MATH 3500(H)

PROBLEM SET \#11

DUE Wednesday, November 5, 2014.

Problems to work but not hand in:
§4.5: \#3, 6, 11.
§5.1: \#1.

Problems to turn in:
WeBWork Homework 11
§4.4: \#16 (4).
A. (3) Let A be an $m \times n$ matrix with $\operatorname{dim} \mathbf{N}(A)=k$. Suppose $W \subset \mathbb{R}^{m}$ is an ℓ-dimensional subspace. You can easily check (but I won't ask you to) that $V=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x} \in W\right\}$ is subspace.*
(i) Show that if $W \subset \mathbf{C}(A)$, then $\operatorname{dim} V=k+\ell$. (Hint: Give a basis for V.)
(ii) Conclude, more generally, that $k \leq \operatorname{dim} V \leq k+\ell$. (Hint: Consider $W \cap \mathbf{C}(A)$.)
§4.5: \#2a,b,e (3), 4 (3), 5 (2), 9 (2).
§5.1: $\# 2^{\dagger}(3), 8(3)$.

Challenge problems (Turn in separately):
§4.4: \#18 (4).
§4.5: \#10 (5), 12 (3), 13 (4), 14 (2).

[^0]
[^0]: ${ }^{*}$ If $A=[T]$, then $V=T^{-1}(W)$.
 ${ }^{\dagger}$ Hint: See Exercise 2.3.2. Since there are two ways X can fail to be compact, you will need to give a function f for each of those cases.

