
AN INTRODUCTORY LECTURE ON WC-GROUPS

1. The two definitions of a WC-group

Let k be a field1 and let A be an abelian variety defined over k, i.e., a projective
nonsingular, geometrically connected group variety defined over the field k. In par-
ticular, an elliptic curve is an abelian variety of dimension one.

Definition: The Weil-Chatelet group WC(A/k) of an abelian variety is an
abelian group whose elements are equivalence classes of principal homogeneous
spaces for A/k. This means that we are given a k-variety V together with a k-
morphism µ : A × V → V such that

µ(k) : A(k) × V (k) → V (k)

is a simply transitive group action in the usual sense.

Suppose P is a point of V which is rational over some field extension l. Then
the map ϕP = µ(−, P ) : A/l → V/l is an l-rational morphism which gives a bijec-
tion on geometric points, so it is an isomorphism A/l → V/l. Moreover, viewing
A as a principal homogeneous space over itself, ϕP is equivariant with respect to
the two actions of A, i.e., (V, µ) is isomorphic to (A, +) as a principal homogeneous
space. Such a principal homogeneous space is called trivial.

Given two principal homogeneous spaces (Vi, µi), we can form a third space,
as follows: we define an action µ+,− of A on V1 × V2, by µ+,−(a, p1 × p2) =
µ1(a, p1) × µ2([−1]a, p2), where [−1] denotes inversion on the abelian variety A.
We also have the more obvious diagonal action µ+,+ of A on V1 × V2, and this
action descends to the quotient V1 × V2/µ+,− and endows it with the structure of
a principal homogeneous space, called the Baer sum V1 + V2 of V1 and V2.

Exercise 1: Show that the Baer sum gives a group law on the set of equivalence
classes of principal homogeneous spaces for A/k, in which the inverse of (V, µ) is
(V, µ([−1] ◦ −,−)).

Exercise 2:
a) Show that the Baer sum V3 of V1 and V2 has the property that there exists a
morphism ϕ : V1 × V2 → V with the property that

ϕ(µ1(a1, p1), µ2(a2, p2)) = µ3(a1 + a2, ϕ(p1, p2))

for all ai ∈ A(k), pi ∈ Vi(k), and that this property characterizes V3 uniquely as a
phs for A.
b) Use part a) to show that for all n ∈ Z, Albn(V ) represents the element
n[V ] ∈ WC(k, A).

1Let us assume that k is perfect, mostly so as not to have to use a separate notation for the
separable closure. We will denote k by a choice of algebraic closure of k.
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2 AN INTRODUCTORY LECTURE ON WC-GROUPS

This gives our first definition of the Weil-Chatelet group.

It follows from the above discussion that any nonzero element of WC(k, A)) is
represented by (V, µ) with V (k) = ∅. In particular, when A = E is an elliptic
curve, the underlying variety of a nontrivial element of WC(k, E) is a genus one
curve without k-rational points.

Note that this construction is functorial in k: if k ↪→ l is a field embedding, then
just by extending the base of a principal homogeneous space defined over k to a
principal homogeneous space defined over l, we get a homomorphism of groups

rl/k : WC(k, A) → WC(l, A).

Let us define the kernel of this map as WC(l/k, A). This is the subgroup of phs’s
(V, µ)/k such that V (l) 6= ∅. For an abelian variety A/k, one would like to compute
not just WC(k, A) but WC(l, A) for all finite extensions l/k and the restriction
maps rl/k, and especially their kernels. I (and only I) refer to this as the WCA

problem.

Remark: Notice that the construction goes through verbatim with A replaced by
any commutative algebraic group.

2. Can we forget about the µ?

Let us now admit that it is somewhat unnatural that our WC-groups classify va-
rieties together with a principal homogeneous space structure: it is arguably more
natural to classify algebraic varieties V/k such that Vk

∼= A/k. This raises two nat-

ural questions:

(Q1) If V/k is any variety which becomes isomorphic to A/k over the algebraic
closure, can V be endowed with the structure of a phs over A?
(Q2) If so, is the resulting phs structure unique up to isomorphism?

The answer to both questions is “No, but. . .”
If V/k becomes isomorphic to an abelian variety over the algebraic closure, then

it is canonically isomorphic to its own Albanese torsor Alb1(V ) (the parameter
space of zero-cycles of degree one on V modulo a certain equivalence relation),

which is a principal homogeneous space of the abelian variety A′ = Alb0(V ), in an
obvious way: given a zero-cycle of degree 0 and a zero-cycle of degree 1, we can just
add them to get another zero-cycle of degree 1! The slight catch is that comparing
A and A′, we can say precisely that they are two abelian varieties defined over k
which become isomorphic over k. This usually does not imply that A ∼= A′ (more
on this later).

But this is fine: we still get that every variety which is a twisted form of an
abelian variety is a principal homogeneous space of its Albanese variety. In partic-
ular, every curve of genus one is canonically a principal homogeneous space of its
Jacobian J(E) = Alb0(C) = Pic0(C).

Similarly, if (V, µ) is a principal homogeneous space over A, then the subtraction

map ν induces an isomorphism Alb0(V )
∼→ A. Thus:
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Exercise 3: For an abelian variety A and a principal homogeneous space (V, µ)
of A, the elements (W, µW of WC(k, A) with V ∼= W as an algebraic variety form
a single orbit under the action of Aut(A).

For instance, if E/k is an elliptic curve with j-invariant not 0 or 1728, then Aut(E) =
±1, so that the set of isomorphism classes of genus one curves C/k whose Jacobian
is isomorphic to E is WC(k, E)/±1.

Exercise 4 (Poonen): Let V be a principal homogeneous space of A = Alb0(V ),
with function field k(V ). Like any irreducible algebraic variety, V has a k(V )-
rational point, i.e., the class of V lies in WC(k(V )/k, A). Let M be the Z[Aut(A)]-
submodule of WC(k, A) generated by V .2 Show that M = WC(k(V )/k, A). (Hint:
the containment ⊂ is easy. For the converse, note that a k(V )-rational point on
a principal homogeneous space W is equivalent to a rational map from V into W .
Since over the algebraic closure, this is a map from a complete variety into an
abelian variety, it is a morphism. Now show that if V → W is a morphism of phs’s
of a common abelian variety A, then W ∈ M .)

3. Connections with Galois cohomology

For A an abelian variety defined over k, A(k) is naturally a gk = Gal(k/k)-
module, so we have the Galois cohomology groups Hi(k, A) := Hi(gk, A(k)).

For the topologists, recall that Galois cohomology is very nearly group cohomol-
ogy where the group is gk, but not quite: we need to use the structure of gk as a
profinite group, i.e., as an inverse limit of Galois groups of finite Galois extensions
g(l/k). We can then define Hi(gk, A(k)) = lim

−→l
Hi(g(l/l), A(l)), or as the coho-

mology of gk as a topological group – i.e., continuous cochains modulo continuous
coboundaries (and these are equivalent definitions).

Theorem 1. There is a canonical isomorphism H1(k, A) ∼= WC(k, A).

Proof: Indeed, more is true: for any Galois extension l/k, we have H1(l/k, A) ∼=
WC(l/k, A). First, note that although we cannot add points on a phs V , we
can subtract them: there is a natural map ν : V × V → A characterized by
ν(v1, v2) = a ⇐⇒ a + v2 = v1. Now if V is a phs with an l-rational point P , then
aσ := σ(P ) − P gives a one-cycle with coefficients in A(l). Moreover, the different
choices of P ∈ V (l) correspond exactly to the set of all elements of Z1(l/k, A) coho-
mologous to aσ. If V and V ′ are isomorphic as phs’s, then choosing points P and P ′

which correspond under the isomorphism, we get the same cocycle aσ. Similarly, if
V and V ′ give rise to cohomologous cocycles, we can choose P ∈ V and P ′ ∈ V ′ such
that the cocycles are equal. Then the map v 7→ (v−P )+P ′ gives an isomorphism of
V onto V ′, a priori defined over l, but easily seen to be g(l/k)-invariant, so defined
over k. Thus we have defined an injective map Φ : WC(l/k, A) → H1(l/k, A).
The converse goes as follows: given cocycle aσ ∈ H1(l/k, A), we can define fσ :
A/l → A/l by addition of aσ. That aσ is a cocycle is equivalent to the identity
fσ ◦ σ(fτ ) = fστ , and we appeal to Weil’s descent conditions.

The isomorphism of the previous theorem respects the group structures, and is such

2For most abelian varieties A, Aut(A) = ±1, so M = 〈V 〉.
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that for an algebraic field extension l/k, the geometric restriction map WC(k, A)
becomes the usual cohomological restriction map corresponding to gl ↪→ gk. In
other words, the exact sequence

0 → WC(l/k, A) → H1(k, A) → H1(l, A)

is the usual inflation-restriction sequence in Galois (or group) cohomology.

Remark: This is a special case of a much more general principal of descent: namely,
let V be an “object” defined over k, and let Aut(V ) be the automorphism group
of Vk (which is a not-necessarily commutative gk-module). Then the set of k/k-

twisted forms of V – namely, those objects W/k which upon basechange to k become

isomorphic to V , are parameterized by H1(gk, Aut(V )). If Aut(V ) is noncommu-
tative, this is in general a pointed set (the distinguished point being given by V
itself), but in our case, we are requiring V to be isomorphic to A as a phs, so the
relevant automorphism group is A itself. As another example, H1(k, Aut((A, 0)))
gives the abelian varieties A′

/k which are isomorphic to A over the algebraic clo-

sure. Again, when A = E is an elliptic curve with j-invariant not 0 or 1728, then
Aut((E, 0)) = ±1, and H1(k,±1) = k×/k×2, and we recover the notion of qua-
dratic twists.3

Remark: This descent principle is (of course?) valid in much more generality,
e.g. for sheaves of groups in many a Grothendieck topology. For instance, on a
(paracompact, I suppose) topological space X , if G is a topological group, and
G is the sheaf of continuous (or smooth, or holomorphic, or locally constant . . .)
G-valued functions on X , this principle tells us that fiber bundles with structure
group G can be given by transition functions, with equivalence taking place in the
Cech cohomology group H1(X, G).

4. Elementary examples of WC-groups

In this section we will see what can be said about WC-groups using only “general
knowledge” together with one tool, the all-important Kummer sequence: for any
positive integer n, we have a short exact sequence of Galois modules

0 → A[n] → A(k)
n→ A(k) → 0.

Technical remark: Here we are defining A[n] to be the Galois module A[n]. When
the characteristic of k divides n, this group has cardinality smaller than n2g, which
seems to indicate that it is the wrong definition of A[n] (rather we learn that we
should take A[n] to be the scheme-theoretic kernel of [n], which is a finite flat group
scheme of order n2g). Nevertheless, this “naive” A[n] will give the right answers
in characteristic dividing n in the following discussion (unless I have made some
terrible mistake).

Anyway, taking gk-cohomology, we get the Kummer sequence:

(1) 0 → A(k)/nA(k) → H1(k, A[n]) → H1(k, A)[n] → 0.

3Note that by convention, when one speaks of automorphisms of an abelian variety, one invari-
ably means automorphisms fixing the origin, whereas the automorphism group of the underlying
algebraic variety is the semidrect product of A with Aut(A, 0).
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Remark: The Kummer sequence is valid with A replaced by any commutative al-
gebraic group G in which [n] is surjective on geometric points (e.g. any connected
commutative group). Indeed, the classical case is G = Gm; in conjunction with
Hilbert 90 – H1(k, Gm) = 0 – we get H1(k, µn) = k×/k×n.

Let us just sit back and stare at this sequence for a moment. The middle term
H1(k, A[n]) is Galois cohomology with coefficients in a finite Galois module with
underlying abelian group (Z/nZ)a, for some a ≤ 2g (with equality ⇐⇒ n is
indivisible by the characteristic of k), where g is the dimension of A. Of course
H1(k, A[n]) depends upon the Galois-module structure of A[n], but we have a right
to expect that this group is larger the more complicated the field k becomes.

At least this is what happens in the most easily understood case where char(k)
does not divide n and A[n] ∼= (Z/nZ)2g has trivial gk-module structure. Then by
Kummer theory, H1(k, A[n]) ∼= (k×/k×n)2g. This group is infinite when k is any
Hilbertian field (e.g. a number field) and in many other cases as well. There is
also a correction factor, the weak Mordell-Weil group A(k)/nA(k), a quantity
which has a dependence on k, but especially when A(k) is finitely generated, a very
deep dependence on A itself. (When A(k) is not finitely generated, A(k)/nA(k)
can well be small when A(k) is itself large; we will see examples shortly.)

Example 0: If k = k is algebraically closed, then WC(k, A) = 0. Indeed, this
is obvious both on the geometric side and the cohomological side. Note also that
all three terms in the Kummer sequence vanish.

(Example ε: If k is separably closed, then WC(k, A) = 0, since every absolutely
irreducible variety has a point over a separable field extension.)

4.1. k = Fq. If we first look at the case of elliptic curves, then an element of
H1(Fq, E) is a genus one curve C/Fq

. By the Weil bounds, C must have at least

(
√

q − 1)2 ≥ (
√

2 − 1)2 rational points. Since this quantity is positive, in fact C
must have at leat one rational point, so represents the trivial homogeneous space:
H1(Fq, E) = 0. This suggests the following

Theorem 2. For any abelian variety A/Fq
, H1(Fq, A) = 0.

Proof: It is enough to show H1(Fq, A)[n] = 0 for all n (or even all primes). Using the
Kummer sequence then, it is enough to show that #A(k)/nA(k) = #H1(k, A[n]).
In fact both quantities equal #A[n](k). The equality #A(k)/nA(k) = #A[n](k) is
left to the reader as an easy exercise. Now a standard result in the cohomology of
procyclic groups [?, §XIII.1] gives

H1(k, A[n]) = A[n]/(F − 1)A[n],

where F is the q-power Frobenius map. But

#(F − 1)A[n] = #A[n]/ ker(F − 1)A[n] = #A[n]/#A[n](k).

The result follows.

Remark: The above proof works for any connected commutative algebraic group.

Exercise 5: Where was the connectedness used in the proof?



6 AN INTRODUCTORY LECTURE ON WC-GROUPS

Remark: This is not the standard proof of this result. Rather, more traditional is
to apply the cited cohomological fact to get

H1(k, A) = A(k)/(F − 1)A(k),

and we are reduced to showing that F − 1 is surjective on k-points of A. Since
F is purely inseparable, its derivative is zero (indeed, this is just the observation
that d

dxxq = qxq−1 = 0 in characteristic p!), so the morphism F − 1 induces an
isomorphism on the (co/)tangent space at the identity. Its image is therefore a
Zariski-open subgroup which, since A is connected, must be A itself.

As a matter of fact, commutativity is not necessary:

Theorem 3. (Lang) Let G/Fq
be a connected algebraic group, and let X/Fq

be an
algebraic variety endowed with a transitive action of G. Then X(Fq) 6= ∅.
Remark: Again the essential point of the proof is to show that the morphism
ϕ : G → G, x 7→ x−1Fx is geometrically surjective. This is (slightly) complicated
by the fact that if G is noncommutative, ϕ is not a homomorphism of groups, so
the tangent space argument gives us that it is generically surjective. To see how to
derive the surjectivity, see [?, §V I.1.4, Prop. 3].

As an example where it is useful to have the theorem for noncommutative groups,
one gets that H1(Fq, PGLn) = 0 for all n, and it follows that the Brauer group
Br(Fq) = H2(Fq, Gm) = 0.

Final remark: I came up with the proof of Theorem 2 when preparing these notes
(although indubitably it must appear in many other places), and at first I it seemed
to me that it was “more elementary” than Lang’s proof. But in fact Lang’s proof
comes down to showing that F − [1] is surjective, whereas our proof implicitly uses
that [n] is surjective. When the characteristic of k divides n, this is arguably a
deeper fact.

4.2. k = R. For every genus g ≥ 0, the smooth curve associated to the equation

y2 = −(x2g+2 + 1)

has genus g and no R-rational points. In particular, there exists some genus one
curve C with C(R) = ∅, which represents a nontrivial element of the WC-group of
its Jacobian.

We can say a lot more. First, define the index of an element V ∈ H1(k, A) to
be the gcd of all degrees of finite field extensions l/k such that V ∈ WC(l/k, A),
and the period of V to be its order in WC(k, A) = H1(k, A) (a direct limit of
finite abelian groups, hence an abelian torsion group).

Proposition 4. The period divides the index and the two quantities have the same
prime divisors.

Proof: See e.g. [?].

In our case, since gR = Gal(C/R) = Z/2Z, any nontrivial class η ∈ Hi(R, M)
has index and period equal to 2. In particular, H1(R, A) = H1(R, A)[2].
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Coming back to the case of k = R, suppose that E has full 2-torsion defined
over R. Then the standard picture of E(R) shows that E(R) ∼= S1 ⊕ S1, so that
E(R)/2E(R) ∼= Z/2Z. On the other hand H1(R, E[2]) has order 4, and we conclude
that H1(R, E) ∼= Z/2Z, so has a unique nontrivial element. (It can be written down
explicitly in terms of a Weierstrass equation for E; see [?, Example X.3.7].)

The other possibility is that E/R has a single nontrivial 2-torsion point (a cubic

equation defining E has either 1 or 3 real roots), and in this case E(R) ∼= S1, so
that E(R)/2E(R) = 0 and H1(R, E) ∼= H1(R, E[2]). Whenever the Galois module
structure on E[2] is nontrivial, it is nontrivial to say what H1(R, E[2]) is. In this
particular case, it is of course a finite problem:

Exercise 6: Suppose E/R is such that E[2](R) ∼= Z/2Z. Show that H1(R, E) = 0.

Of course the computation does not “explain why” H1(R, E) should be trivial.
There are several very nice explanations. For the first, we mention a result of Cas-
sels. First, given an elliptic curve E over a field k of characteristic not equal to 2
or 3, represent it as y2 = f(x), where f ∈ k[x] is a cubic polynomial (with distinct
roots in k). Define l := k[x]/(f), a cubic étale algebra. (Note that although the
polynomial f is not intrinsically determined by E, the algebra l is, as we leave it to
the reader to check.) As in any separable algebra, there is a norm map N : l× → k×.
Let T be the kernel of N ; it is a two-dimensional torus defined over k.

Theorem 5. (Cassels) There is a canonical isomorphism H1(k, E[2]) ∼= T/2T .

In the (“split”) case in which E[2] = E[2](k), l = k × k × k, N ∼= (k×)2 is a split
torus, and the theorem is telling us what we already know. Suppose next that E
has a single k-rational point of order 2 (“semisplit case”). Then l ∼= m × k, where
m/k is a quadratic extension, the kernel of the norm map is isomorphic to m×, so
H1(k, E[2]) ∼= m×/m×2.

In the semisplit case of k = R we must have m = C (what else?), so H1(R, E[2]) ∼=
C×/C×2 = 0.

What about higher-dimensional real abelian varieties?

Theorem 6. (Tate) Let A/R be an abelian variety. H1(R, A) is isomorphic to the

component group π0(A) = A(R)/A(R)0.

Remark: In particular, π0(A) is 2-torsion, since H1(R, A) is. This part of the result
is not hard to verify, since the norm map N : A(C) → A(R) has as its image a
closed, connected Lie subgroup containing N(A(R)) = 2A(R). (Therefore it has
finite index so is also open, and it follows that N(A(C)) = A(R)0.) As far as I
know, there is no truly elementary proof of this theorem. We will revisit it, along
with its p-adic analogue, a bit later.

Remark: The results hold with R replaced by any real-closed field R. One can
make sense of the component group in this context (semi-analytic connected com-
ponents) or just use N(A(C)) in its place, where C is the algebraic closure of R.
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4.3. k = C((t)). If we order fields k by complexity of their WC-groups and draw a
line so that on one side of the line we can compute the WC-groups in an explicit
and functorial way and on the other side we cannot, then the case of C((t)) is one of
the last fields on the easy side of the line. Recall that the algebraic closure of C((t))

is generated by t
1

n for n ≥ 2, and the absolute Galois group is Ẑ. (In particular,
like Fq, this is a field of cohomological dimension one.)

Theorem 7. (Ogg, Shafarevich) Let k = C((t)) and A/k be an abelian variety with

good reduction. Then H1(k, A) ∼= (Q/Z)2g.

Proof (sketch): The point is that the hypothesis of good reduction implies that
A(k) is n-divisible for all n and A[n] has the same Galois module structure as its
reduction, i.e., trivial structure. Thus H1(k, A)[n] ∼= H1(k, A[n]) ∼= (k×/k×n)2g ∼=
(Z/nZ)2g, where we have also used the cyclicity of the absolute Galois group of k.
Passing to the limit on n gives the desired result.

Corollary 8. Under the hypotheses of the previous theorem, for any finite exten-
sion l/k of degree n, the restriction map H1(k, A) → H1(l, A) can be viewed as
multiplication by n on the group (Q/Z)2g.

So the kernel of the restriction map H1(C((t)), A) → H1(C((t
1

n )), A) is precisely
the n-torsion subgroup H1(C((t)), A)[n]. In particular, every principal homoge-
neous space has period equal to its index.

Exercise 7 (Ogg, Shafarevich): For an abelian variety A/C((t)), let α, µ and β be, re-
spectively, the dimensions of the unipotent, multiplicative and abelian parts of the
connected component of the Néron special fiber. Show that H1(k, A) ∼= (Q/Z)µ+2β .

Remark: These results use (only) that C((t)) is complete, discretely valued, with

residue field k̃ algebraically closed of characteristic 0, but conversely any such field
is isomorphic to k̃((t)).

Exercise X: Let k be any complete discretely valued field with algebraically closed
residue field k̃ of characteristic p > 0.
a) For n prime to p, the above arguments still work: e.g. H1(k, A)[n] ∼= (Z/nZ)µ+2β .
b) Try to compute the group H1(k, A)[p∞]. (This has been done by Ogg, Shafare-
vich and Serre.)
c) Let E/Qp

be an elliptic curve with good reduction, and fix ` 6= p. Show that

there is some unramified extension k/Qp such that H1(k, E)[`] 6= 0.

Remark: Note that C((t)) is a field of dimension 1, i.e., all finite extensions have
vanishing Brauer groups. This shows that WC-groups are in a sense more compli-
cated than Brauer groups. . . .

4.4. k = R((t)). This case is even closer to the boundary. Work of Ducros com-
putes H1(k, E) explicitly for any elliptic curve over k; the answer depends on the
structure of the Néron special fiber (including the component group). When E has
good reduction, H1(k, E) is Q/Z in the semisplit case (i.e., one rational 2-torsion
point) and is Q/Z⊕(Z/2Z) in the split case. In this case all the interesting behavior
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is in the 2-torsion, so Cassels’ theorem is quite relevant. In an as-yet uncompleted4

preprint, I solved the WCE problem for elliptic curves over R((t)) with good reduc-
tion. The general case remains open, although I do not think it is terribly difficult
(it might be appropriate for a senior honors thesis or a master’s thesis topic). As a
byproduct one gets the following result:

Theorem 9. Let E/R((t)) be an elliptic curve with good reduction. The following
are equivalent:
a) Every principal homogeneous space of E has period equals index.
b) E[2](R((t))) ∼= Z/2Z.

This is the only example I know of a field k for which the equality of period and
index for all elements of the WC-group H1(k, E) depends on the choice of E.

5. A result about large WC-groups

In this section, we fix an abelian variety A defined over a field k, and an integer
n ≥ 2 indivisible by the characteristic of k.

Shafarevich proved in 1957 that WC-groups over number fields are “large” in the
following sense:

Theorem 10. (Shafarevich) If k is a number field then H1(A, E) has infinitely
many elements of order n.

In this section, we will prove the following generalization:

Theorem 11. Suppose k satisfies the following hypotheses:
(i) k is Hilbertian.
(ii) A(k)/nA(k) is finite.
Then H1(k, A) has infinitely many elements of order n.

The relevant property (essentially the definition) of Hilbertian fields is the follow-

ing: if K/k(t) is a finite regular (i.e., k∩K = k) Galois extension with Galois group
G, there are infinitely many pairwise disjoint extensions l/k with Galois group G.

Every infinite, finitely generated (for short IFG) field is Hilbertian. Moreover, for
an abelian variety A over an IFG field, A(k) is a finitely generated abelian group
(this extension of the Mordell-Weil theorem is due to Lang-Néron), and it follows
that A(k)/nA(k) is finite. (For a proof of this latter fact, see e.g. [?, Theorem 3].)
Therefore Theorem ?? applies in particular to IFG fields.

Remark: There exist Hilbertian fields over which every absolutely irreducible vari-
ety has a rational point, so in particular with vanishing WC-groups. The theorem
then shows that for such a field, A(k)/nA(k) is infinite.

Proof of Theorem 11: Using the Kummer sequence and the assumed finiteness
of A(k)/nA(k), we are reduced to the following

Proposition 12. For any Hilbertian field k, H1(k, A[n]) has infinitely many ele-
ments of order n.

4It has not been touched since November of 2004. . .
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Note that this is true when A[n] ∼= µg
n, since then H1(k, A[n]) ∼= (k×/k×n)2g, and it

is well-known that Hilbertian fields have infinitely many disjoint abelian extensions
of fixed exponent n. We will reduce to this case via a cohomological argument: let
l = k(µn, A[n]), so that A[n] ∼= (Z/nZ)2g ∼= µ2g

n as a gl-module. Put G = gl/k. The
extended inflation-restriction sequence reads

(2) 0 → H1(l/k, A[n](l)) → H1(k, A[n])
α→ H1(l, A[n])G → H2(l/k, A[n](l)

so that the map α has finite kernel and cokernel.5 Thus we want to prove that
H1(l, A[n])G has infinitely many elements of order n. It is a standard fact (and a
good exercise to show) that H1(l, A[n])G parameterizes short exact sequences

1 → A[n] → G → G → 1

in which the induced action of G on A[n] agrees with the action of gk on A[n]
(which by construction factors through G). From (2), we get that the image of
H1(k, A[n]) consists precisely of those exact sequences which are split, i.e., such
that G ∼= A[n] ./ G. One has the following general theorem:

Theorem 13. (Uchida) Every split embedding problem over a Hilbertian field has
infinitely many linearly disjoint proper solutions.

In other words, if l/k is a Galois extension of Hilbertian fields with Galois group G,
and is a finite abelian group endowed with a G-action ρ, then there are infinitely
many linearly disjoint Galois extensions m/k such that gm/l

∼= A and such that
gm/k

∼= A ./ρ G. That is to say, we’re done.

Remark: Uchida’s theorem was proved in 1980, but the case of k a number field
was proved by Scholz in 1929, and is used by Shafarevich in his proof of Theorem
10. (Nevertheless his proof is a bit different, using less group cohomology and more
study of how the WC-group of k maps into the WC-groups of the various comple-
tions of k.)

Remark: B. Poonen has told me that his student, S. Sharif, has a proof of Shafare-
vich’s theorem which constructs classes in H1(k, A[n]) in a more explicit way.

6. WC-groups over local fields

For any abelian variety A/k, let A∨ = Pic0(A) be its dual abelian variety. Then
there is a bilinear pairing

T : H1(k, A∨) × H0(k, A) → H2(k, Gm) = Br(k).

In this section we will not give the definition of the pairing, but only the following
theorem due to Tate and Milne. Let us assume that k is a nondiscrete locally
compact field. That is, either it is C (an entirely trivial case) or it is R, or it is
a finite extension of Qp, or it is a finite extension of Fp((t)). Again write π0(A)
for the quotient of the topological group A(k) by its maximal connected subgroup.
When k = C, A(C) is connected, so π0 = 0. When k = R, π0(A) = A(R)/N(A(C))
is a finite 2-torsion abelian group as above. When k is a non-Archimedean, A(k)
is totally disconnected, so that π0(A) = A (this is, of course, the case to keep your
eye on).

In all cases we have a canonical injection from Br(k) ↪→ Q/Z. When k = C

5In fact α is an isomorphism in many cases.
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this is the zero map; when k = R, it is an isomorphism onto Q/Z[2] = 1
2Z/Z, and

otherwise it is an isomorphism. Now hold on to your hat:

Theorem 14. (Tate, Milne)
a) The identity component A0 of H0(k, A) pairs trivially with every element of
H1(k, A∨).
b) The induced pairing T : H1(k, A∨) × π0(A) → Q/Z puts H1(k, A∨) and π0(A)
in Pontrjagin duality.

Remarks: 1) H1(k, A∨) is the direct limit of the finite groups H1(k, A∨)[n], and
π0(A) is the inverse limit of the finite quotients π0(A)/nπ0(A) = A(k)/nA(K). In
particular, it follows from the theorem that these finite abelian groups are put into
a canonical duality. Thus we get the following

Corollary 15. The finite abelian groups H1(k, A∨)[n] and A(k)/nA(k) are iso-
morphic.

Conversely, knowing the duality at each level n is essentially equivalent to knowing
the full duality, by passing to the limit.

Remark: At least in the case where A ∼= A∨ (e.g. elliptic curves), this result
gives us the beautiful fact the first and last terms of the Kummer sequence are
isomorphic. In general, A[n] and A∨[n] are Cartier dual gk-modules.

Corollary 16. Let k be a locally compact discretely valued field with residue char-
acteristic p, and A/k any abelian variety. Then H1(k, A)[p∞] is infinite, while for

any prime ` 6= p, H1(k, A)[`∞] is finite.

The duality pairing has nice functorial properties:

Theorem 17. Let l/k be a finite extension of discretely valued locally compact
fields, and let r : H1(k, A) → H1(l, A) be the natural restriction map. Let r∨ :
Hom(H1(l, A), Q/Z) → Hom(H1(k, A), Q/Z) be the dual map. Then r∨ fits into a
commutative diagram

INSERT

where N : A(l) → A(k) is the norm map.

For any finite extension l/k, we have H1(l/k, A) ⊂ H1(k, A)[l : k]. In particular,
when k is a p-adic field, H1(l/k, A) is finite.

Corollary 18. The finite abelian groups H1(l/k, A) and A(k)/NA(l) are in duality,
so are isomorphic.

This gives at least a formal solution to the WCA problem over p-adic fields. Of
course, this will be more or less useful according to how easily the cokernel of the
norm map can be computed. Here is a special case:

Theorem 19. Let k be a finite extension of Qp, and A/k an abelian variety. Sup-
pose that n is a positive integer prime to p and to the order of the component group
Φ of the Néron special fiber of B = A∨. Let l/k be a finite extension with relative
ramification index e. Then H1(l/k, A)[n] = H1(k, A)[gcd(n, e)].

Proof: In other words, suppose that V is a principal homogeneous space of order
n prime to #Φ · p. Then we must show that V (l) 6= ∅ ⇐⇒ n | e. Let k̃ denote
the residue field of k. Recall that we have a filtration on A(k), whose successive
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quotients are: a subgroup of Φ(k̃), the identity component A0(k̃) of the Néron
special fiber, and the kernel of reduction K, on which the multiplication by n map
is surjective. This filtration is functorial in k and is preserved by the norm map. By
duality, we have H1(l/k, A)[n] ∼= B(k)/nNB(l), and by our choice of n this latter

quantity is isomorphic to B0(k̃)/Nl/kB0(l̃). But

Nl/kB0(l̃) = eNl̃/k̃(B0(l̃)),

where the latter norm is for the residue extension l̃/k̃. We claim that Nl̃/k̃(B0(l̃)) =

B0(k̃); in fact this claim is valid for any connected commutative algebraic group G
defined over a finite field k. For this, the quotient G(k) by the image of the norm

map is Ĥ0(l/k, G(l)), and by a standard result in the cohomology of finite cyclic
groups (triviality of the Herbrand quotient: [?, ]), this group has the same order
as H1(l/k, G(l)). Inflation injects this group into H1(k, G) which we have seen is
equal to 0. This completes the proof.

In the special case in which A (hence also A∨) has good reduction, the theorem
says that for a principal homogeneous space V for A whose order is prime to the
residue characteristic, a field l/k is a splitting field if and only if n | e(l/k). In
this case the result is due to Lang and Tate [?], a paper which predates Tate’s
work on local duality. In fact this is an especially tractable case: Exercise X: Let
A be an abelian variety over a p-adic field with good reduction, and n prime to
p. Show that the finite abelian groups A(k)/nA(k) and H1(k, A)[n] are isomorphic.

It is not hard to deduce the following result:

Corollary 20. Let A be an abelian variety over a p-adic field, and let n prime
to p be such that k does not contain the nth roots of unity. Suppose there exists
a principal homogeneous space V over A of order n. Then V is not split by any
abelian extension of k.

Using this I was able to show:

Theorem 21. Let k be either a p-adic field or a number field. Then there exists
a genus one curve C defined over Q without any points rational over the maximal
abelian extension of k.

Problem X: Let k be the maximal unramified extension of Qp (it is obtained by
adjoining all roots of unity of order prime to p). Let A be an abelian variety defined
over k and V a principal homogeneous space of A. Must V have an abelian splitting
field?


