Fall, 2014

MATH 3500(H) PROBLEM SET #9

T. Shifrin

DUE Wednesday, October 22, 2014.

Problems to work but not hand in:

§4.2: #1, 2c,e, 3b.

 $\S4.3: #1, 2.$

Problems to turn in:

WeBWork Homework 9

 $\S4.1: \#19(3), 21(2), 22(3).$

 $\S4.2: \#6(2), 7(3).$

A. (3) Suppose \mathbf{u} , \mathbf{v} , and $\mathbf{w} \in \mathbb{R}^n$ form a linearly independent set of vectors. Prove that $\{\mathbf{u} - \mathbf{v}, \mathbf{u} + \mathbf{w}, \mathbf{u} + \mathbf{v} + \mathbf{w}\}$ is linearly independent as well.

Challenge problems (Turn in separately):

 $\S4.2: \#9(4).$

B. (4) (See the bottom of p. 154.) §4.2: #4. Then, suppose A is an $m \times n$ matrix with a *unique* right inverse B. Prove that m = n and that A is invertible.