t) + 2mnr) will be a lift of y havingy’(0) = (ro. 6;). (So by
the uniqueness statement in Theofem11.19 it is the only sttghReplacingy by y’ affects bothy(1) andg(0)
by addition of 2nr, so it does notfliect the degree of. This proves thatledy) really does only depend on the
loopy. Itis clearly an integer, sinag1)d??® = r(0)’©), so thaiy(1) andd(0) differ by a multiple of 2.

The proof will be completed by a series of lemmas:

Lemma 1.21. If yo,y1: S* — C\ {0} are homotopic then dégo) = dedy1).

Proof. Sinceyo andy; are homotopic there is a mdp [0,1] x [0,1] — C \ {0} such that, fori = 0,1, we
havel'(i,t) = (t) for all t, and alsal’(s,0) = I'(s,1) for all s € [0,1]. Letyp: [0,1] — (0,) xR be a
lift of o as in the definition of the degree @§. Then Theoreri 1.19 applied with = [0, 1] produces a map
' [0,1] x[0,1] — (0, ) x R such thaf|;gxj0.1] = 70 andz o I' = T. The latter property in particular implies
thatl'(1, ) is a lift of y;.

Write T(s, t) = (r(s.t), 6(s. t)). Thendedyo) = %(6(0, 1) - 6(0,0)) anddedy;) = %(6(1, 1) - 6(1,0)). Now
for all swe have

r(s 1)’ = (s 1) = I'(s,0) = r(s, 0)e’S9,

SO %(9(5, 1) — 6(s,0)) € Z for all s. Moreover by the continuity of, %(9(& 1) — 4(s,0)) is continuous as a
function of s; hence sinc& is discrete it must be constant as a functios.o€omparing the values at= 0 and
s = 1 then proves thatedyo) = dedy1). ]

Hence we may view the degree as a functitmy. [S*,C \ {0})] — Z: if c € [S%,C \ {0}] is any homotopy
class therded(c) is defined by choosing an arbitrary representatied ¢c and evaluating the degree uf

Lemma 1.22. deg: [S*,C\ {0}]] — Z is surjective.

Proof. If n € Z Letyn(t) = €™, Thenyy(t) = (1, 2mnt) defines a lift ofy,, so the degree of, is 5 (27n - 0) =
n. O

This proves that$*, C\ {0}] is infinite, which is more than enough to prove tlat{0} is not simply connected
and so not homeomorphic @ To complete the proof of Theordm 1113, we still need to ptaesfollowing:

Lemma 1.23.deg: [S,C\ {0}] — Zis injective.

Proof. We are to show that ify andy; have the same degree (sgytheny, andy; are homotopic.

As a first step (and mostly just for convenience), we note @ngtloopy: S* — C\ {0} is homotopic to
a loopy’ such thaty’(0) is a positive real number. Indeed,f0) = roe®, we can define a homotopy by
I'(s t) = e'%y(t). Thenl(0, ) = y andI'(1,) is a loop which starts on the positive real axis.

Consequently, since homotopy is an equivalence relationsarce the degree does not change under a ho-
motopy, we may without loss of generality assume th#0) andy1(0) are on the positive real axis. So we
can write, fori = 0,1, %i(0) = #(ri(0),0). Then the homotopy lifting property allows us to lift the to
yi: [0,1] = (0,00) x R, sayy; = (ri(t), 6i(t)), with 6;(0) = 0. We thus have;(1) = 27n by the assumption
thatdedy;) = n.

Now define, for §,t) € [0, 1] x [0, 1],

(s 1) = (1 - 9ro(t) + sn(t), (1 - 9fo(t) + Ha (1)),

and defind™: [0,1] x [0,1] — C\ {0} by = 7o I. ClearlyI(0,") = yo andI'(1,-) = y1. Moreover since
00(0) = 6,(0) = 0 while 6p(1) = 61(1) = 27n, the second coordinate bfis always 0 when = 0 and is always
2znwhent = 1; consequently'(s, 0) = I'(s, 1) for all s. ThusT is a homotopy fromyg to y;.
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O

The above lemmas collectively show thigdefines a bijection betwees{, C \ {0}] andZ, completing the
proof of Theoreni 1.73.
mi

1.3. Retractions and deformation retractions. In the proof thatC \ {0} is not simply connected, you may
have noticed that very little role was played by the polarrdowater, while everything of interest related to
the behavior of the polar coordinate In particular, essentially the exact same proof showsttieatinit circle
T = {z € C|I7 = 1} has the property that the degree defines a bijection betw®ef[andZ. This is not a
coincidence, as the spa€e\ {0} “deformation retracts” onto the spade Without yet having even seen the
definition you should be able to picture this—for ang C \ {0} imagine the poinz moving toé along the line
that passes through the origin andn the case thatalready lies ofT this doesn’t move at all, but for general
points it moves them onto the sub3et C \ {0}.

Definition 1.24. Let X be a space, let A X be a subspace, and denote byA — X the inclusion map.

(i) Amapr. X — Ais called aretraction of X onto Aif(a) = afor alla e A. (In other words, pi = 14.)

(i) Amapr. X —» Ais called aweak deformation retraction of X onto A ifroi = 1, and if the map
ior: X — Xis homotopic tdx. (In other words, there is F [0, 1] x X — X such that KO, X) = x and
F(1,x) € Aforall xe X,and H1,a) = aforallac A.

(i) Amapr. X — Ais called astrong deformation retraction if it is a weak deformation retraction and
if the homotopy F [0,1] x X —» X from1x to i o r can additionally be taken to have the property that
F(t,a) =aforallae Aandte [0, 1].

(iv) We say that Ac X is aretract of X (resp.weak deformation retract of X or strong deformation retract
of X) if there exists a retraction (resp. weak deformationaetion or strong deformation retraction)
from X to A.

Remarkl.25 There is some variation in the literature as to what is cadlédieak” or a “strong” deformation
retraction. Many authors have something that they just &dtieformation retraction,” but it varies widely
whether this refers to what we call a weak or a strong one.

Remarkl.26 In general, ifB ¢ Y, a homotopyF: [0,1]xY — Xis said to be &aomotopy rel Bif for all b € B
the pointF(t, b) is independent af Thusr: X — Ais a strong deformation retractioniié r = 1 and ifior is
homotopic to % rel A.

Examplel.27. As was informally described earlier, = {z € C||Z = 1} is a strong deformation retract Gf\ {0}.
Indeed, we can definé: [0,1] x (C\ {0}) — C\ {0} by
z
Ft,2 = Tt
This is continuous (you can check that there’'s no problenm Wit denominator since alwayse [0, 1] and

|zl # 0), and clearly=(0,2) = z, F(1,2) = é, and if|Z = 1 thenF(t, 2) = zfor all t.

Exercisel.28 (a) Suppose that: X — Ais a retraction and that is any space. Whem: [V, X] — [V,A] is
the induced map of Exercife1]11, prove thas surjective.

(b) Give an example of a retraction X — A for someX andA such that the induced map: [S, X] —
[S%, Al is not injective. (Hint: HaveA consist of just one point.)

(c) If r: X — Ais a weak deformation retraction prove that [V, X] — [V, A] is always bijective.

Corollary 1.29. Where T is the unit circle in the complex plane, there is adhigs deg [S, T] — Z.

Proof. We have shown that there is a strong (hence also weak) defomratractionr: C\ {0} —» T. Hence
this follows directly from Theorefi .13 and Exerdise 1.28(c o
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Corollary 1.30. Let D= {z€ CJ||4 < 1}. Then there imoretractionr: D —» T.

Proof. The set %, D] consists of a single element. (This follows either by aruargnt identical to the proof of
Theoreni 1.12, or by Exercife 1115 and the fact Bva path-connected.) If there existed a retractiorD — T
then by Exercis@ 1.28(a) the induced mrap [S, D] — [S?, T] would be a surjection. But this is impossible
since B!, D] is a singleton whereas$St, T]is an infinite set. m|

The following is one of the most celebrated early resultdgelaraic topology:

Theorem 1.31(Brouwer fixed point theorem, 1912Where D= {z€ C||7 < 1}, if f: D — D is any map then
f must have a fixed point: there izD such that {2) = z.

Note that this would be false if we replacBdoy C, or by the punctured dido \ {0}; indeed you should easily
be able to think of fixed-point-free maps of these other space

Proof. Suppose, to get a contradiction, thiat D — D were a map without any fixed points. Under this
supposition, we will construct a retraction D — T, which will contradict Corollary 1.30. We describe the
retraction in words: iz € D, then (under the assumptioffz) # z, so we can consider the ray beginning at
f(2) and passing through Letr(2) be the point where this ray passes through the unit circlé you prefer a
formula, itis

f(2)- (@) +1z- f@QPQL-1f(2P) - (z- 1(2)- (D

lz—- f(2)I? '
This map is continuous sinceis, and from the geometric description it’s clear th@ = zif ze T. Thusr is
a retraction; again Corollafy 1.0 shows that such a retractannot exist, and so the assumption thaad no
fixed points must have been false. m]

(@ = £ + Sz 1(2), wheres= Y~

While Brouwer’s fixed point theorem had a significant impactto® development of mathematics, Brouwer
himself later came to reject the proof of the theorem on ghibtical grounds because of its reliance on con-
tradiction (to oversimplify his position, he believed thfayou want to show that a fixed point exists then you
should say how to produce the fixed point, rather than shothiagthe nonexistence of a fixed point leads to a
contradiction). Much later (in the 1960s), more constugcproofs of the theorem were found.

1.4. Homotopy equivalence.We have seen that i\ is a weak deformation retract of (e.g, if Ais the unit
circleT c CandX = C\ {0}) thenA and X have much in common: indeed for any sp&tthere is a bijection
between the space¥,[A] and [V, X] of homotopy classes of maps frovhto X andA; a similar argument shows
that likewise there is a bijection betweeh V] and [X, V]. | hope that the statement thais a weak deformation
retract ofX is easy to picture, saying naively thétcan be continuously squeezed down until oAllgemains.

Of course itis far from being true thatbeing a deformation retract &fimplies thatA andX are homeomorphic—
forinstanceT is certainly not homeomorphic ©\{0}. However it is worth considering a weaker relation between
spaces than homeomorphism, such that spaces that arel nelatach other in this way share traits with each
other similarly to how a space is related to its deformatitracts. This relation will be what is callémmotopy
equivalence

As a first attempt, one could say that two spaces should be topm@quivalent to each other if one is
homeomorphic to a weak deformation retract of the other. él@y a moment’s thought shows that this by itself
wouldn’t define an equivalence relation, which if probabipldematic if we want to systematically study the
notion. So we start thinking about how to make the relati@mgitive; in particular, it would need to be the
case that two spacesandY are homotopy equivalent to each other if there is a third sgaguch that bottX
andY are homeomorphic to weak deformation retractZ. oNow it's not obvious that this relation is transitive;
however we will see later that it turns out to be. | hope that thlationship is somewhat easy to picture—it’s
saying that there’'s some spac¢hat can be continuously squeezed in twiedent ways, one of which yield$
and the other of which yields.
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The traditional definition of homotopy equivalence (anaaktge definition that you'll end up working with in
practice) is diferent from this, but turns out to be the same, as we’'ll see aofién{ 1.3B. Here is the traditional
definition:

Definition 1.32. Let X and Y be two spaces.hmotopy equivalencefrom X to Y isamap f X — Y such that
there exists g Y — X such that g f is homotopic tdly and fo g is homotopic tdx. In this case g is called a
homotopy inverseto f.

If there exists a homotopy equivalence X — Y we say that X i©ilomotopy equivalent to Y, and write
X=~Y.

This is a fairly nice definition to work with, and respects iontant properties of the spaces, as the following
exercise shows:

Exercisel1.33 If f: X — Y is a homotopy equivalence and is any space prove that the induced map
f.: [V, X] — [V.Y] of Exercisd 1.1l is a bijection.

As indicated earlier, we would like homotopy equivalencédécan equivalence relation; we now show this.

Proposition 1.34. Let X, Y, and Z be three spaces.
(i) X=X.
(i) If X =Y then Y= X.
@ii) If X ~Y and Y=~ Z then X~ Z. More specifically, a composition of homotopy equivalerisea
homotopy equivalence.

Proof. For (i), we can just také = 1x andg = 1x; since % o 1x is homotopic (indeed equal) tg these satisfy
the required conditions in Definitidn 1132.

For (ii), we need only note that the conditions required irfilieon [1.32 are symmetric under interchange of
f andg.

(i) is somewhat less trivial. By assumption we have maps

f p
_—,
XngZ

and homotopie§: [0,1] x X —» Xfromgo fto 1x; G: [0,1]xY — Yfrom fogto1y; P: [0,1] XY - Y
fromgo pto 1y, andQ: [0,1] x Z — Zfrom poqto 1.

We will show thatpo f: X — Z is a homotopy equivalence with homotopy invegseq: Z — X. Thus we
need to show thag(c g) o (po f) is homotopic to &, and that po f) o (go q) is homotopic to 2. The method is
suggested by the observation that @) o (po f) = go (qo p) o f and likewise po f)o(goq) = po(fog)oq.

For the first homotopy, defind: [0, 1] x X — X by

_JaPt f(x)) 0<t<1/2
H(t’x)_{ F(2t-1,x) 1/2<t<1

Note that this is consistent it 1/2, sinceP(1, f(X)) = f(X) by the fact thaP is a homotopy frong o p to the
identity, while F(0, x) = g(f (X)) by the fact thaF is a homotopy frong o f to the identity. Setting = O we get
H(0, X) = g(P(0, f(x))) = g(a(p(f(x)))), while settingt = 1 we getH(1, X) = F(1,X) = x. ThusH is a homotopy
from (go g) o (po f) to the identity.

Similarly, a homotopy fromf§ o f) o (g o g) to the identity may be defined by

t P(G(2,q(7)) O<ts<1/2
G970 Q-1 12st<1

Thus, as claimedy o f: X — Zis a homotopy equivalence, proving théat Z.
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Exercisel.35 Suppose thaf: X — Y obeys the superficially weaker property that there are plysgifferent
mapsg:, gz: Y — X so thatg; o f is homotopic to & and f o g, is homotopic to . Prove thatf is a homotopy
equivalence. (Hint: Lej=gi 0 f 0 gy.)

I now want to make good on my promise to show that the formadg (but maybe kind of unintuitive) notion
of homotopy equivalence that we have introduced coincidés tive more intuitively appealing notion of two
spacesX andY being (up to homeomorphism) weak deformation retracts bird spaceZ. The fact that the
latter implies the former is not veryfiiicult, as we'll see in the proof of Theordm 11 38. But the othezalion
seems more subtle—in particular, if we just assumeXretdY are homotopy equivalent, where precisely would
the third spac& come from?

1.4.1. Mapping cylinders and adjunction spaceBhe answer will be that it will come from a useful general
construction in homotopy theory called theapping cylinder, which | will now digress to describe. Let
andY be spaces and Idt: X — Y be any (continuous) map (this map need not in general be atopsno
equivalence). The mapping cylinder is, by definition, thacsp

M = Y 11I([0, 1] x X)

"TFT ~ O, forall xe X’
At the risk of being pedantic, | want to slowly describe whastmeans, since we’ll be seeing spaces like this
in the future. Formally speaking, the notation above mehastheset M consists of equivalence classes of a
relation~ on the se¥ [[([0, 1] x X) (the notation | means disjoint union, with topology given by saying that the
open sets are unions of open set¥iwith open sets in [0l] x X) where~ is the smallest equivalence relation
such thatx, 0) ~ f(x) wheneveix € X (of course, by reflexivity, a pointis also related to itsatid by transitivity
we will have &, 0) ~ (X, 0) if f(X) = f(X)). We have amap: Y x ([0, 1] x X) —» M; which sends a point to its
equivalence class. Thepologyon Ms is the quotient topology ¢ M is open if and only ifr1(U) is open in
the disjoint unionY [ ([0, 1] x X).

The mapping cylinder is an example of a more general type atespalled amdjunction spacelLet X, Y be
topological spaces, lI& c X be a subspace, and It A — Y be a continuous map. (For the mapping cylinder
example, replacX by [0, 1] x X andA by {0} x X.) Define

XY
a~f(@ifaeA’
endowed as before with the quotient topology induced by tgeptionz: XY — X U; Y which sends a
point to its equivalence class. The equivalence classebeatescribed as follows: they are either singletons
consisting of a single point iX \ A or they are, for somg € Y unionsf~({y}) U {y}.

Itis not difficult, but is important, to understand the nature of contirsumaps from adjunction spaces. First
of all note that we have mags: X — XUz Yandjy: Y — X U; Y given by composing the inclusion &f or
Y into X [] Y with the projectiont: X[]Y — X U; Y. These maps are continuous since they are compositions
of continuous functions. Consequently, whereA — X is the inclusion map, we have a commutative diagram

XUz Y =

A——Y

|

X — XU Y
Exercisel.36 (a) LetZ be another space and Igt X U Y — Z be a continuous map. Prove that the maps
Ox = 0o jx: X—> Zandgy =go jy: Y — Z are continuous maps with the property tgafa) = gy(f(a)) for
allae A
A diagram whose sides are arrows such as this omensmutativef the maps obtained by sequentially followingferent paths of

arrows from the same starting point to the same ending poirglameys the same. In this particular diagram this meansi = jy o f. You
will see this term many times in the rest of the course.
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(b) Conversely, suppose thgt: X — Zandgy: Y — Z are two continuous maps such thgta) = gv(f(a)).
Prove that there is a unique mgp XU Y — Z such thagx = go jx andgy = go jy, and that moreover this map
is continuous. (If you want to impress people, you can tahitthat you've just proven that adjunction spaces
are fibered coproducts in the category of topological spatst follows is a picture illustrating this statement.)

In particular it follows that, ifM; is the mapping cylinder of : X — Y, a continuous mag: My — Z
determines and is determined by mags [0,1] x X —» Z andgy: Y — Z such thaigx(0, x) = gv(f(x)) for all
x € X. It will also be relevant to have a similar description of tonous mapg: [0,1] x My — Z—namely,
that they are given by mas: [0, 1] x[0,1]x X — Zandgy: [0,1]xY — Z such thagx(s, 0, X) = gv(s, f(X))
for all x € X ands € [0, 1]. This statement follows from the general machinery of ieee[1.36(b), since we
have an obvious identification

([0,1]1 x [0,1] x X) [1([0,1] X Y)
(041> M G0N ~(10)
i.e,, as the adjunction space formed fromIPx [0,1] x X and [Q 1] x Y via the mapF: [0,1] X {0} x X —
[0,1] x Y via F(s,0,x) = (s, f(X)). (Strictly speaking one should still check that the idfggdtion above is a
homeomorphism; if you're concerned about this feel freeasal) In the future, we will identify mapsl; — Z
and [Q 1] x My — Z simply by giving these maps andgy.
This general preparation, which will also be relevant lateihe course when we talk about cell complexes,
will now help us prove our result about the relation betweefodnation retracts and homotopy equivalence.
First we make a general observation about mapping cylindetsecessarily of homotopy equivalences.

Proposition 1.37. Let f: X — Y be any (continuous map) and let Me the mapping cylinder of Y. Then there
is a strong deformation retraction:rM; — Y.

Proof. Intuitively stated, we havél; = Y []([0, 1] x X)/f(X) ~ (0, x), and we “flatten” [01] x X onto{0} x X,
which is identified with part ofY, while leavingY alone. Formally, defin€&: [0,1] x M; — My by setting
F(s,y) =yfory e YandF(st,x) = (st X) € [0, 1]xXfor (s, 1, X) € [0, 1]x X (really we should sa¥(s,y) = jy(Y)
andF(s t,x) = jx(st x), but we will omit the extra notation). To see that this giwewell-defined continuous
map on [Q1] x M, we need to check tha&i(s, f(X)) = F(s,0,x) for all x € X. This is indeed the case; both
of these are equal to (®), since inMx this point is identified withf(x). Moreover, for anyz € Mt we have
F(1,2 = z as the formula makes clear, and for ang M; we haveF(0,2) € Y, since in case = (s,t, X) we
haveF (0,2 = (0,x) = f(X) € Y by the definition of the equivalence relation. So since &égy) = y for all
se [0, 1],y € Y by definition, it follows thatr = F(0, -) is a strong deformation retraction. O

Theorem 1.38. Two spaces X and Y are homotopy equivalent if and only if #vasts a third space Z and weak
deformation retracts Xc Z and Y c Z such that X is homeomorphic td ¥nd Y is homeomorphic to'Y

Proof. Note in general that iA is a subspace of a spaBaandr: B — Ais a weak deformation retraction, then
r is a homotopy equivalence with homotopy inverse given byiticision ofi: A — B (indeed,r oi = 1,
andi o r is homotopic to g by definition of a weak deformation retraction). Meanwhitarreomorphisms are
also homotopy equivalences. In light of this the backwarglication of Theorenl 1.38 is immediate from the
transitivity part of Proposition 1.34: we have a chain of ldopy equivalenceX ~ X' ~Z ~ Y’ ~ Y.
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For the forward inclusion we will let: X — Y be a homotopy equivalence with homotopy inveyseY — X,
and seZ = Mt whereM; is the mapping cylinder of. Propositioi 1.37 shows thatis a strong (hence also a
weak) deformation retract dfl ¢, so it remains to show that is homeomaorphic to a weak deformation retract of
M. Specifically we will see thdtl} x X c My is a weak deformation retract ™. Thus we must construct a
homotopy from J, to some retractionx: M; — {1} x X.

This homotopy will be constructed in three stages. First vile (@mewhat counterintuitively) move ev-
erything intoY, then we will move everything around withi, and finally we will move everything “up the
cylinder” to {1} x X.

For the first stage we use the retracttonM; — Y of Propositiod 1.37: specifically, we showed in the proof
of that proposition that the map M; — Y defined by setting(y) = yfory € Y andr(t,x) = (0,x) ~ f(X) € Y
for (t, x) € [0, 1] x X has the property that, whejfe: Y — M;s is the inclusion ofY, jy o r is homotopic to ¥, .
So since homotopy is a transitive relation it nowffmes to find a homotopy fronjy o r to some retraction to
X x {1}.

Now the fact thatf: X — Y is a homotopy equivalence with homotopy invegse Y — X implies that
there are homotopies: [0,1] x X —» X fromgo f to 1x andG: [0,1] xY — Y from 1y to f o g. Define
H: [0,1] x M¢ — My by

H(s 2) = jv(G(s r(2)).
ThusH(0,2) = jv(r(2) andH(1,2 = jy(f(g(r(2))) for anyz € M¢. Now by the defintion of the mapping
cylinder, for anyx € X we havejy(f(X)) = jioyxx(0,X). HenceH(1,2) = jpo,uxx(0,9(r(2)). ThusH is a
homotopy fromjy o r to the mapH(1,-): z = jo,1xx(0, 9(r(2))), so the theorem will be proven if we find a
homotopy from this latter map to a retractionXox {1}.

To do this, we use the homotopy. [0,1] x X — Xfromgo f to 1x: defineP: [0,1] x M; — My by setting
P(s. (t. X)) = ifp.apex(s F(st X)) for (t.X) € [0, 1] x X andP(s.) = jio1px(S 9y)) fory € Y.

First we need to confirm that this gives a well-defined map oh][® My, i.e. thatP(s, (0, X)) = P(s, f(x)) for
s€ [0,1] andx € X. Indeed sincé is a homotopy frong o f to 1x we have

P(s.(0,%) = jp.ax(s F(0.X)) = joaxx(s 9(f(x))) = P(s, (X)),
as desired. Now i§f € Y we see that

P(0,y) = jouxx(0,9(Y)) = Jro.1xx(0, 9(r(¥))) = H(L,y),
while if (t, X) € [0, 1] x X we haver(t, X) = f(X) and hence

P(0, (X)) = Jo,2xx(9(F (X)) = Jio,1xx(9(r (t, X)) = H(L, (t, X)).
ThusP(0,-) = H(L,-) on all of M;. Finally we clearly haveH(1,2) € jjo1xx({1} x X) for all z € M¢, and if
(1, x) € {1} x X we see that
H(L, (1, X)) = Jjo.axx(L, F(1, X)) = jo.13xx (L, X).

ThusP is a homotopy fromH(1, ) to a retractiorrx: M; — {1} x X. (Specificallyrx(y) = (1, g(y)), while
rx(t, X) = (1, F(t, x)); if you had tried to write down a retraction at the startlistproof this is probably the one
that you would have written down, though it was a rather mofiécdIt matter to show that it was a deformation
retraction.) O

Remarkl.39 In fact with some more machinery the word “weak” in TheoteB8lcan be replaced by “strong”;
see Corollary 0.21 of Hatcher.
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