Fall, 2014

MATH 3500(H) PROBLEM SET #2

T. Shifrin

DUE Wednesday, September 3, 2014.

Problems to work but not hand in:

 $\S1.3: \#7, 8.$

§1.4: #1b,f,g,h,k,l, 5b,e, 8, 12, 13, 17, 19, 23b,e,g,j,k, 24, 31, 32, 35.

Problems to turn in:

WeBWork Homework 2

 $\S1.3: \#6(3), 9^*(2), 10(2).$

A. (3) Let
$$\mathbf{A} = \begin{bmatrix} -1\\2\\1 \end{bmatrix}$$
 and set $V = \{\mathbf{x} \in \mathbb{R}^3 : \mathbf{A} \cdot \mathbf{x} = 0\}$. Prove that $V = \text{Span}\left(\begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-2 \end{bmatrix}\right)$.

 $\S1.4: \#2^{\dagger}(2), 4a(2), 10(3), 15(3), 25(1), 30(2), 33(2).$

B. (4) Suppose A is a square matrix satisfying the equation $A^3 = 2I$. Prove that A, A + I, and A - 2I are all invertible. (Hint: Give explicit formulas—in terms of A, of course—for their inverses. In the case of the latter ones, think about how you might figure out how to factor $x^3 \pm y^3$.)

Challenge problems (Turn in separately):

 $\S1.3: \#12(3).$

 $\S1.4: \#22 (4), 37 (3).$

^{*}Recall that to prove that $X \subset Y$, you must show that whenever $x \in X$, it follows that $x \in Y$. [†]Hint: What earlier homework problem is relevant?