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Conventions

• The word “space” means “topological space.”
• If X andY are spaces, any time I refer to amap f: X→ Y, unless otherwise specifically noted, the word

“map” should be interpreted as “continuous map.”
• If S is a set then 1S denotes the identity mapS→ S.

1. Topological invariants and homotopy

One of the most basic goals of topology is to develop tools which help one, when presented with two spaces
X andY, to determine whether or notX andY are homeomorphic.1

If you think thatX andY are homeomorphic, then there is an obvious strategy for proving this: try to construct
a homeomorphism. For example to show thatX = (0,1] andY = [1,∞) are homeomorphic, you just need to
write down the homeomorphismf (x) = 1/x (and then check that it’s a homeomorphism, which in this caseis
fairly easy). Of course, in general finding a homeomorphism may be more difficult than this.

But suppose that you think thatX andY are not homeomorphic; how would you go about verifying this?Ob-
viously, the fact that you can’t think of a homeomorphism between them, while it may be somewhat convincing
to you, does not suffice for a proof, since there always could be a homeomorphism that you just didn’t think of.

Here is the most powerful general strategy for showing that two spaces arenot homeomorphic: Using general
theory, define, forevery topological spaceX, an invariant I (X), which has the property that ifX and Y are
homeomorphic thenI (X) is equivalent toI (Y). Then, for your two specific spacesX andY, determine the values
of I (X) andI (Y). If I (X) andI (Y) are different, then you can conclude thatX is not homeomorphic toY.

I’ve left out telling you what sort of thingI (X) should be. The answer is that it can be many different sorts
of things, depending on the context—for instance it could be anumber, or a word (e.g., “yes” or “no”), or a set.
Algebraictopology is founded on the insight that it is often useful to have I (X) be an algebraic object—for the
most part in this course it will be a group; there are also situations (which we may get to near the end of the

1Recall that a homeomorphismf : X → Y is a continuous bijection whose inverse is also continuous.From a purely topological
standpoint homeomorphic spaces should be regarded as being “essentially the same,” in the sense that ifX andY are homeomorphic then any
topological property that is possessed byX will also be possessed byY (indeed, this can be taken as a definition of the phrase “topological
property.”)
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course and will certainly discuss at length in 8210) where itis a ring. My plan is to go through a number of
examples where wedon’t need algebraic invariants to distinguish spaces—numericalor set-theoretic or “yes or
no” invariants are enough in many cases—en route to eventually getting to examples where an algebraic invariant
(namely the fundamental group) is really natural and necessary.

I should also briefly clarify the meaning of “equivalent” in the above statement, “ifX andY are homeomorphic
thenI (X) is equivalent toI (Y).” If I (X) is always a number then this just meansI (X) andI (Y) should be the same
number. If I (X) is a set then this means that there should be a bijection fromI (X) to I (Y), while if I (X) is a
group (resp. a ring) then there should be a group isomorphism(resp. a ring isomorphism) fromI (X) to I (Y). If
you’ve been exposed to the language of category theory, the right statement is thatI should be afunctor from the
category of topological spaces (with morphisms given by continuous maps) to whatever category (sets, groups,
rings) I takes values in. However if you haven’t been exposed to category theory don’t worry about this.

Example1.1. Let X = R andY = R \ {0}. You should already know thatX andY are not homeomorphic—the
easiest way of seeing this is to note thatX is connected andY is not. To phrase this in the language above, for
any topological spaceX let

I (X) =

{

yes if X is connected
no if X is not connected

Since the continuous image of a connected space is connected, it is easy to see that, in general, ifX andY are
homeomorphic, thenI (X) = I (Y). But for our particularX andY we haveI (X) = yes andI (Y) = no, and soX
andY are not homeomorphic.

Example1.2. Let Y = R \ {0} andZ = R \ {0,1}. We can see thatY andZ are not homeomorphic as follows. For
any spaceX let I (X) denote the number of connected components ofX. One can check (and you should if this
isn’t obvious to you) thatI is an invariant—i.e. that homeomorphic spaces have the same value of I . We have
I (Y) = 2 andI (Y) = 3, soY andZ aren’t homeomorphic.

A more “natural” way of saying this might be to instead haveI (X) be thesetof connected components ofX.
If X andY are homeomorphic, one can use the homeomorphism to construct a bijection betweenI (X) andI (Y).
Then sinceI (Y) is a two-element set andI (Z) is a three-element set, there’s no bijection betweenI (Y) andI (Z),
soY andZ aren’t homeomorphic.

1.1. Homotopy, simply connected spaces, andC \ {0}. The motivating example for this section is the question
of whetherX = C andY = C \ {0} are homeomorphic (hereC denotes the complex plane; thus topologically this
is the same asR2). With respect to the standard properties that one learns about in basic point set topology,X
andY are rather similar spaces: both are connected, and normal, and noncompact, and second-countable, and so
on. We will see that they are, however, not homeomorphic:X is what is called “simply connected,” andY is not.
In other words, informally speaking, every loop inC be shrunk to a point, whereas this is not the case inC \ {0}.

Let us make some definitions aimed at making this rigorous.

Definition 1.3. A loop in a space X is a map2 γ : [0,1]→ X such thatγ(0) = γ(1).

Said differently (and we will usually use this convention), whereS1
= R/Z, a loop is a (continuous) map

γ : S1→ X.

Definition 1.4. Let V and X be two spaces and let f0, f1 : V → X be two maps from V to X.

• A homotopy from f0 to f1 is a map F: [0,1] × V → X such that, for all v∈ V, we have F(0, v) = f0(v)
and F(1, v) = f1(v).
• We say that f0 and f1 are homotopic if there exists a homotopy from f0 to f1.

If F is a homotopy fromf0 to f1, one can consider, for anys ∈ [0,1], the map fs: V → X defined by
fs(v) = F(s, v). The fact thatF is continuous implies that these maps are each continuous, and that they vary

2recall the convention that maps are continuous unless I say otherwise
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continuously ins. Thus if f0 and f1 are homotopic then they can be joined to each other by a continuous family
of maps.

Exercise1.5. WhereS is the set of (continuous) mapsV → X, prove that homotopy defines an equivalence
relation onS. (In other words, prove that the relation∼ on S defined by saying thatf0 ∼ f1 iff f0 and f1 are
homotopic is reflexive, symmetric, and transitive).

Definition 1.6. A space X issimply connected if it is path-connected and if every loopγ : S1 → X in X is
homotopic to a constant map.

In other words, for anyγ : S1 → X there should be a continuous mapF : [0,1] × S1 → X andx0 ∈ X such
thatF(0, t) = x0 andF(1, t) = γ(t) for all t. If you prefer to instead think of a loopγ as a map [0,1] → X with
γ(0) = γ(1), there should beG: [0,1] × [0,1] → X such thatG(0, t) = x0, G(1, t) = γ(t), andG(s,0) = G(s,1)
for all s. Still another way of saying this is that, whereD2

= {z ∈ C||z| ≤ 1} is the closed unit disc in the complex
plane, there should be a continuousH : D2 → X with H(e2πit ) = γ(t). (This follows by converting from polar
coordinates—note that the fact thatF(0, ·) is constant gets absorbed into the trivial statement thatH(0eiθ) = H(0)
is independent ofθ.)

It is not hard to see that ifX andY are homeomorphic thenX is simply connected iff Y is simply connected.
As stated earlier, we will see thatC is simply connected but thatC \ {0} is not.

Definition 1.7. If V and X are two spaces we denote by[V,X] the set of homotopy classes of maps from V to X.

(Here “homotopy classes” means “equivalence classes underthe relation of homotopy,” which makes sense
since an earlier exercise showed that homotopy is an equivalence relation.)

Exercise1.8. Prove that a (nonempty) topological spaceX is simply connected if and only if [S1,X] consists of
just one element.

Proposition 1.9. Let X and Y be homeomorphic spaces, and let V be any space. Thenthere is a bijection between
[V,X] and[V,Y].

Remark1.10. Thus, if we fix our favorite spaceV (for instanceV = S1), we have aninvariant IV(X) = [V,X] in
the sense of the previous section. So if we can somehow show that [V,X] and [V,Y] are not in bijection with one
another then we can conclude thatX andY aren’t homeomorphic.

Proof. Let f : X → Y be a homeomorphism, with inverseg: Y→ X. Define a functionf∗ : [V,X] → [V,Y] as
follows. An element of [V,X] is represented by some maph: V → X. Then f ◦h is a mapV → Y. Moreover, ifh′

andh represent the same equivalence class in [V,X] then they are homotopic, so that there isH : [0,1] × V → X
so thatH(0, ·) = h andH(1, ·) = h′. Then f ◦ H : [0,1]×V → Y is continuous (it is a composition of continuous
functions) and has (f ◦ H)(0, ·) = f ◦ h and (f ◦ H)(1, ·) = f ◦ h′. Thus if h andh′ are homotopic thenf ◦ h
and f ◦ h′ are homotopic. So forc ∈ [V,X] we can setf∗(c) ∈ [V,Y] equal to the homotopy class off ◦ h where
h is any representative of the equivalence classc. The above discussion shows that the resulting classf∗(c) is
independent of the representativeh that we chose, sof∗ is a well-defined map.

Similarly, defineg∗ : [V,Y] → [V,X] by, for c ∈ [V,Y] letting g∗(c) be the homotopy class ofg ◦ q where
q: V → Y is any representative of the equivalence classc. The exact same argument as before shows thatg∗(c)
is independent of the representing mapq, so this map is well-defined.

I claim that f∗ andg∗ are inverses to each other, so thatf∗ is a bijection fromX to Y. If c ∈ [V,X], choose a map
h: V → X that representsc. Then f∗(c) is the equivalence class off ◦ h, and sog∗( f∗(c)) is the equivalence class
of g◦ f ◦ h. But g◦ f = 1X, sog◦ f ◦ h = h andg∗( f∗(c)) = c. Likewise, ifc ∈ [V,Y] and if q: V → Y represents
c, theng∗(c) is represented byg ◦ q, and thenf∗(g∗(c)) is represented byf ◦ g ◦ q = q. Thus f∗(g∗(c)) = c. So
since f∗ ◦ g∗ = 1[V,Y] andg∗ ◦ f∗ = 1[V,X] this proves thatf∗ is a bijection with inverseg∗. �
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Exercise1.11. (a) Generalizing the above, show that, ifV is any fixed space, to any (continuous) mapf : X→ Y
of topological spaces we may associate a mapf∗ : [V,X] → [V,Y] such that (1X)∗ = 1[V,X] and, givenf : X→ Y,
g: Y→ Z, we have

(g ◦ f )∗ = g∗ ◦ f∗.

(In fancy language, this means that [V, ·] is a covariant functor from the category of topological spaces to the
category of sets).

(b) Prove that iff ,g: X→ Y are homotopic maps then the induced mapsf∗ : [V,X] → [V,Y] andg∗ : [V,X] →
[V,Y] are equal.

(c) If V is any fixed space, show that to any (continuous) mapf : X → Y of topological spaces we may
associate a mapf ∗ : [Y,V] → [X,V] such that (1X)∗ = 1[X,V] and, givenf : X→ Y andg: Y→ Z, we have

(g ◦ f )∗ = f ∗ ◦ g∗.

(In fancy language, this means that [·,V] is a contravariant functor from the category of topological spaces to
the category of sets). Deduce directly from these formal properties that iff : X → Y is a homeomorphism then
f ∗ : [Y,V] → [X,V] is a bijection.

Here are the results that will realize our main goal in this section:

Theorem 1.12.C is simply connected.

Theorem 1.13.C \ {0} is not simply connected. In fact, there is a bijection

deg: [S1,C \ {0}] → Z.

Corollary 1.14. C is not homeomorphic toC \ {0}.

Proof of Corollary 1.14, assuming Theorems 1.12 and 1.13.This follows either from the fact that one of the
spaces is simply connected and the other isn’t, or from the fact that there is no bijection between [S1,C] and
[S1,C \ {0}] (as one has one element and the other has infinitely many). �

Proof of Lemma 1.12.Let γ : S1→ C be any loop. DefineF : [0,1]×S1→ C by F(s, t) = sγ(t) (where we use
the standard multiplication operation inC). ThenF is a continuous map,F(0, t) = 0 for all t, andF(1, t) = γ(t).
So F is a homotopy fromγ to the constant map to 0. Thus our arbitary loopγ is contractible, so (sinceC is of
course path connected)C is simply connected. Indeed every mapS1→ C is homotopic to the constant map to 0,
so [S1,C] consists of just one element: the homotopy class of the constant map to 0. �

Exercise1.15. For anyn ≥ 1, letC ⊂ Rn be anyconvexset, endowed with the subspace topology. (Recall that
C is convex if for any two pointsx, y ∈ C the line segment connectingx andy is contained inC: in symbols, for
anyt ∈ [0,1], tx+ (1− t)y ∈ C.) Prove thatC is simply connected.

The proof thatC\{0} is notsimply connected is, as one might guess, somewhat harder, and will lead us to some
ideas that will be important for much of the first part of the course. We will develop some of the necessary theory
in a general context in the next section. Here is a description of the basic idea of the proof of Theorem 1.13,
intended partly to motivate the next section. A point inC \ {0} can always be written, using polar coordinates, as
z = reiθ, wherer ∈ (0,∞) andθ ∈ R. Now the value ofr is uniquely determined byz—it is the magnitude|z|.
On the other handθ is not quite uniquely determined, as we could changeθ by adding a multiple of 2π without
changingz. Note also that since I’ve excludedz = 0 it’s never the case that one can add anything other than a
multiple of 2π to θ without changingz (this seemingly minor point is why the proof won’t go throughwith C\ {0}
replaced byC).

Now suppose I have a continuous map [0,1] → C \ {0}. The pointγ(0) can be writtenγ(0) = r(0)eiθ(0); as
abover(0) is uniquely determined butθ(0) is not, since I could change it by a multiple of 2π. In any case, choose
a specificθ(0). I now want to write all of the otherγ(t) asγ(t) = r(t)eiθ(t). Of course necessarilyr(t) = |γ(t)|. As
for θ, the crucial point (which I don’t claim to have yet proven) isthat, having chosenθ(0), I now haveexactly
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onepossible choice for all of the otherθ(t) if I want θ to vary continuously witht. (You should think about why
this is plausible.)

Suppose thatγ : [0,1] → C \ {0} is a loop, so thatγ(1) = γ(0). If you believe the above paragraph, we can
write γ(0) = r(0)eiθ(0), and then this determines just one possible way of writingγ(t) = r(t)eiθ(t) in a way that
makesθ vary continuously witht (and wherer(t) = |γ(t)|). Nowγ(1) = r(1)eiθ(1)

= r(0)eiθ(0)
= γ(0). But θ(1) and

θ(0) mightnot be the same—rather they have to differ by a multiple of 2π. “Define” thedegreeof γ by

deg(γ) =
1
2π

(θ(1)− θ(0)).

Evidently deg(γ) is an integer. I put define in quotes because it’s not obviousfrom this discussion thatdeg(γ)
really just depends onγ and not on other choices (in particular the value ofθ(0)) that we made, but this turns out
to be true. Moreover, deg(γ) depends only on the homotopy class ofγ; again, I don’t claim to have proven this,
but an intuitive explanation is thatdeg(γ) is always an integer, while one would expect a continuous variation in
γ to causedeg(γ) to vary continuously—but a continuous map which is always aninteger is necessarily constant.

If you believe all this, then to show thatC \ {0} is not simply connected I just have to show that not all maps
have the same degree. Now it should be obvious (assuming the degree to be well-defined) that a constant map has
degree zero. Meanwhile the loopγ(t) = e2πit has degreedeg(γ) = 1

2π (2π−0) = 1. More generally, for any integer
n the loopγn(t) = e2πint has degreen. Thus all of the loopsγn should belong to different homotopy classes. This
is all more than enough to show thatC \ {0} is not simply connected, and indeed that [S1,C \ {0}] is infinite; the
final ingredient necessary to prove everything in Theorem 1.13 is to show that two loops having the same degree
are homotopic.

1.2. Covering Spaces I.

Definition 1.16. Let X be a space. Acovering space of X is a pair(X̃, π) whereX̃ is a space andπ : X̃→ X is a
map with the following property. There is an open covering{Uα}α∈A of X such that, for eachα, Uα is connected
and the preimageπ−1(Uα) = {x̃ ∈ X̃|π(x̃) ∈ Uα} is adisjointunion

π−1(Uα) =
∐

β

Vαβ,

where each Vαβ ⊂ X̃ is an open set such that

π|Vαβ : Vαβ → Uα is a homeomorphism.

Example1.17. A good example of this can be expressed in terms of polar coordinates onC \ {0}. Let X = C \ {0}
and letX̃ = (0,∞) × R. Define

π : (0,∞) × R→ C \ {0}

by

π(r, θ) = reiθ.

Obviouslyπ is continuous (since the cosine and sine functions are continuous). For our open cover ofX we may
use

U1 = {x+ iy ∈ C \ {0}|x > 0}

U2 = {x+ iy ∈ C \ {0}|y > 0}

U3 = {x+ iy ∈ C \ {0}|x < 0}

U4 = {x+ iy ∈ C \ {0}|y < 0}.
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Certainly each point inC \ {0} is in one of these open sets—indeed almost all are in two of them(the only
exceptions being the points on thex or y axis). We have

π−1(U1) = ∪n∈Z(0,∞) × (2nπ − π/2,2nπ + π/2),

π−1(U2) = ∪n∈Z(0,∞) × (2nπ,2nπ + π),

π−1(U3) = ∪n∈Z(0,∞) × (2nπ + π/2,2nπ + 3π/2), and

π−1(U4) = ∪n∈Z(0,∞) × (2nπ + π,2nπ + 2π).

Obviously each of the above is a disjoint union. Moreover each set in each of the unions maps homeomorphi-
cally byπ to its correspondingUi . For example, for one of the setsV1,n = (0,∞) × (2n− π/2,2n+ π/2), the map
π|V1,n : V1,n → U1 (again, this sends (r, θ) → reiθ) has inverse given byx + iy 7→ (

√

x2 + y2,2nπ + arctan(y/x))
(recall that arctan is conventionally defined as taking values in (−π/2, π/2), and is a continuous function; also
note that onU1 arctan(y/x) is well-defined sincex , 0). We leave it to the reader to check the corresponding
facts for the sets inπ−1(Ui) for i = 2,3,4 (using the arccotangent fori = 2,4 and the arctangent fori = 3).

Definition 1.18. Letπ : X̃→ X be a covering space of a space X and let f: Y→ X be any map. Alift of f is a
map f̃ : Y→ X̃ such thatπ ◦ f̃ = f .

X̃

π

��
Y

f̃
??�

�
�

� f
// X

One of the most important properties of covering spaces is the following:

Theorem 1.19(Unique Homotopy Lifting Property). Let π : X̃ → X be a covering space of X. Let F: [0,1] ×
Y→ X be a map where Y is locally connected, and denote F(0, ·) = f0 : Y→ X. Suppose that̃f0 : Y→ X̃ is a
lift of f0. Then there exists a unique lift̃F : [0,1] × Y→ X̃ of F having the property that̃F(0, y) = f̃0(y) for all
y ∈ Y.

Remark1.20. The assumption thatY is locally connected (i.e. that for anyy ∈ Y and any neighborhoodU of y
there is a possibly-smaller neighborhoodV ⊂ U of y which is connected) isn’t really necessary, but does slightly
simplify the proof.

Proof. Let us begin by showing that̃F is unique if it exists. Suppose that we had two distinct liftsF̃, G̃: [0,1] ×
Y→ X̃ of F : [0,1] × Y→ X, with F̃(0, y) = G̃(0, y) = f̃0(y) for all y ∈ Y. Choose an arbitraryy0 ∈ Y; we must
show that, for eacht ∈ [0,1], we haveF̃(t, y0) = G̃(t, y0). Let Uα ⊂ X andVαβ be sets as in the definition of a
covering space; thus theUα are connected and coverX, theVαβ coverX̃, andπ|Vαβ is a homeomorphism fromVαβ
to Uα.

By the continuity ofF (or more specifically of the mapt 7→ F(t, y0)), the sets

{t ∈ [0,1]|F(t, y0) ∈ Uα}

form an open cover of the unit interval [0,1]. So since [0,1] is compact this collection of sets has a finite subcover.
Using this we can find 0= t0 < t1 < . . . < tk = 1 such that, for eachi = 0, . . . , k− 1 there is someαi such that

F([ti , ti+1] × {y0}) ⊂ Uαi .

For anyi the sets{t ∈ [ti , ti+1]|F(t, y0) ∈ Vαiβ} are disjoint asβ varies and are (relatively) open in [ti , ti+1]. But
then since [ti , ti+1] is connected all but one of them must be empty (for otherwisewe could split [ti , ti+1] into two
disjoint nonempty open sets). Thusfor all i there isβi such thatF̃(t, y0) ∈ Vαiβi for all t ∈ [ti , ti+1]. The same
argument withF̃ replaced byG̃ shows that for alli there isβ′i such thatG̃(t, y0) ∈ Vαiβ

′
i
for all t ∈ [ti , ti+1].

Now (recalling thatt0 = 0) the assumption that̃F(0, y0) = G̃(0, y0) = f̃ (y0) shows thatβ0 = β
′
0, where we have

again used that the variousVα0β are disjoint.
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Now we claim that ifβi = β
′
i , then bothF̃(t, y0) = G̃(t, y0) for all t ∈ [ti , ti+1], andβi+1 = β

′
i+1. To see this, note

that for allt ∈ [ti , ti+1], the assumption implies that̃F(t, y0) andG̃(t, y0) both lie inVαiβi ; moreover the fact that̃F
andG̃ are both lifts ofF shows thatπ(F̃(t, y0)) = π(G̃(t, y0)) = F(t, y0) for all t ∈ [ti , ti+1]. But the restriction of
π to Vαiβi is one-to-one, so indeed̃F(t, y0) = G̃(t, y0) for all t ∈ [ti , ti+1]. In particularF̃(ti+1, y0) = G̃(ti+1, y0). But
then since theVαi+1β are disjoint this implies thatβi+1 = β

′
i+1, completing the proof of the claim at the start of this

paragraph.
By induction oni it therefore follows thatβi = β

′
i for all i, and hence (by the previous paragraph) that for all

i F̃|[ti ,ti+1]×{y0} = G̃|[ti ,ti+1]×{y0}. So since the [ti , ti+1] cover [0,1] this shows that̃F(t, y0) = G̃(t, y0) for all t ∈ [0,1].
Sincey0 was chosen to be an arbitrary element ofY, this completes the proof that the lift̃F is unique if it exists.

Now we prove existence, using the uniqueness proof as a guideto how we might construct̃F. Choose an
arbitraryy ∈ Y. Then, as in the uniqueness proof, the compactness of [0,1] allows us to find 0= t0 < t1 . . . <
tk = 1 andαi such thatF(t, y) ∈ Uαi when t ∈ [ti , ti+1]; in other words,F([ti , ti+1] × {y}) ⊂ Uαi . Now since
Uαi is open andF is continuous,F−1(Uαi ) is an open set containing [ti , ti+1] × {y}. Hence for eachi we can
find a neighborhoodNy,i ⊂ Y of y such thatF([ti , ti+1] × Ny,i) ⊂ Uαi . SettingNy = ∩

k−1
i=0 Ny,i (and, if Ny is not

connected, then replacing it by a smaller connected neighborhood ofy, which exists sinceY is locally connected),
we therefore have a connected neighborhoodNy of y such that

F([ti , ti+1] × Ny) ⊂ Uαi .

Chooseβ0 to have the property that̃f0(y) ∈ Vα0β0. SinceNy is connected and theVα0β are open and disjoint as
β varies it follows thatf̃0(Ny) ⊂ Vα0β0. Now defineF̃0,y : [0, t1] × Ny → Vα0β0 ⊂ X̃ by settingF̃0,y(t, y′) equal to
the unique element ofVα0β0 which is mapped byπ to F(t, y′); in symbolsF̃0,y(t, y′) = (π|Vα0β0 )−1(F(t, y′)). (Since
π|Vα0β0 is a homeomorphism to its imageUα0 this map is well-defined, and continuous.) MoreoverF̃0,y|{0}×Ny =

f̃0|Ny.
Proceeding inductively, suppose we have constructedF̃i−1,y : [0, ti ] × Ny → X̃ such thatπ ◦ F̃i−1,y = F|[0,ti ]×Ny

andF̃i−1,y|{0}×Ny = f̃0|Ny. Recall thatF([ti , ti+1] × Ny) ⊂ Uαi . SinceNy is connected and theVαiβ are disjoint and
open there is someβi such thatFi−1,y({ti} × Ny) ⊂ Vαiβi . So we can defineFi,y : [0, ti+1] × Ny → X̃ by setting
Fi,y(t, y′) = Fi−1(t, y′) if t ≤ ti andFi,y(t, y′) = (π|Vαi βi )

−1(F(t, y′)) if ti ≤ t ≤ ti+1. This definition is consistent at
t = ti , and so gives a continuous function liftingF|[0,ti+1]×Ny, with Fi,y(0, y′) = f̃ (y′) for y′ ∈ Ny.

Continuing the induction untili = k − 1 and then setting̃Fy = F̃k−1,y, we obtain a map̃Fy : [0,1] × Ny → X̃
such thatπ ◦ F̃y = F|[0,1]×Ny and F̃y(0, y′) = f̃0(y′) for y′ ∈ Ny. All that remains now is to extend this to all of
[0,1] × Y, rather than just [0,1] × Ny.

To do this, note first thaty above was anarbitrary element ofY. Moreover, for anyz ∈ Y, if y, y′ are two
elements ofY so thatz ∈ Ny ∩ Ny′ , then F̃y′ |[0,1]×{z} and F̃y|[0,1]×{z} are both lifts ofF|[0,1]×{z} which restrict to
{0} × {z} as f̃0(z). Thusby the already-proven uniqueness part of the theorem, F̃y′ |[0,1]×{z} = F̃y|[0,1]×{z}. Hence we
can defineF̃ : [0,1]×Y→ X̃ by settingF̃(t, z) = F̃y(t, z) wherey is an arbitrary point withz ∈ Ny (of course there
is always at least one point, namelyy = z). This definition is independent of the choice ofy, as shown above;
thus the map is well-defined. Since the (relatively) open sets [0,1] × Ny cover [0,1] × Y and sinceF̃ restricts
to each such set as the continuous functionF̃y, the mapF̃ is continuous. Moreover, the properties that we have
proven forF̃y show thatF̃ obeys all other required properties in the theorem. �

Using this, we can complete our earlier sketch by giving an honest proof Theorem 1.13, which states that
homotopy classes of maps fromS1 toC \ {0} are in bijection with the integers.

Proof of Theorem 1.13.To every loopγ : S1→ C\{0}we associate an integerdeg(γ) as follows. Viewγ as a map
γ : [0,1]→ C\{0}which satisfiesγ(1) = γ(0). By example 1.17, we have a covering spaceπ : (0,∞)×R→ C\{0}
given byπ(r, θ) = reiθ. Choose, arbitrarily, (r0, θ0) such thatπ(r0, θ0) = γ(0). Then by the homotopy lifting
property (applied withY equal to a one-point set) there is a unique map ˜γ : [0,1] → (0,∞) × R such that
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π ◦ γ̃ = γ andγ̃(0) = (r0, θ0). If γ̃(t) = (r(t), θ(t)), we set

deg(γ) =
1
2π

(θ(1)− θ(0)).

One issue needs to be addressed to confirm that this depends only on the loopγ: we made an arbitrary choice of
θ0. Now all other possible choicesθ′0 differ fromθ0 by 2πm for somem ∈ Z. So letθ′0 = θ0 + 2mπWhereγ̃ is the
lift of the previous paragraph, the map ˜γ′(t) = (r(t), θ(t) + 2mπ) will be a lift of γ havingγ̃′(0) = (r0, θ

′
0). (So by

the uniqueness statement in Theorem 1.19 it is the only such lift.) Replacingγ̃ by γ̃′ affects bothθ(1) andθ(0)
by addition of 2mπ, so it does not affect the degree ofγ. This proves thatdeg(γ) really does only depend on the
loopγ. It is clearly an integer, sincer(1)eiθ(1)

= r(0)eiθ(0), so thatθ(1) andθ(0) differ by a multiple of 2π.
The proof will be completed by a series of lemmas:

Lemma 1.21. If γ0, γ1 : S1→ C \ {0} are homotopic then deg(γ0) = deg(γ1).

Proof. Sinceγ0 andγ1 are homotopic there is a mapΓ : [0,1] × [0,1] → C \ {0} such that, fori = 0,1, we
haveΓ(i, t) = γi(t) for all t, and alsoΓ(s,0) = Γ(s,1) for all s ∈ [0,1]. Let γ̃0 : [0,1] → (0,∞) × R be a
lift of γ0 as in the definition of the degree ofγ0. Then Theorem 1.19 applied withY = [0,1] produces a map
Γ̃ : [0,1] × [0,1] → (0,∞) × R such that̃Γ|{0}×[0,1] = γ̃0 andπ ◦ Γ̃ = Γ. The latter property in particular implies
thatΓ̃(1, ·) is a lift of γ1.

Write Γ̃(s, t) = (r(s, t), θ(s, t)). Thendeg(γ0) = 1
2π (θ(0,1)− θ(0,0)) anddeg(γ1) = 1

2π (θ(1,1)− θ(1,0)). Now
for all s we have

r(s,1)eiθ(s,1)
= Γ(s,1) = Γ(s,0) = r(s,0)eiθ(s,0),

so 1
2π (θ(s,1) − θ(s,0)) ∈ Z for all s. Moreover by the continuity of̃Γ, 1

2π (θ(s,1) − θ(s,0)) is continuous as a
function ofs; hence sinceZ is discrete it must be constant as a function ofs. Comparing the values ats= 0 and
s= 1 then proves thatdeg(γ0) = deg(γ1). �

Hence we may view the degree as a functiondeg: [S1,C \ {0}] → Z: if c ∈ [S1,C \ {0}] is any homotopy
class thendeg(c) is defined by choosing an arbitrary representativeγ of c and evaluating the degree ofγ.

Lemma 1.22. deg: [S1,C \ {0}] → Z is surjective.

Proof. If n ∈ Z Let γn(t) = e2πint. Thenγ̃n(t) = (1,2πnt) defines a lift ofγn, so the degree ofγn is 1
2π (2πn− 0) =

n. �

This proves that [S1,C\{0}] is infinite, which is more than enough to prove thatC\{0} is not simply connected
and so not homeomorphic toC. To complete the proof of Theorem 1.13, we still need to provethe following:

Lemma 1.23. deg: [S1,C \ {0}] → Z is injective.

Proof. We are to show that ifγ0 andγ1 have the same degree (sayn) thenγ0 andγ1 are homotopic.
As a first step (and mostly just for convenience), we note thatany loopγ : S1 → C \ {0} is homotopic to

a loop γ′ such thatγ′(0) is a positive real number. Indeed, ifγ(0) = r0eiθ0, we can define a homotopy by
Γ(s, t) = e−isθ0γ(t). ThenΓ(0, ·) = γ andΓ(1, ·) is a loop which starts on the positive real axis.

Consequently, since homotopy is an equivalence relation and since the degree does not change under a ho-
motopy, we may without loss of generality assume thatγ0(0) andγ1(0) are on the positive real axis. So we
can write, for i = 0,1, γi(0) = π(r i(0),0). Then the homotopy lifting property allows us to lift theγi to
γ̃i : [0,1] → (0,∞) × R, say γ̃i = (r i(t), θi(t)), with θi(0) = 0. We thus haveθi(1) = 2πn by the assumption
thatdeg(γi) = n.

Now define, for (s, t) ∈ [0,1] × [0,1],

Γ̃(s, t) = ((1− s)r0(t) + sr1(t), (1− s)θ0(t) + sθ1(t)),

and defineΓ : [0,1] × [0,1] → C \ {0} by Γ = π ◦ Γ̃. ClearlyΓ(0, ·) = γ0 andΓ(1, ·) = γ1. Moreover since
θ0(0) = θ1(0) = 0 while θ0(1) = θ1(1) = 2πn, the second coordinate ofΓ̃ is always 0 whent = 0 and is always
2πn whent = 1; consequentlyΓ(s,0) = Γ(s,1) for all s. ThusΓ is a homotopy fromγ0 to γ1.
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�

The above lemmas collectively show thatdegdefines a bijection between [S1,C \ {0}] andZ, completing the
proof of Theorem 1.13.

�

1.3. Retractions and deformation retractions. In the proof thatC \ {0} is not simply connected, you may
have noticed that very little role was played by the polar coordinater, while everything of interest related to
the behavior of the polar coordinateθ. In particular, essentially the exact same proof shows thatthe unit circle
T = {z ∈ C||z| = 1} has the property that the degree defines a bijection between [S1,T] andZ. This is not a
coincidence, as the spaceC \ {0} “deformation retracts” onto the spaceT. Without yet having even seen the
definition you should be able to picture this—for anyz ∈ C \ {0} imagine the pointz moving to z

|z| along the line
that passes through the origin andz. In the case thatzalready lies onT this doesn’t movezat all, but for general
points it moves them onto the subsetT ⊂ C \ {0}.

Definition 1.24. Let X be a space, let A⊂ X be a subspace, and denote by i: A→ X the inclusion map.

(i) A map r: X→ A is called aretraction of X onto A if r(a) = a for all a ∈ A. (In other words, r◦ i = 1A.)
(ii) A map r: X → A is called aweak deformation retraction of X onto A if r◦ i = 1A and if the map

i ◦ r : X→ X is homotopic to1X. (In other words, there is F: [0,1] × X→ X such that F(0, x) = x and
F(1, x) ∈ A for all x ∈ X, and F(1,a) = a for all a ∈ A.

(iii) A map r: X → A is called astrong deformation retraction if it is a weak deformation retraction and
if the homotopy F: [0,1] × X → X from1X to i ◦ r can additionally be taken to have the property that
F(t,a) = a for all a ∈ A and t∈ [0,1].

(iv) We say that A⊂ X is aretract of X (resp.weak deformation retract of X or strong deformation retract
of X) if there exists a retraction (resp. weak deformation retraction or strong deformation retraction)
from X to A.

Remark1.25. There is some variation in the literature as to what is calleda “weak” or a “strong” deformation
retraction. Many authors have something that they just calla “deformation retraction,” but it varies widely
whether this refers to what we call a weak or a strong one.

Remark1.26. In general, ifB ⊂ Y, a homotopyF : [0,1]×Y→ X is said to be ahomotopy rel B if for all b ∈ B
the pointF(t,b) is independent oft. Thusr : X→ A is a strong deformation retraction ifi ◦ r = 1A and if i ◦ r is
homotopic to 1X rel A.

Example1.27. As was informally described earlier,T = {z ∈ C||z| = 1} is a strong deformation retract ofC \ {0}.
Indeed, we can defineF : [0,1] × (C \ {0})→ C \ {0} by

F(t, z) =
z

1− t + t|z|
.

This is continuous (you can check that there’s no problem with the denominator since alwayst ∈ [0,1] and
|z| , 0), and clearlyF(0, z) = z, F(1, z) = z

|z| , and if |z| = 1 thenF(t, z) = z for all t.

Exercise1.28. (a) Suppose thatr : X → A is a retraction and thatV is any space. Wherer∗ : [V,X] → [V,A] is
the induced map of Exercise 1.11, prove thatr∗ is surjective.

(b) Give an example of a retractionr : X → A for someX andA such that the induced mapr∗ : [S1,X] →
[S1,A] is not injective. (Hint: HaveA consist of just one point.)

(c) If r : X→ A is a weak deformation retraction prove thatr∗ : [V,X] → [V,A] is always bijective.

Corollary 1.29. Where T is the unit circle in the complex plane, there is a bijection deg: [S1,T] → Z.

Proof. We have shown that there is a strong (hence also weak) deformation retractionr : C \ {0} → T. Hence
this follows directly from Theorem 1.13 and Exercise 1.28(c). �
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Corollary 1.30. Let D= {z ∈ C||z| ≤ 1}. Then there isno retraction r: D→ T.

Proof. The set [S1,D] consists of a single element. (This follows either by an argument identical to the proof of
Theorem 1.12, or by Exercise 1.15 and the fact thatD is path-connected.) If there existed a retractionr : D→ T
then by Exercise 1.28(a) the induced mapr∗ : [S1,D] → [S1,T] would be a surjection. But this is impossible
since [S1,D] is a singleton whereas [S1,T] is an infinite set. �

The following is one of the most celebrated early results in algebraic topology:

Theorem 1.31(Brouwer fixed point theorem, 1912). Where D= {z ∈ C||z| ≤ 1}, if f : D → D is any map then
f must have a fixed point: there is z∈ D such that f(z) = z.

Note that this would be false if we replacedD byC, or by the punctured discD \ {0}; indeed you should easily
be able to think of fixed-point-free maps of these other spaces.

Proof. Suppose, to get a contradiction, thatf : D → D were a map without any fixed points. Under this
supposition, we will construct a retractionr : D → T, which will contradict Corollary 1.30. We describe the
retraction in words: ifz ∈ D, then (under the assumption)f (z) , z, so we can consider the ray beginning at
f (z) and passing throughz. Let r(z) be the point where this ray passes through the unit circleT. If you prefer a
formula, it is

r(z) = f (z) + s(z− f (z)), wheres=

√

((z− f (z)) · f (z))2 + |z− f (z)|2(1− | f (z)|2) − (z− f (z)) · f (z)

|z− f (z)|2
.

This map is continuous sincef is, and from the geometric description it’s clear thatr(z) = z if z ∈ T. Thusr is
a retraction; again Corollary 1.30 shows that such a retraction cannot exist, and so the assumption thatf had no
fixed points must have been false. �

While Brouwer’s fixed point theorem had a significant impact onthe development of mathematics, Brouwer
himself later came to reject the proof of the theorem on philosophical grounds because of its reliance on con-
tradiction (to oversimplify his position, he believed thatif you want to show that a fixed point exists then you
should say how to produce the fixed point, rather than showingthat the nonexistence of a fixed point leads to a
contradiction). Much later (in the 1960s), more constructive proofs of the theorem were found.

1.4. Homotopy equivalence.We have seen that ifA is a weak deformation retract ofX (e.g., if A is the unit
circle T ⊂ C andX = C \ {0}) thenA andX have much in common: indeed for any spaceV there is a bijection
between the spaces [V,A] and [V,X] of homotopy classes of maps fromV to X andA; a similar argument shows
that likewise there is a bijection between [A,V] and [X,V]. I hope that the statement thatA is a weak deformation
retract ofX is easy to picture, saying naively thatX can be continuously squeezed down until onlyA remains.

Of course it is far from being true thatAbeing a deformation retract ofX implies thatAandX are homeomorphic—
for instanceT is certainly not homeomorphic toC\{0}. However it is worth considering a weaker relation between
spaces than homeomorphism, such that spaces that are related to each other in this way share traits with each
other similarly to how a space is related to its deformation retracts. This relation will be what is calledhomotopy
equivalence.

As a first attempt, one could say that two spaces should be homotopy equivalent to each other if one is
homeomorphic to a weak deformation retract of the other. However, a moment’s thought shows that this by itself
wouldn’t define an equivalence relation, which if probably problematic if we want to systematically study the
notion. So we start thinking about how to make the relation transitive; in particular, it would need to be the
case that two spacesX andY are homotopy equivalent to each other if there is a third space Z such that bothX
andY are homeomorphic to weak deformation retracts ofZ. Now it’s not obvious that this relation is transitive;
however we will see later that it turns out to be. I hope that this relationship is somewhat easy to picture—it’s
saying that there’s some spaceZ that can be continuously squeezed in two different ways, one of which yieldsX
and the other of which yieldsY.



MATH 8200, SPRING 2011 LECTURE NOTES 11

The traditional definition of homotopy equivalence (and also the definition that you’ll end up working with in
practice) is different from this, but turns out to be the same, as we’ll see in Theorem 1.38. Here is the traditional
definition:

Definition 1.32. Let X and Y be two spaces. Ahomotopy equivalence from X to Y is a map f: X→ Y such that
there exists g: Y→ X such that g◦ f is homotopic to1Y and f ◦ g is homotopic to1X. In this case g is called a
homotopy inverse to f .

If there exists a homotopy equivalence f: X → Y we say that X ishomotopy equivalent to Y, and write
X ≃ Y.

This is a fairly nice definition to work with, and respects important properties of the spaces, as the following
exercise shows:

Exercise1.33. If f : X → Y is a homotopy equivalence andV is any space prove that the induced map
f∗ : [V,X] → [V,Y] of Exercise 1.11 is a bijection.

As indicated earlier, we would like homotopy equivalence tobe an equivalence relation; we now show this.

Proposition 1.34. Let X, Y, and Z be three spaces.

(i) X ≃ X.
(ii) If X ≃ Y then Y≃ X.

(iii) If X ≃ Y and Y≃ Z then X ≃ Z. More specifically, a composition of homotopy equivalences is a
homotopy equivalence.

Proof. For (i), we can just takef = 1X andg = 1X; since 1X ◦ 1X is homotopic (indeed equal) to 1X these satisfy
the required conditions in Definition 1.32.

For (ii), we need only note that the conditions required in Definition 1.32 are symmetric under interchange of
f andg.

(iii) is somewhat less trivial. By assumption we have maps

X
f

//
Y

g
oo

p
//
Z

q
oo

and homotopiesF : [0,1] × X → X from g ◦ f to 1X; G: [0,1] × Y → Y from f ◦ g to 1Y; P: [0,1] × Y → Y
from q ◦ p to 1Y, andQ: [0,1] × Z→ Z from p ◦ q to 1Z.

We will show thatp ◦ f : X→ Z is a homotopy equivalence with homotopy inverseg ◦ q: Z→ X. Thus we
need to show that (g◦ q) ◦ (p◦ f ) is homotopic to 1X, and that (p◦ f ) ◦ (g◦ q) is homotopic to 1Z. The method is
suggested by the observation that (g◦ q) ◦ (p◦ f ) = g◦ (q◦ p) ◦ f and likewise (p◦ f ) ◦ (g◦ q) = p◦ ( f ◦ g) ◦ q.

For the first homotopy, defineH : [0,1] × X→ X by

H(t, x) =

{

g(P(2t, f (x))) 0 ≤ t ≤ 1/2
F(2t − 1, x) 1/2 ≤ t ≤ 1

Note that this is consistent att = 1/2, sinceP(1, f (x)) = f (x) by the fact thatP is a homotopy fromq ◦ p to the
identity, whileF(0, x) = g( f (x)) by the fact thatF is a homotopy fromg ◦ f to the identity. Settingt = 0 we get
H(0, x) = g(P(0, f (x))) = g(q(p( f (x)))), while settingt = 1 we getH(1, x) = F(1, x) = x. ThusH is a homotopy
from (g ◦ q) ◦ (p ◦ f ) to the identity.

Similarly, a homotopy from (p ◦ f ) ◦ (g ◦ q) to the identity may be defined by

(t, z) 7→

{

p(G(2t,q(z))) 0 ≤ t ≤ 1/2
Q(2t − 1, z) 1/2 ≤ t ≤ 1

Thus, as claimed,p ◦ f : X→ Z is a homotopy equivalence, proving thatX ≃ Z.
�
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Exercise1.35. Suppose thatf : X → Y obeys the superficially weaker property that there are possibly different
mapsg1,g2 : Y→ X so thatg1 ◦ f is homotopic to 1X and f ◦ g2 is homotopic to 1Y. Prove thatf is a homotopy
equivalence. (Hint: Letg = g1 ◦ f ◦ g2.)

I now want to make good on my promise to show that the formally nice (but maybe kind of unintuitive) notion
of homotopy equivalence that we have introduced coincides with the more intuitively appealing notion of two
spacesX andY being (up to homeomorphism) weak deformation retracts of a third spaceZ. The fact that the
latter implies the former is not very difficult, as we’ll see in the proof of Theorem 1.38. But the other direction
seems more subtle—in particular, if we just assume thatX andY are homotopy equivalent, where precisely would
the third spaceZ come from?

1.4.1. Mapping cylinders and adjunction spaces.The answer will be that it will come from a useful general
construction in homotopy theory called themapping cylinder, which I will now digress to describe. LetX
and Y be spaces and letf : X → Y be any (continuous) map (this map need not in general be a homotopy
equivalence). The mapping cylinder is, by definition, the space

M f =
Y
∐

([0,1] × X)
f (x) ∼ (0, x) for all x ∈ X

.

At the risk of being pedantic, I want to slowly describe what this means, since we’ll be seeing spaces like this
in the future. Formally speaking, the notation above means that theset Mf consists of equivalence classes of a
relation∼ on the setY

∐

([0,1]×X) (the notation
∐

means disjoint union, with topology given by saying that the
open sets are unions of open sets inY with open sets in [0,1] × X) where∼ is the smallest equivalence relation
such that (x,0) ∼ f (x) wheneverx ∈ X (of course, by reflexivity, a point is also related to itself,and by transitivity
we will have (x,0) ∼ (x′,0) if f (x) = f (x′)). We have a mapπ : Y× ([0,1]× X)→ M f which sends a point to its
equivalence class. Thetopologyon M f is the quotient topology:U ⊂ M f is open if and only ifπ−1(U) is open in
the disjoint unionY

∐

([0,1] × X).
The mapping cylinder is an example of a more general type of space called anadjunction space. Let X,Y be

topological spaces, letA ⊂ X be a subspace, and letf : A→ Y be a continuous map. (For the mapping cylinder
example, replaceX by [0,1] × X andA by {0} × X.) Define

X ∪ f Y =
X
∐

Y
a ∼ f (a) if a ∈ A

,

endowed as before with the quotient topology induced by the projectionπ : X
∐

Y → X ∪ f Y which sends a
point to its equivalence class. The equivalence classes canbe described as follows: they are either singletons
consisting of a single point inX \ A or they are, for somey ∈ Y unions f −1({y}) ∪ {y}.

It is not difficult, but is important, to understand the nature of continuous maps from adjunction spaces. First
of all note that we have mapsjX : X → X ∪ f Y and jY : Y→ X ∪ f Y given by composing the inclusion ofX or
Y into X

∐

Y with the projectionπ : X
∐

Y→ X ∪ f Y. These maps are continuous since they are compositions
of continuous functions. Consequently, wherei : A→ X is the inclusion map, we have a commutative diagram3

A
f

//

i

��

Y

jY
��

X
jX // X ∪ f Y

Exercise1.36. (a) Let Z be another space and letg: X ∪ f Y → Z be a continuous map. Prove that the maps
gX = g ◦ jX : X → Z andgY = g ◦ jY : Y→ Z are continuous maps with the property thatgX(a) = gY( f (a)) for
all a ∈ A.

3A diagram whose sides are arrows such as this one iscommutativeif the maps obtained by sequentially following different paths of
arrows from the same starting point to the same ending point arealways the same. In this particular diagram this meansjX ◦ i = jY ◦ f . You
will see this term many times in the rest of the course.



MATH 8200, SPRING 2011 LECTURE NOTES 13

(b) Conversely, suppose thatgX : X→ Z andgY : Y→ Z are two continuous maps such thatgX(a) = gY( f (a)).
Prove that there is a unique mapg: X∪ f Y→ Z such thatgX = g◦ jX andgY = g◦ jY, and that moreover this map
is continuous. (If you want to impress people, you can tell them that you’ve just proven that adjunction spaces
are fibered coproducts in the category of topological spaces. What follows is a picture illustrating this statement.)

A
f

//

i

��

Y

jY
�� gY

��@
@@

@@
@@

@@
@@

@@
@@

@@
@@

X
jX //

gX

**UUUUUUUUUUUUUUUUUUUUUUUU X ∪ f Y
∃!g

''O
O

O
O

O
O

O

Z

In particular it follows that, ifM f is the mapping cylinder off : X → Y, a continuous mapg: M f → Z
determines and is determined by mapsgX : [0,1] × X→ Z andgY : Y→ Z such thatgX(0, x) = gY( f (x)) for all
x ∈ X. It will also be relevant to have a similar description of continuous mapsg: [0,1] × M f → Z—namely,
that they are given by mapsgX : [0,1]× [0,1]×X→ Z andgY : [0,1]×Y→ Z such thatgX(s,0, x) = gY(s, f (x))
for all x ∈ X ands ∈ [0,1]. This statement follows from the general machinery of Exercise 1.36(b), since we
have an obvious identification

[0,1] × M f =
([0,1] × [0,1] × X)

∐

([0,1] × Y)
(s,0, x) ∼ (s, f (x))

,

i.e., as the adjunction space formed from [0,1] × [0,1] × X and [0,1] × Y via the mapF : [0,1] × {0} × X →
[0,1] × Y via F(s,0, x) = (s, f (x)). (Strictly speaking one should still check that the identification above is a
homeomorphism; if you’re concerned about this feel free to do so.) In the future, we will identify mapsM f → Z
and [0,1] × M f → Z simply by giving these mapsgX andgY.

This general preparation, which will also be relevant laterin the course when we talk about cell complexes,
will now help us prove our result about the relation between deformation retracts and homotopy equivalence.
First we make a general observation about mapping cylinders, not necessarily of homotopy equivalences.

Proposition 1.37. Let f : X→ Y be any (continuous map) and let Mf be the mapping cylinder of Y. Then there
is a strong deformation retraction r: M f → Y.

Proof. Intuitively stated, we haveM f = Y
∐

([0,1] × X)/ f (x) ∼ (0, x), and we “flatten” [0,1] × X onto{0} × X,
which is identified with part ofY, while leavingY alone. Formally, defineF : [0,1] × M f → M f by setting
F(s, y) = y for y ∈ Y andF(s, t, x) = (st, x) ∈ [0,1]×X for (s, t, x) ∈ [0,1]×X (really we should sayF(s, y) = jY(y)
andF(s, t, x) = jX(st, x), but we will omit the extra notation). To see that this givesa well-defined continuous
map on [0,1] × M f , we need to check thatF(s, f (x)) = F(s,0, x) for all x ∈ X. This is indeed the case; both
of these are equal to (0, x), since inM f this point is identified withf (x). Moreover, for anyz ∈ M f we have
F(1, z) = z, as the formula makes clear, and for anyz ∈ M f we haveF(0, z) ∈ Y, since in casez = (s, t, x) we
haveF(0, z) = (0, x) = f (x) ∈ Y by the definition of the equivalence relation. So since alsoF(s, y) = y for all
s ∈ [0,1], y ∈ Y by definition, it follows thatr = F(0, ·) is a strong deformation retraction. �

Theorem 1.38.Two spaces X and Y are homotopy equivalent if and only if thereexists a third space Z and weak
deformation retracts X′ ⊂ Z and Y′ ⊂ Z such that X is homeomorphic to X′ and Y is homeomorphic to Y′.

Proof. Note in general that ifA is a subspace of a spaceB andr : B→ A is a weak deformation retraction, then
r is a homotopy equivalence with homotopy inverse given by theinclusion of i : A → B (indeed,r ◦ i = 1A

and i ◦ r is homotopic to 1B by definition of a weak deformation retraction). Meanwhile homeomorphisms are
also homotopy equivalences. In light of this the backward implication of Theorem 1.38 is immediate from the
transitivity part of Proposition 1.34: we have a chain of homotopy equivalencesX ≃ X′ ≃ Z ≃ Y′ ≃ Y.
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For the forward inclusion we will letf : X→ Y be a homotopy equivalence with homotopy inverseg: Y→ X,
and setZ = M f whereM f is the mapping cylinder off . Proposition 1.37 shows thatY is a strong (hence also a
weak) deformation retract ofM f , so it remains to show thatX is homeomorphic to a weak deformation retract of
M f . Specifically we will see that{1} × X ⊂ M f is a weak deformation retract ofM f . Thus we must construct a
homotopy from 1M f to some retractionrX : M f → {1} × X.

This homotopy will be constructed in three stages. First we will (somewhat counterintuitively) move ev-
erything intoY, then we will move everything around withinY, and finally we will move everything “up the
cylinder” to {1} × X.

For the first stage we use the retractionr : M f → Y of Proposition 1.37: specifically, we showed in the proof
of that proposition that the mapr : M f → Y defined by settingr(y) = y for y ∈ Y andr(t, x) = (0, x) ∼ f (x) ∈ Y
for (t, x) ∈ [0,1] × X has the property that, wherejY : Y→ M f is the inclusion ofY, jY ◦ r is homotopic to 1M f .
So since homotopy is a transitive relation it now suffices to find a homotopy fromjY ◦ r to some retraction to
X × {1}.

Now the fact thatf : X → Y is a homotopy equivalence with homotopy inverseg ◦ Y → X implies that
there are homotopiesF : [0,1] × X → X from g ◦ f to 1X andG: [0,1] × Y → Y from 1Y to f ◦ g. Define
H : [0,1] × M f → M f by

H(s, z) = jY(G(s, r(z))).

Thus H(0, z) = jY(r(z)) and H(1, z) = jY( f (g(r(z)))) for any z ∈ M f . Now by the defintion of the mapping
cylinder, for anyx ∈ X we have jY( f (x)) = j[0,1]×X(0, x). HenceH(1, z) = j[0,1]×X(0,g(r(z))). Thus H is a
homotopy from jY ◦ r to the mapH(1, ·) : z 7→ j[0,1]×X(0,g(r(z))), so the theorem will be proven if we find a
homotopy from this latter map to a retraction toX × {1}.

To do this, we use the homotopyF : [0,1]× X→ X from g◦ f to 1X: defineP: [0,1]×M f → M f by setting
P(s, (t, x)) = j[0,1]×X(s, F(st, x)) for (t, x) ∈ [0,1] × X andP(s, y) = j[0,1]×X(s,g(y)) for y ∈ Y.

First we need to confirm that this gives a well-defined map on [0,1]×M f , i.e. thatP(s, (0, x)) = P(s, f (x)) for
s ∈ [0,1] andx ∈ X. Indeed sinceF is a homotopy fromg ◦ f to 1X we have

P(s, (0, x)) = j[0,1]×X(s, F(0, x)) = j[0,1]×X(s,g( f (x))) = P(s, f (x)),

as desired. Now ify ∈ Y we see that

P(0, y) = j[0,1]×X(0,g(y)) = j[0,1]×X(0,g(r(y))) = H(1, y),

while if (t, x) ∈ [0,1] × X we haver(t, x) = f (x) and hence

P(0, f (x)) = j[0,1]×X(g( f (x))) = j[0,1]×X(g(r(t, x))) = H(1, (t, x)).

ThusP(0, ·) = H(1, ·) on all of M f . Finally we clearly haveH(1, z) ∈ j[0,1]×X({1} × X) for all z ∈ M f , and if
(1, x) ∈ {1} × X we see that

H(1, (1, x)) = j[0,1]×X(1, F(1, x)) = j[0,1]×X(1, x).

Thus P is a homotopy fromH(1, ·) to a retractionrX : M f → {1} × X. (SpecificallyrX(y) = (1,g(y)), while
rX(t, x) = (1, F(t, x)); if you had tried to write down a retraction at the start of this proof this is probably the one
that you would have written down, though it was a rather more difficult matter to show that it was a deformation
retraction.) �

Remark1.39. In fact with some more machinery the word “weak” in Theorem 1.38 can be replaced by “strong”;
see Corollary 0.21 of Hatcher.
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