Problems to work but not hand in:
§1.5: \#1, 2, 5a, 6a, 7a, 8, 12, 15.
§2.1: \#1b,e.

Problems to turn in:
WeBWork Homework 3
§1.4: \#34 (4), 36 (4).
A. (4) The goal of this problem is to prove without explicit matrix entries that the rotation matrix $A=A_{\theta}$ satisfies $A^{-1}=A^{\top}$.
(i) Suppose B is an $m \times n$ matrix and $B \mathbf{x} \cdot \mathbf{y}=0$ for all $\mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{y} \in \mathbb{R}^{m}$. Prove that $B=\mathbf{O}$.
(ii) Deduce that if C and D are $m \times n$ matrices and $C \mathbf{x} \cdot \mathbf{y}=D \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{y} \in \mathbb{R}^{m}$, then $C=D$.
(iii) Let $A=A_{\theta}$ be the usual rotation matrix. Using the geometric interpretation of dot product (and not the actual matrix entries), show that $A \mathbf{x} \cdot \mathbf{y}=\mathbf{x} \cdot A^{-1} \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}$. Use part (ii) to deduce that $A^{-1}=A^{\top}$.
§1.5: \#10 (3), 13(3), $17^{*}(5)$.
§2.1: \#2a ${ }^{\dagger}(2), 3$ (3), 11 (3).

Challenge problems (Turn in separately):
§1.5: \#3 (3), 18 (3), 19 (4), 20 (2).

[^0]
[^0]: *Further hint for (a): Since we're treating \mathbf{u} as the tail of our vectors, don't forget to be consistent. Comment for (b): Given the set-up for (a), it'll be easier to show that t is the ratio of the signed area of $\triangle \mathbf{u v x}$ to the signed area of $\triangle \mathbf{u v w}$. Hint for (d): Apply the results of (a) and (b) to $\mathbf{x}=\mathbf{0}$.
 ${ }^{\dagger}$ Note that in (a) we parametrize the circle except for the point $\left[\begin{array}{r}-1 \\ 0\end{array}\right]$.

