Spring, 2015

MATH 4250/6250 PROBLEM SET #1

T. Shifrin

DUE January 15, 2015.

Instructions: Turn in (at least) five problems of your choice, but **including any underlined problem(s)**. Graduate students should include at least one "pyramid" problem.

Problems to work but not hand in: #A.1.1, A.1.4, A.2.1, 1.1.1, 1.1.4, 1.1.6, 1.1.8, 1.2.1c.

#A.2.2, A.2.3, 1.1.5, 1.1.7, 1.2.1ab*.

A. Show that every circle in \mathbb{R}^3 (or in \mathbb{R}^n for n > 3) can be parametrized by a function of the form $\boldsymbol{\beta}(t) = P_0 + (\cos t)\mathbf{v}_1 + (\sin t)\mathbf{v}_2$ for some pair $\mathbf{v}_1, \mathbf{v}_2$ of vectors satisfying $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$ and $\|\mathbf{v}_1\| = \|\mathbf{v}_2\|$. Explicitly so parametrize the intersection of the sphere of radius 5 centered at the origin with the plane x + 2y + 2z = 9.

#1.1.13, 3.4.8 and $3.4.10^{\dagger}$.

#1.1.9, 1.1.10, **<u>1.2.7</u>**.

^{*}Note that these count as a single problem.

[†]Especially for students interested in physics. This combination will count as 1.5 problems.