Spring, 2015

MATH 3510(H) PROBLEM SET #2

T. Shifrin

DUE Wednesday, January 21, 2015.

Problems to work but not hand in:

§7.2: #1a,c, 2b,f, 8a, 11, 12a,d, 18.

 $\S7.3: \#1, 5, 9, 17, 20.$

Problems to turn in:

WeBWork Homework 2.

Now log in at

https://webwork.math.uga.edu/webwork2/MATH3510_Shifrin_S15 using, as before, your UGAMyID as your username [no caps] and all but the last digit of your 81x number, formatted as 81xxxxxx, as your password. You can then change your password.

A. (3) Let $\Omega \subset \mathbb{R}^3$ be that portion of the cube $0 \leq x, y, z \leq 1$ lying above the plane y + z = 1 and below the plane x + y + z = 2. Evaluate $\int_{\Omega} x \, dV$.

 $\S7.2: \#19(3), 20(5), 21(2), 22^{*}(4).$

Challenge problems (Turn in separately):

 $\S7.2: #23 \text{ and } 24 (5).$

B. (5) (an old Putnam problem) Evaluate (with proof) the integral

$$\int_0^{\pi/2} \frac{d\theta}{1 + (\tan\theta)^\pi}$$

(Hint: Problem 7.2.20 or, rather, its extension to improper integrals may well be useful.)

-OVER-

^{*}Be sure to justify limits, e.g., $\lim_{x\to\infty} g(x)$, with care. It is in general false—as those of you in MATH 3100(H) will find—that if $\phi_N(t) \to \phi(t)$ as $N \to \infty$, then $\int_0^1 \phi_N(t) dt \to \int_0^1 \phi(t) dt$. Hint: $e^{-x^2(t^2+1)} = e^{-x^2}e^{-x^2t^2}$.

C. (4) (inspired by a more recent Putnam problem) Suppose f is continuous on \mathbb{R}^2 and $\int_R f \, dA = 0$ for every rectangle R with area 1. Prove that the average values of f on each of the edges of each such R are all equal. For further extra credit: Deduce that f = 0.

D. (5) Suppose $f: [a, b] \times [c, \infty) \to \mathbb{R}$ is continuous, $\frac{\partial f}{\partial x}$ is continuous, $\int_{c}^{\infty} f\begin{pmatrix}x\\y\end{pmatrix} dy$ exists for all $x \in [a, b]$ and, moreover, $\int_{N}^{\infty} \frac{\partial f}{\partial x} \begin{pmatrix}x\\y\end{pmatrix} dy$ converges to 0 uniformly as $N \to \infty$ for $x \in [a, b]$.[†] Extend the result of Problem 7.2.20 to prove that, with these hypotheses, if we set $F(x) = \int_{c}^{\infty} f\begin{pmatrix}x\\y\end{pmatrix} dy$, then $F'(x) = \int_{c}^{\infty} \frac{\partial f}{\partial x} \begin{pmatrix}x\\y\end{pmatrix} dy$. You will probably want to use the result from MATH 2410/3100 that if ϕ_N and ϕ are integrable on [a, b] and $\phi_N \to \phi$ uniformly, then $\int_{a}^{b} \phi(x) dx = \lim_{N \to \infty} \int_{a}^{b} \phi_N(x) dx$.

E. (3) Buried in problem **D** is an appropriate statement of Fubini's Theorem for improper integrals. How does this jibe with the function

$$f\begin{pmatrix}x\\y\end{pmatrix} = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
 on $[1, \infty) \times [1, \infty)$?

§7.3: $\#24^{\ddagger}$ (5) (one of my all-time favorites).

[†]If $\phi_N, \phi: [a, b] \to \mathbb{R}$, we say ϕ_N converges to ϕ uniformly if, given $\varepsilon > 0$, there is N_0 so that for all $N \ge N_0$ and for all $x \in [a, b]$ we have $|\phi_N(x) - \phi(x)| < \varepsilon$.

[‡]This problem may well have been done by Archimedes, using no calculus at all. Bonus points for that.