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PETE L. CLARK

1. Classifying projective bundles modulo line bundles

This talk is about the Brauer group, an object of startling use and ubiquity
– it exists equally well in the realms of pure algebra, pure geometry and at all
points in between. So perhaps a good introduction to it is by way of another
object which shares the same honor: the Picard group of X , which classifies struc-
tures which are equally deserving of the name “line bundle” and “rank 1 projective
module”. I assume that these objects as well as the objects called “vector bun-
dles” or “finite rank projective modules” are also our old friends. Recall that
Pic(X) = H1(X,OX∗) = H1(X, Gm) classifies line bundles on X , where here ei-
ther X/S is an S-scheme (including the case X = R a commutative ring and Gm

gives the units in the structure sheaf and X/k is a scheme over a field k); or X is a
topological space, and Gm is the the sheaf which, given any open U ⊂ X , returns
the abelian group of continuous functions from U to C×. (Or maybe X is a real or
complex manifold...) Finally, recall that we can view the objects classified either
geometrically (i.e. as morphisms E → X whose fibres are A1/S) or algebraically
(as OX -modules).

So...what about projective bundles? Let X be either a topological space or an
S-scheme. What happens if we try to do for projective bundles what we did with
line bundles (and could have done with vector bundles, getting K0(X))? Just for
fun, let’s start with the case of X a topological space. Then by a Pn = CPn-bundle
over X we mean what the topologists mean: a locally trivial fibration E → X
with Pn-fibres and structure group G := Aut(CPn) = PGLn+1(C)-bundle. Then
by a principle so general that everyone here must know it either topologically or
algebraically (I would call it “the first principle of descent”) we see that the (non-
abelian!) cohomology set classifying Pn−1-bundles on X is H1(X, PGLn).

Notice that already things are more interesting than before: this is nonabelian
cohomology, so there is no group structure in sight: that is, given two projective
bundles of the same dimension, we do not have a natural (in any sense of the word!)
way to combine them into another projective bundle of the same dimension. (Per-
haps now you think we should work out the direct sum of two projective bundles
and get a “Grothendieck group” K0 as for vector bundles. We would get something
this way, but it would not be the Brauer group. Honestly we are implicitly moti-
vated by the Brauer group of a field, which we will dicuss later as an important
special case.) Instead, we proceed not by analogy to the case of vector bundles, but
rather by reducing to the case of vector bundles. Namely, observe that one way to
construct an n−1-dimensional projective bundle over a space X is to take a rank n
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vector bundle E → X and just projectivize: PE → X . Cohomologically speaking
we have identified a map

H1(X, GLn) → H1(X, PGLn)

Since we already “understand” the vector bundles on X , it makes some sense to ask
to regard projectivizations of vector bundles as “banal” and ask for a classification
of projective bundles modulo projectivizations of vector bundles. So suppose B(X)
is this set; we have constructed for all n injections

H1(X, PGLn)/H1(X, GLn) ↪→ B(X)

such that B(X) is the union of the images. I claim that there is a natural oper-
ation on B(X) which makes it into a group, for which the inverse of a projective
bundle is just the dual projective bundle. The group law is best viewed on the
algebraic side, which we have so far not discussed. Consider that H1(X, PGLn)
classifies our projective bundles. But this set equally well classifies any fibre bundle
on X with PGLn(C) as the structure group. Namely, the matrix algebra Mn(C)
has this automorphism group – this is the Noether-Skolem theorem, which asserts
that the only automorphisms of a central simple algebra over a field are inner (i.e.,
given by conjugations). It follows from this that H1(X, PGLn) also classifies the
following structure: A is an OX -algebra, finite and locally free as an OX -module
and such that its fibre at every point x ∈ X is A ⊗ OX,x

∼= Mn(C). In other
words, given the same 1-cocycle we used to construct a projective bundle over X ,
we could equally well have constructed a matrix algebra bundle. Similarly, we can
algebraically interpret the map H1(X, GLn) → H1(X, PGLn) as the map which,
to any projective OX -module M associates the algebra End(M). In this light we
want to classify matrix algebra bundles modulo bundles which are globally “End’s”
of projective modules.

Now we can give the group law: A1 × A2 := A1 ⊗ A2; with this interpretation
the inverse of (the Brauer group element represented by) a matrix algebra bundle
A is given by the opposite algebra Aopp. The map A⊗Aopp → End(A) induced by
(a ⊗ b)(c) := acb is well-defined and clearly an isomorphism on the fibres (by this
I mean that we can check whether a homomorphism of finite-dimensional simple
algebras is an isomorphism by counting dimensions), so it’s an isomorphism. Thus
we have defined the Brauer group Br(X) of a topological space, and we can see
that it has interpretations both in terms of geometry and non-commutative algebra.

Very well: how can we compute it?

Proposition 1. (Brauer group of a topological space
a) Br(X) is an abelian torsion group naturally embedded in H2(X, Gm).
b) If we assume that X is paracompact, then via the exponential sequence

0 → Z → OX → Gm → 0

we get

H2(X, Gm)
∼

→ H3(X, Z).

c) (Serre, thanks to Bott) If X is a finite CW-complex, then

Br(X)
∼

→ H2(X, Gm)[tors]
∼

→ H3(X, Z)[tors].
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Some words in the way of proof: For part a), consider the ladder of short exact
sequences

1 → µn → SLn → PGLn → 1

1 → Gm → GLn → PGLn → 1

and applying H1, we see that the map H1(X, PGLn) → H2(X, Gm) factors through
H2(X, µn), an n-torsion (abelian) group. For part b), just take cohomology of the
exponential sequence and use the fact that the sheaf of continuous C-valued func-
tions on a paracompact space is soft (or somesuch), hence acyclic for sheaf coho-
mology. On the other hand, the proof of Serre’s theorem uses Bott periodicity; it
is very cool, but we do not digress to include it here.

In summary, the Brauer group of e.g. a compact manifold is always finite, and
can be read off from the most basic invariants of the space.

2. The Brauer group of a scheme, a variety, a field

Say X is a scheme. Does the construction of the previous section define the
Brauer group of X? No, there is one more issue to settle: what do we mean by a
“locally trivial” projective bundle over X? It turns out that while it is acceptable
to define vector bundles as being locally trivial for the Zariski topology, it is not
acceptable to require projective bundles to be Zariski-locally trivial. Let me try
to explain: one learns in commutative algebra that “fibrewise free” is the same as
“locally free” for modules. On the other hand, there is no reason to think that an
algebra over a ring which becomes a matrix algebra modulo every prime should
itself be a matrix algebra, and indeed in a certain sense this is almost never true:
namely, say X/C is a smooth proper variety, and P → X is a projective bundle
over X which becomes trivial over a Zariski-open subset U . Then P lies in the
kernel of Br(X) → Br(U). But letting K = C(X) the generic point, it follows
then that P lies in the kernel of Br(X) → Br(U) → Br(K), and by a result of
Auslander-Goldman to be discussed shortly, the composite map is an injection.

Anyway, the upshot is that “to do the right thing” we must require our projec-
tive bundles to be locally trivial (merely) in the sense of etale topology: namely a
projective bundle on X is a morphism P → X such that for all x ∈ X there exists
an etale neighborhood U of x such that the basechange of P to U is isomorphic
to the constant bundle Pn/U . Again, it is useful to express this in algebraic lan-
guage, and there is a new piece of terminology: an Azumaya algebra A/OX is an
OX -algebra which as a module is locally free of finite rank and such that in an etale
neighborhood U of every point x, the basechange to U is isomorphic to a matrix
algebra over U . There are many equivalent formulations of this: especially it is
enough to require A to be the right kind of module (locally free of finite rank) and
then just to require that the geometric fibres be matrix algebras.

Let us mention that using nonabelian etale cohology one can represent Br(X)
as in the previous section: namely, as the union of H1(Xét, PGLn)/H1(X′t, GLn),
which lives inside H2(Xét, Gm)[tors] but is not a priori equal to the whole thing
(although it is in many cases). Finally, we should say that H2(Xét, Gm) itself need



4 PETE L. CLARK

not be a torsion group; the discrepancy between

Br(X) ⊂ H2(Xét, Gm)[tors] ⊂ H2(Xét, Gm)

was studied intensely by Grothendieck in his Dix Exposes ; for some purposes it
is more convenient to deal with the largest group than to worry about which of
its elements are actually represented by Azumaya algebras (again, there is lots of
work on this!), and the latter is often called the Grothendieck-Brauer group or the
cohomological Brauer group (or – beware! – sometimes just the Brauer group.)

The Brauer group has all the nice functorial properties we have a right to expect
from pulling back vector bundles, as well as being a sheaf for the Zariski topology
on X (notice that this fact also implies that Zariksi-locally trivial vector bundles
represent the trivial element of the Brauer group).

Here are two big theorems about the Brauer group that will come in handy later:

Theorem 2. (Auslander-Goldman) Let R be a regular domain with quotient field
K. Then the natural map “restriction to the generic point” Br(R) ↪→ Br(K) is an
injection.

Theorem 3. (Auslander-Brumer) Let R be a discrete valuation ring with quotient
field K and residue field k. Then we have

0 → Br(R) → Br(K) → X(Galk) = Hom(Galk, Q/Z) → 0

where the last term is the Pontrjagin dual (“character group”) of the Galois group
of k.

3. Brauer group of a field

This motivates us to at last consider the Brauer group of a field K (I should
mention that this is an aggressively anachronistic treatment of the Brauer group; the
Brauer group of a field came first of all). From our previous geometric perspective
this may seem unlikely: how can we have a nontrivial bundle over a one-point
space? But here the etale topology recovers the classical definition: by definition,
a “projective bundle” over k is a k-scheme (it is its own fibre) which locally for the
etale topology is a projective space. In other words, we have a variety X/k which
after a finite separable field extension k′/k becomes isomorphic to projective space
Pn/k′. Such a guy is called a Severi-Brauer variety; it will represent the trivial
element of Br(k) precisely if it isomorphic to a projective space over k itself, and
in turn this happens exactly when X(k) is nonempty. (The condition is obviously
necessary, and conversely if we have P ∈ X(k) the map ϕ : X/k → Pn/k by Q 7→

the line joining P to Q is defined over k and an isomorphism over k, hence is an
isomorphism over k.)

Example 4. The conic
C/R : X2 + Y 2 + Z2 = 0

represents a nontrivial element of Br(R), indeed, the unique nontrivial element, as
we are about to recall.

What is going on algebraically? An Azumaya algebra A over a field k is a finite-
rank k-algebra such that there exists a finite separable field extension k′/k such
that A ⊗k k′ ∼= Mn(k). The smallest bit of non-commutative algebra shows that
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this condition – being a “twisted form” of a matrix algebra – is equivalent to A/k
being a central simple algebra – that is, a finite-dimensional k-algebra with center k
and with 0, A as the only two-sided ideals. Thus, one can view the representatives
of Br(k) as either Severi-Brauer varieties or central simple algebras over k. On the
other hand, remember we regard matrix algebras as being trivial; recall Wedder-
burn’s classification of central simple algebras: A ∼= Mn(D), where D/k is a division
algebra. Since Mn(D) ∼= Mn(k) ⊗k D, the class of A ∼= Mn(D) in Br(k) coincides
with the class of the division algebra D (which is uniquely determined). Thus we
can say that the elements of Br(k) correspond bijectively to finite-dimensional di-
vision algebras over k with center k. This at last is what the early 20th century
algebraists regarded as the Brauer group.

Some facts about Br(k): There is no distinction between the Brauer group and

the cohomological Brauer group: Br(k) = H2(Galk, k
×

). (Again we are going
backwards in time; algebraists realized they could construct central simple algebras
by writing down certain two-variable functions in the Galois group of k; the fact
that these functions satisfy a certain identity (the cocycle condition!) was one of
the three phenomena that led them to study group cohomology, the other two being
group extensions and the cohomology of Eilenberg-MacLane spaces.)

Example 5. (Brauer group of a field which is “almost algebraically closed”)

The cohomological interpetation implies that the Brauer group of any algebraically
closed field is trivial (exercise: use the minimal polynomial to give a pithy direct
proof that every finite division algebra over an algebraically closed field is commu-
tative). Also, since the absolute Galois group of R is Z/2Z, and one knows the
cohomology of cyclic groups, we can compute the Brauer group of R:

Br(R) = H2(Z/2Z, C×) = R×/NC

R (C×) = R×/R>0 ∼= Z/2Z.

So above we exhibited the only nontrivial element of the Brauer group; on the di-
vision algebra side it is represented by Hamilton’s quaternions.

Exercise: Let k be a field whose absolute Galois group Gk is finite. Compute
Br(k) as above. (Hint: By a theorem of Artin-Schreier, #Gk ≤ 2, and if the order
is 2 then the algebraic closure is obtained by adjoining a root of X2 + 1 = 0.)

Example 6. (Brauer group of a finite field)

More than a hundred years ago Wedderburn proved directly that a finite division
algebra is a commutative field, i.e., that the Brauer group of a finite field is zero.
Actually the Brauer group of a finite field is zero “for many reasons” – that is,
many of the proofs of the vanishing of the Brauer group of a finite field single out
some more general class of fields with vanishing Brauer group of which the finite
fields are members.

I. The norm map between any two finite extensions is surjective. (It’s a little
tricky to see this suffices. If the Brauer group is nonzero, there exists an element
of exact order p for some prime. That is, 0 6= η ∈ H2(G, Gm)[p] = H2(Gp, Gm)[p],
where Gp ≤ G is a p-Sylow subgroup of G = Galk. It follows that there exists an
extension l/k of p-power order such that restriction to l kills η. By dévissage, at
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some field k′ between k and l, η restricted to k′ is nonzero and killed by restric-
tion to an order p extension. But the hypothesis made prohibits the existence of a
nonzero element of any finite extension of k from being killed by a cyclic extension,
contradiction.)

II. The Galois group is procyclic and torsionfree – that is, if there exists a sur-

jective map Ẑ → Gk such that the restriction to Gk is injective. More generally:

III. The Galois group has cohomological dimension 1.
(See [CG].)

Example 7. (Brauer group of a complete, discretely valued field)

Let K be a field complete with respect to a discrete valuation v, with valuation
ring R and residue field k. The following (split) exact sequence determines Br(K):

0 → Br(k) → Br(K) → X(Galk) → 0

where the last term is the Pontrjagin dual (= character group) of the Galois group
of the residue field. One finds a very readable proof of this in [CL]; for later
use, however, it is convenient to regard this result as obtained by combining the
Auslander-Brumer theorem with the following

Theorem 8. (Grothendieck) Let R be a Henselian (e.g. complete!) local ring with
residue field k. Then the natural map Br(R) → Br(k) is an isomorphism.

(If you care, a stronger result is true: namely that the base change from R to k
gives a bijection from rank r2 Azumaya algebras over R to rank r2 central simple
algebras over k. The proper generality is: if G/R is a smooth groupscheme, then
the canonical map H1(Rét, G) → H1(k, G/k) is an isomorphism; you can find this
in SGA if you dare.)

As an application of this theorem, let K be a “local field,” i.e. a field complete
with respect to a complete valuation with finite residue field k. We deduce:

Corollary 9. The Brauer group of a local field is isomorphic to X(Ẑ) = Q/Z.

Example 10. (Brauer group of a global field)

Let K be a number field or a the function field of an algebraic curve over a finite
field. Then there is a “local-to-global principle” that computes Br(K) (the Brauer
group is where local-to-global principles live); let Kv be the completions of K with
respect to all the places of K. Then

0 → Br(K) → ⊕vBr(Kv)
Σ
→ Q/Z → 0

Here, each Br(Kv) is canonically isomorphic to Q/Z (this is called the “invariant”),
and the map Σ simply adds up these finitely many elements in Q/Z. For instance,
take K = Q. Then for any n ≥ 2, the theorem says there are infinitely many
nonisomorphic division algebras over Q of dimension n2. (Nevertheless one knows
exactly how to write them down, and this counts as a rather innocuous example of
a Brauer group.)
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4. The Brauer group of a variety as the unramified Brauer group of

its function field

In this final section I want to show that there is an interplay between the geom-
etry of the Brauer group of a variety and the algebra of the Brauer group of its
function field. To fix ideas, let X/k be a proper variety over a field of characteristic
zero; write K := k(X) for its function field. A prime divisor D on X gives rise to a
discrete valuation v = vD on K with valuation ring RD and residue field is k(D).
The Auslander-Brumer theorem gives us

(1) 0 → Br(RD) → Br(K) → Hom(Gk(D), Q/Z) → 0

Compiling these maps (they are called “ramification maps”) over all prime divisors
D we get a single map

(2) Br(K) →
⊕

D

Hom(Gk(D), Q/Z)

What is the kernel of this map? Regard an element of Br(K) as a “generically
defined” Azumaya algebra on X – if we write down structure constants for a central
simple algebra over K = k(X), these are actually functions on X , which will be
regular and nonzero outside on the complement of a divisor on X and hence will
define a Severi-Brauer variety over a certain (Zariski-)open subset U of X . The
sequence (1) is thus telling us that a generically defined Azumaya algebra is actually
defined on the divisor D iff its image in the Hom vanishes. Therefore the kernel of
(2) is the set of generically defined Azumaya algebras which are regular at every
prime divisor D of X . That is (using, technically, the fact that the Brauer group
is a Zariski sheaf), the kernel is just the Brauer group of X :

(3) 0 → Br(X) → Br(K)
L
→

⊕

v

Hom(Gv, Q/Z)

This is the sequence that links geometry to algebra. Let us quickly draw out some
consequences.

First, since the set of prime divisors of X correspond bijectively to the discrete
valuations on the function field K which are trivial on k, this means that the map
L can be defined purely algebraically in terms of K/k. Thus its, kernel, the Brauer
group of X , is a “purely algebraic object,” called the unramified Brauer group of X
for hopefully evident reasons. To be sure, we are saying that the Brauer group of
a variety is entirely determined by the Brauer group of its function field, so among
smooth projective varieties the Brauer group is a birational invariant.

Having said that everything in sight is algebraic, let’s do just the opposite and
exploit the geometric interepretation of Br(X) – if we can compute this than we
have a very good handle on Br(k(X)).

Suppose k is algebraically closed. Then using a standard exact sequence in etale
cohomology (the Kummer sequence), one can compute Br(X) up to a finite group.
Being an abelian torsion group, it is enough to work prime by prime and compute
Br(X)[`∞]: for simplicity, we will not do the case when l = p = Γk > 0. Taking
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etale cohomology of the Kummer sequence

0 → (µn)X → Gm
[n]
→ Gm → 0

and passing to the limit over n, one gets

(4) 0 → Pic(X) ⊗ Ql/Zl → H2(X, µ∞

l ) → H2(X, Gm)[l∞]) → 0.

The properness of X ensures that the groups H2(X, µ∞

l ) are of “cofinite type” –
they are Cartier dual to the l-adic cohomology groups, so of the form (Ql/Zl)

r⊕M ,
where M is finite, and here r = h2(X, Ql) = B2, the second Betti number. Finally,
using the exact sequence

0 → Pic0(X) → Pic(X) → NS(X) → 0

and the fact that since Pic0(X) is l-divisible, Pic0(X) = 0, we find that up to a
finite group

Br′(X)[l∞] ∼ (Ql/Zl)
b2−ρ,

where ρ is the Z-rank of (finitely generated free) abelian group NS(X). Thus the
size of the Brauer group is “almost independent of l”.

Remark: Let X/C be a smooth projective variety such that the singular cohomology
group H2(X(C), Z) has nontrivial l-torsion for some l. Being a finitely generated
abelian group, it will be p-torsion free for all sufficiently large p. Since the Picard
number ρ does not depend on l or p, we see that we will have Z/lZBr′(X)[l] <Z/pZ

Br′(X)[p], so the above is the strongest possible independence result.

Example 11. (Brauer group of a curve over k = k)

Let C/k be a smooth projective curve over an algebraically closed field. Here
the divisors are just points, so the Galois group Gv = 0, so the Brauer group of an
algebraically closed curve is equal to the Brauer group of its function field. In the
above formula b2 = ρ = 1, so the divisible part of Br(C) is zero. Looking a bit more
carefully at the finite group we may have lost, it’s not at all hard to see that it’s
zero independently of l (even if l = p = char(k).) We conclude that Br(k(C) = 0,
a famous theorem of Tsen.

Example 12. (Brauer group of projective space over k = k)

In this case, the geometric part of the above argument is the same: we get
ρ = b2 = 1 and indeed that the entire geometric part of the Brauer group is zero.
So

Br(k(x1, . . . , xn)) =
⊕

D

Hom(Gk(D), Q/Z)

which, if n ≥ 2 is quite large. That is, an Azumaya algebra over projective space
must have nontrivial ramfication and is determined by the data of a cyclic extension
of the function field of each prime divisor.

Example 13. (Brauer group of an abelian variety A/C)

Let A/C be a d-dimensional abelian variety, d > 1. Then for every l the Brauer
group of A is l-divisible. If you know something about abelian varieties, you should
check my work on the following estimate on the rank r such that Br(A)[l∞] ∼

(Ql/Zl)
r:

(

2d

2

)

−
d(d + 1)

2
≤ r ≤

(

2d

2

)

− 1.


