Spring, 2015

MATH 3510(H) PROBLEM SET #13

T. Shifrin

DUE Friday, April 24, 2015.

§9.3: #2, 4, 11a,d, 12a,d, 13c, 15.

9.4: #6, 7, 8, 9.

Problems to turn in:

WeBWork Homeworks 13 and 14

 $\S9.2: \#15(2), 17(2), 19(4), 22(3), 24^{*}(4).$

A. (2) Use #22 to prove that a non-diagonalizable $n \times n$ matrix with real eigenvalues is arbitrarily close to a diagonalizable matrix.

 $9.3: #17a, b^{\dagger}(3), 18(3), 21(2).$

 $\S9.4: \#7(2), 8(2), 9(2), 15(3).$

Challenge problems (Turn in separately):

 $\S9.2: \#20 (4), 21 (3).$

B. (3) Suppose A is a 2×2 matrix. Suppose λ is its only eigenvalue, having algebraic multiplicity 2 but geometric multiplicity 1. Prove that there is a basis for \mathbb{R}^2 with respect to which the matrix of A is $\begin{bmatrix} \lambda & 1 \\ \lambda \end{bmatrix}$. (This is a special case of the Jordan canonical form.) Hint: Show that $\mathbf{C}(A - \lambda I) \subset \mathbf{N}(A - \lambda I)$ and therefore $\mathbf{C}(A - \lambda I) = \mathbf{N}(A - \lambda I)$.

 $\S9.4: \#11 (3), 14 (3), 21 (4), 22 (4).$

^{*}Don't forget the hint for part (c) at the top of p. 436.

[†]As the hint suggests, consider $\mathbf{f}(t) = e^{tA}e^{-tA}$ and compute $\dot{\mathbf{f}}(t)$.