MATH 3500(H) PROBLEM SET #7

DUE Wednesday, October 8, 2014.

Problems to work but not hand in: $\S3.3: \#1, 2, 5, 16.$

\$3.4: #1a, 2b, 3, 4.

Problems to turn in:

WeBWork Homework 7 §3.2: #16* (3), 18 (3).

A. If the partial derivatives of f are bounded on $U \subset \mathbb{R}^2$, prove that f is continuous.

§3.3: $\#11^{\dagger}$ (3), 15 (3).

B. (3) Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable and we define $F\begin{pmatrix} u\\ v \end{pmatrix} = f\begin{pmatrix} e^u \cos v\\ e^u \sin v \end{pmatrix}$. Use the chain rule carefully to compute $\left(\frac{\partial F}{\partial u}\right)^2 + \left(\frac{\partial F}{\partial v}\right)^2$ in terms of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$, evaluated at the appropriate spot.

 $\S3.4: \#5^{\ddagger}(3), 6(2).$

C. (3) Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable and $y^2 \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = 0$ everywhere. Find the level curves of f. (Hint: From knowing the direction of the gradient, you should figure out the slope of the level curve through $\begin{bmatrix} x \\ y \end{bmatrix}$ and solve the differential equation $dy/dx = \ldots$) Deduce that if we know f on the x-axis, then we know f everywhere in the plane: In particular, if $f\begin{pmatrix} x \\ 0 \end{pmatrix} = F(x)$, give a formula for f.

Challenge problems (Turn in separately):

 $\S3.2: \#19(5).$

D. (4) Give a criterion (in terms of α , β , γ , and δ) for the function in §2.3, #17 to be differentiable at **0**.

E. Let $U \subset \mathbb{R}^2$ be a neighborhood of **0** and $f: U \to \mathbb{R}$ is continuous. Suppose both partials $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ exist at **0** and *only* the former is continuous. Prove that f is differentiable at **0**.

 $\S3.4: \#7(3), 8(3), 9(3), 13(4), 15(4).$

^{*}Hint: Copy the (beginning of the) framework of the proof of Prop. 2.4.

[†]Please add the hypothesis that f is differentiable. Also, contemplate to which WeBWork problem this result might be relevant.

[‡]Set this up explicitly as a chain rule problem, and apply the results of Example 3.