Fall, 2014

MATH 3500(H) PROBLEM SET #11

T. Shifrin

DUE Wednesday, November 5, 2014.

Problems to work but not hand in:

4.5: #3, 6, 11.

 $\S5.1: #1.$

Problems to turn in:

WeBWork Homework 11

 $\S4.4: \#16(4).$

A. (3) Let A be an $m \times n$ matrix with dim $\mathbf{N}(A) = k$. Suppose $W \subset \mathbb{R}^m$ is an ℓ -dimensional subspace. You can easily check (but I won't ask you to) that $V = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \in W\}$ is subspace.^{*}

- (i) Show that if $W \subset \mathbf{C}(A)$, then dim $V = k + \ell$. (Hint: Give a basis for V.)
- (ii) Conclude, more generally, that $k \leq \dim V \leq k + \ell$. (Hint: Consider $W \cap \mathbf{C}(A)$.)

§4.5: #2a,b,e (3), 4 (3), 5 (2), 9 (2).

 $\S5.1: #2^{\dagger} (3), 8 (3).$

Challenge problems (Turn in separately):

 $\S4.4: #18 (4).$

 $\S4.5: \#10 (5), 12 (3), 13 (4), 14 (2).$

^{*}If A = [T], then $V = T^{-1}(W)$.

[†]Hint: See Exercise 2.3.2. Since there are two ways X can fail to be compact, you will need to give a function f for each of those cases.