Problems to work but not hand in:
§2.2: \#1, 5, 10.

Problems to turn in:
WeBWork Homework 4
A. (3) Consider the curve given by $x^{3}+y^{3}=3 x y$, pictured below.

(i) Parametrize it by letting t represent the slope of a line through the origin.
(ii) What happens as $t \rightarrow-1$? Consider $\lim _{t \rightarrow-1}(x(t)+y(t))$. What do you conclude?
(iii) The curve has an obvious symmetry. Verify this using your parametrization.
B. (2) Consider the surface $z=f\binom{x}{y}=x y$. Given a point $P=\left[\begin{array}{c}a \\ b \\ a b\end{array}\right]$ on this surface, show that the lines with direction vectors $\mathbf{u}=\left[\begin{array}{l}1 \\ 0 \\ b\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}0 \\ 1 \\ a\end{array}\right]$ through P are entirely contained in the surface.
§2.2: \#2 (3), 3 (2), 7a (3).

Challenge problems (Turn in separately):
§2.1: \#2b (2), 5 (4), 6 (2), 7 (4), 12 (4).

