Spring, 2015

MATH 3510(H) PROBLEM SET #11

DUE Wednesday, April 8, 2015.

Problems to work but not hand in:

 $\S8.6: #1, 7.$

Problems to turn in:

WeBWork Homework 11

 $\S8.6: #2 (3), 8 (3), 9 (3), 10 (3).$

 $\S8.7: \#5(3), 6^*(3), 7(3).$

A. (3) Suppose $\mathbf{f}: S^n \to S^n$ has no fixed point. Show that \mathbf{f} is homotopic to the antipodal map $\mathbf{g}(\mathbf{x}) = -\mathbf{x}$.[†] Conclude that if $\omega \in \mathcal{A}^n(S^n)$ is the usual volume form, then $\int_{S^n} \mathbf{f}^* \omega = (-1)^{n+1} \int_{S^n} \omega$.

B. (3) Suppose $\mathbf{f}: S^n \to S^n$ is homotopic to a constant map. Prove that there are $\mathbf{x}, \mathbf{y} \in S^n$ with $\mathbf{f}(\mathbf{x}) = \mathbf{x}$ and $\mathbf{f}(\mathbf{y}) = -\mathbf{y}$. (Hint: Proceed by contrapositive, being careful with your negation of the conclusion; apply **A** and an obvious cousin.)

Challenge problems (Turn in separately):

 $\S8.6: \#6^{\ddagger}(4), 11(3), 13(4), 14(3).$

 $\S8.7: \#8(3), 9(4), 12(4), 14(2), 15(4), 16(6).$

^{*}Hint: Create a (k-1)-form $\omega \in \mathcal{A}^{k-1}(\partial M)$ by using the proof of Theorem 5.1 to find a *single* function ρ on a *single* coordinate chart on ∂M with nonzero integral.

[†]Hint: What do you know about the line segment joining $f(\mathbf{x})$ and $-\mathbf{x}$?

^{\ddagger}The formula (\dagger) appears on p. 396.