Math 8200, Spring 2011: Problem Set 2 (revised). Due Tuesday, February 1

1. Let $f(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be any polynomial with coefficients $a_{i} \in \mathbb{C}$ such that $a_{n} \neq 0$. Therefore we obtain a loop $\gamma_{f}: S^{1} \rightarrow \mathbb{C}$ defined by $\gamma_{f}(t)=f\left(e^{2 \pi i t}\right)$.
(a) Suppose that f has no zeros in the region $D=\{z \in \mathbb{C} \| z \mid \leq 1\}$. In particular γ_{f} is then a loop in $\mathbb{C} \backslash\{0\}$, not just in \mathbb{C}. By considering the family of polynomials $f_{s}(z)=f(s z)$ for $s \in[0,1]$ and using that the degree of a loop depends only on its homotopy class, prove that

$$
\operatorname{deg}\left(\gamma_{f}\right)=0
$$

(b) Suppose that f has no zeros in the region $R=\{z \in \mathbb{C}| | z \mid \geq 1\}$. Prove that $\operatorname{deg}\left(\gamma_{f}\right)=n$. (Hint: Show that the function $F(s, z)=s^{n} f(z / s)$ extends to a continuous function from $[0,1] \times R$ to $\left.\mathbb{C} \backslash\{0\}\right)$.
(c) Deduce the Fundamental Theorem of Algebra: Any nonconstant polynomial with complex coefficients must have a zero somewhere in \mathbb{C}.
2. Let U and V be spaces, $A \subset U$ a subspace, and $g: A \rightarrow V$ a continuous map, so we can form the adjunction space

$$
U \cup_{g} V=\frac{U \coprod V}{a \sim g(a) \text { if } a \in A} .
$$

Let $j_{U}: U \rightarrow U \cup_{g} V$ and $j_{V}: V \rightarrow U \cup_{g} V$ be the maps obtained by composing the inclusion of U or V into $U \amalg V$ with the quotient projection $\pi: U \coprod V \rightarrow U \cup_{f} V$. Thus where $i: A \rightarrow U$ is the inclusion we have a commutative diagram

(a) Prove that j_{V} is a homeomorphism onto its image $j_{V}(V) \subset U \cup_{g} V$. (Said differently, V appears in $U \cup_{g} V$ as a subset, and you need to show that the resulting subspace topology on V is the same as the original topology on V).
(b) Let Z be another space, and let $h_{U}: U \rightarrow Z$ and $h_{V}: V \rightarrow Z$ be continuous maps with the property that if $a \in A$ then $h_{U}(a)=h_{V}(g(a))$. There is then a unique function $h: U \cup_{g} V \rightarrow Z$ characterized by the property that $h_{U}=h \circ j_{U}$ and $h_{V}=h \circ j_{V}$. Prove that this function h is continuous.
3. If $f: X \rightarrow Y$ is a homotopy equivalence and V is any space prove that the induced map $f_{*}:[V, X] \rightarrow$ [V, Y] of Exercise 1.11 from the last homework is a bijection.
4. Suppose that $f: X \rightarrow Y$ is a continuous map such that there are functions $g_{L}: Y \rightarrow X$ and $g_{R}: Y \rightarrow X$ such that $g_{L} \circ f$ is homotopic to 1_{X} and $f \circ g_{R}$ is homotopic to 1_{Y}. Prove that f is a homotopy equivalence. (In other words, you need to show that g_{L} and g_{R} can both be replaced by a single function g. Hint: Consider $g_{L} \circ f \circ g_{R}$.)
5. Let $p, q \in S^{1}$ be two distinct points. Construct a (weak) deformation retraction from $X=\left(S^{1} \times S^{1}\right) \backslash$ $\{(q, q)\}$ onto $A=\left(S^{1} \times\{p\}\right) \cup\left(\{p\} \times S^{1}\right)$.

