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A Proof of the Existence of Infinite
Product Probability Measures

Sadahiro Saeki

In memory of my dear friend Karl Stromberg

Let {(Q;, &, P,): i € I} be a nonempty collection of probability spaces, and let
Q = I1,Q; be the product space. A measurable cylinder in () is a subset A of O
of the form A = II,A4;, where A; € # for each i and A4; = (; for all but finitely
many i’s. For such a set A, define P(A) = II,P,(A,). By definition, the product
probability measure of the P’s is the (necessarily unique) extension of P to a
probability measure on F(A#c), where .#c is the collection of all measurable
cylinders in Q and F(.#c¢) is the o-field generated by .#c. The standard proof of
the existence of the product probability measure is based upon Fubini’s Theorem
for finitely many factors; see [HS: pp. 429-435]. We give a simple proof that does
not require Fubini’s Theorem.

Lemma. Let u: #c — [0,1] be a function such that £7 u(A,) = 1 whenever (A,) is
a disjoint sequence in #c with union Q. Then . extends uniquely to a probability
measure on F(Ac).

Proof: Let & be the collection of all finite unions of measurable cylinders. It is
easy to check that 9 is a field and each 4 €9 can be written as a finite disjoint
union of members of .#c. In particular, A can be written as a countable disjoint
union of members of #c, say 4 = UTA,. Let w(A4) = T u(4,). To see that u
is well-defined, write Q\ A4 = U "B, with pairwise disjoint B, €.#c. Then

i:‘,u(A..) —1- iu(m (1)

by our assumption on u. Since the right-hand of (1) has nothing to do with the
decomposition U7A, of A, it follows that w' is well-defined and therefore
countably additive of . Hence the desired result is an immediate consequence of
E. Hopf’s extension theorem [HS: p. 142]. [ |

Theorem. P extends uniquely to a probability measure on F(.#c).

Proof: 1t suffices to prove that P satisfies the hypothesis of the lemma. Without
loss of generality, assume that I is an infinite set. Let (4,,) be a disjoint sequence
in .#c with union Q.

Case 1: I is countable. Then we may assume I = N. Write 4, = I17., 4, ;, where
A, €F foreachiand 4, ;= Q, foralli>i, € N. We clalm that if m € N and

n,i n,i

x = (x;) is an element of A,, and 1f neN, then

{l_[xA (x,)} [1P(A4,,) =38, , (Kronecker’sdelta). (2)

>0
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For n = m, this is trivial, so assume n # m. Then, since I x,, = 1 identically and

Xa, (X155 X 3 ¥i 415-..) = 1forall y, € Q; with i > i,, we have
im
{I_.!:XA,,.,(xi)} [[ XA,,,,()’:') =0 3
i= i>i,,

for all such y,;’s. Integrating each side of (3) finitely many times, we obtain (2) for
n#m.

To get a contradiction, suppose X,_;P(A4,) # 1. Then there must exist an
x, € Q, such that

Z XAn.l(xl)l—-[Pi(An,i) # 1.
n=1 i=2

Hence an inductive argument yields an element x = (x;) of Q such that

o

© Kk
Z {HXA,,',(xi)}. ]._[ Pi(An,i) #1 (4)
n=1 \i=1 i=k+1

for each k > 1. But x € 4, for some m € N. Hence (4) with k =i, contra-
dicts (2).

Case 2: I is uncountable. Then we can choose a countable subset J of I such that
A, =4, X ¥ for all n > 1, where each A, is a measurable cylinder in II; . ;Q;
and (V' = I1,, ;Q,. By Case 1 applied to (A4),), we obtain Z;P(4,) = 1. |

Dedication. Professor Karl Stromberg, my friend and colleague, died on July 3, 1994. He was an
enthusiastic lover of the Monthly. When I presented the above proof in my seminar five to eight years ago, he
liked it very much. Karl, I dedicate the present paper to you in the memory of our friendship. Have a Dpeaceful
sleep!
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A Problem

Leo S. Gurin

TRIBUTE. I learned about this problem and its solution in 1935, when I was in
the eighth grade, from my teacher of mathematics, Yakov Stepanovich Chaikovsky,
a very young man at that time. Now, in retrospective of a few decades of my own
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