DUE Wednesday, October 8, 2014.

Problems to work but not hand in:
§3.3: \#1, 2, 5, 16.
§3.4: \#1a, 2b, 3, 4.

Problems to turn in:
WeBWork Homework 7
§3.2: \#16* (3), 18 (3).
A. If the partial derivatives of f are bounded on $U \subset \mathbb{R}^{2}$, prove that f is continuous.
§3.3: \#11 ${ }^{\dagger}(3), 15$ (3).
B. (3) Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable and we define $F\binom{u}{v}=$ $f\binom{e^{u} \cos v}{e^{u} \sin v}$. Use the chain rule carefully to compute $\left(\frac{\partial F}{\partial u}\right)^{2}+\left(\frac{\partial F}{\partial v}\right)^{2}$ in terms of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$, evaluated at the appropriate spot.
§3.4: \# $5^{\ddagger}(3), 6(2)$.
C. (3) Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable and $y^{2} \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}=0$ everywhere. Find the level curves of f. (Hint: From knowing the direction of the gradient, you should figure out the slope of the level curve through $\left[\begin{array}{l}x \\ y\end{array}\right]$ and solve the differential equation $d y / d x=\ldots$) Deduce that if we know f on the x-axis, then we know f everywhere in the plane: In particular, if $f\binom{x}{0}=F(x)$, give a formula for f.

Challenge problems (Turn in separately):
§3.2: \#19 (5).
D. (4) Give a criterion (in terms of α, β, γ, and δ) for the function in $\S 2.3, \# 17$ to be differentiable at $\mathbf{0}$.
E. Let $U \subset \mathbb{R}^{2}$ be a neighborhood of $\mathbf{0}$ and $f: U \rightarrow \mathbb{R}$ is continuous. Suppose both partials $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist at $\mathbf{0}$ and only the former is continuous. Prove that f is differentiable at $\mathbf{0}$.
§3.4: \#7 (3), 8 (3), 9 (3), 13 (4), 15 (4).

[^0]
[^0]: *Hint: Copy the (beginning of the) framework of the proof of Prop. 2.4.
 ${ }^{\dagger}$ Please add the hypothesis that f is differentiable. Also, contemplate to which WeBWork problem this result might be relevant.
 ${ }^{\ddagger}$ Set this up explicitly as a chain rule problem, and apply the results of Example 3.

