DUE Wednesday, October 1, 2014.

Problems to work but not hand in:
§3.1: \#1a,c, 2a,b, 3a, 11.
§3.2: \#1a, 2a, 3a,b,d, 4.

Problems to turn in:
WeBWork Homework 6
§2.3: \#7 (3), 11 (2), 15 (3).
§3.1: \#4 (1), $5(2), 8^{*}(3), 13 \mathrm{~b}(2)$.
§3.2: \#5 (2), 9 (3), 17 (3).
A. (3) Show that for any $\mathbf{a} \neq \mathbf{0}$ we have

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{\|\mathbf{a}+\mathbf{h}\|-\left(\|\mathbf{a}\|+\frac{\mathbf{a} \cdot \mathbf{h}}{\|\mathbf{a}\|}\right)}{\|\mathbf{h}\|}=0
$$

(Hint: Remember that $x-y=\frac{x^{2}-y^{2}}{x+y}$. This is the same "conjugate trick" you used numerous times in single-variable calculus.) If $f(\mathbf{x})=$ $\|\mathbf{x}\|$ and $\mathbf{a} \neq \mathbf{0}$, why have you shown that f differentiable at \mathbf{a} ? What is $D f(\mathbf{a})$?

Challenge problems (Turn in separately):
§2.3: \#16 (5), 17 (5).
B. (4) Prove or give a counterexample: If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous along every (continuous) path \mathbf{g} through the origin, then f is continuous at the origin.

[^0]
[^0]: *Don't forget the single-variable chain rule!

