SECOND TALK ON RAMANUJAN GRAPHS

PETE L. CLARK

1. RECALL...

Last time we considered certain problems in the spectral theory of finite graphs.
Namely, for an finite graph G (undirected, but possibly with loops and/or multiple
edges) we may of course associate its adjacency matrix A, and by definition the
spectrum of G is the multiset Spec G of eigenvalues

A > A > 2 A

We say that G is d-regular if each vertex has degree d, and in this case \g = d,
with multiplicity 1 iff G is connected.

We are especially interested in graphs — or better, in sequences of graphs — whose
first eigenvalues A; are relatively small. In particular, for any finite graph, define
the spectral gap w(G) = Ao(G) — A1 (G). Define also the isoperimetric constant
h(G) to be the infimum

#E(Vh ‘/2)
min{#Vi, #Va}

over all partitions of the vertex set into two subsets Vi, Va; here E(V,V3) is the
set of edges connecting a vertex in V; to a vertex in V5. The larger h is the “better
connected” G is as a network. An expander graph is a sequence of finite graphs
G,, with #G,, — oo (equivalently, any fixed isomorphism type occurs only finitely
many times in the sequence) and inf h(G,) > 0. It turns out to be the case that
this condition is equivalent to inf w(G,) > 0 (e.g. [2]).

As mentioned last time, this is easy to do: we could take G,, to be the com-
plete graph on n vertices, and then w(G,,) = n for all n. However, such a network
has prohibitively many edges. Rather, we want the number of edges of GG, to grow
linearly with n (one easily sees that one can ask for no more than this for a se-
quence of connected graphs). Last time we used this as an excuse to consider only
d-regular graphs, but this turns out not to be necessary. Rather — and this is the
crux of the more sophisticated perspective we are peddling in this talk — it suffices
to consider graphs with a common universal covering tree.

2. COVERINGS OF GRAPHS

Let G be a finite graph, and p : H — G a finite, unramified, Galois covering
graph of G, say with covering group .

Lemma 1. We have Spec G C Spec H.
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Proof: Indeed, a M-eigenfunction f € L?(G) is just a m-invariant \-eigenfunction
on L?(H). In other words, pulling back eigenfunctions visibly gives an inclusion
Spec G — Spec H (with multiplicities).

Note that an equivalent formulation is the divisibility of characteristic polynomials:
P ()| Py (t).

More interesting is the following;:
Proposition 2. We have A\o(G) = Ao(H).

Sketch proof: This follows from the Perron-Frobenius theory of irreducible matrices
with non-negative integer entries, which includes the case of adjacency matrices of
connected finite graphs. In particular the theory says that the largest eigenvalue
Ao is also maximal in modulus (and strictly maximal iff the graph is not bipar-
tite), and is characterized by having an eigenvector with all non-negative entries.
In our language there is a unique non-negative “Perron-Frobenius” eigenfunction
f on G, which when pulled back gives the (unique up to scaling) Perron-Frobenius
eigenfunction, say f on H. Thus the eigenvalue Ao(G) of f must be the largest
eigenvalue of H.

Next we quote the following result:

Theorem 3. (Leighton [5]) Let G1 and Gy be two finite graphs with isomorphic
universal covering tree T. Then there exist finite Galois coverings Hy of G1 and
Hy of Gy such that Hy = Hs.

This is to be contrasted against the situation for compact Riemannian manifolds:
e.g., two compact hyperbolic surfaces need not have a common universal cover!

‘We can deduce:

Corollary 4. Let T be an infinite tree, and let G(T) be the set of finite graphs
covered by T. Then the quantities

(i) #E(G)/#V(G) and

(i) Ao(G)

are independent of the choice of G € G(T).

In particular, the number )g is really an invariant of 7', so it is tempting to denote
it as A\o(7), but in view of later developments this would be quite confusing. So let
us use the clunkier notation PF(7T) instead.

Example 1: Let 7 = 7y, the d-regular tree. This is the universal covering tree of
finite d-regular graphs. This is, of course, the example which occupied our attention
in the previous lecture (and has occupied the attention of the majority of those who
study spectral/expanding/Ramanujan graphs); for instance, the complete graph
Ky is an element of G(7). Here we can see easily that #E(G) = $#V(G) and
that Ag(G) = d: indeed the Perron-Frobenius eigenfunction is the constant function.

Example 2: For r,s > 2, let T = 7, ,, the (r,s)-semiregular tree. Meaning, we
start at a red vertex, and draw r “outward” edges (this is just poetic license; we
don’t consider the orientation as part of the data), coloring each of the endpoints
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green. Then each green vertex gets s outward edges whose endpoints are painted
red, and we repeat. By definition, a finite graph which is covered by 7 is called
(r, s)-semiregular bipartite.

In particular such graphs exist! In analogue to the complete graph as above, the
most natural-looking example is K. 5, the complete bipartite graph connecting a set
of r vertices to a set of s vertices. We can compute the Perron-Frobenius eigenvalue
using a dirty trick: let A be the adjacency matrix of this graph. It would suffice, of
course, to know the largest eigenvalue of A%, but A2 counts the number of length
2 paths from a vertex i to a vertex j, and is itself the adjacency matrix of some
other graph on the same vertex set. But this new graph is visibly rs-regular, so
that PF(A?) = rs and hence PF(A) = \/rs.!

Example 3: For any tree 7, we can define a tree 7’, the tree obtained from 7
by barycentric subdivision. More plainly, we insert a new vertex in the middle of
each of the edges of 7. For instance 7] = 7;2. Note that there is a natural injection
G(T) — G(T'); in particular, if G(T) # 0, then so is G(7').  One’s first instinct
is that this is a rather trivial operation, but in fact the spectral theory is certainly
changing. For instance, if we start with an n-cycle C,, and repeatedly barycentri-
cally subdivide, we will get Cs,,, Cyp,..., Cor,,: the spectral gaps ar approaching
zero. This example is anomalous since in fact 7o = 7y = T3 5: in all other cases the
subdivision changes the isomorphism type of the universal cover. Note also that G’
is canonically bipartite for any (. This little observation is the trick lying at the
root of a very important paper of Hashimoto [3].

These examples will do for us today, but in fact I do not know of any others
that are similarly tractable, and there is relatively little about interesting irregular
trees in the literature. Note well that not every tree covers a finite graph. Shortly
we will see some rather obvious necessary conditions, but in fact a satisfactory char-
acterization of such trees (called “uniform”) is known and is a jumping off point
for the book Tree Lattices of Bass and Lubotzky. Note that it is however clear on
topological grounds that G(7) is either empty or infinite.

3. T-FAMILIES AND 7 -EXPANDERS

Definition: A 7-family (or just a family, if 7 is understood) of graphs is an
infinite sequence of connected finite graphs {G,} with common universal covering
tree 7, and with #G,, — co.

An expander is a 7-family in which the infimum of the spectral gaps PF(G,,) —
A1(Gy,) is positive.

Twenty-five years ago or so the explicit construction of even d-regular expanders
was an open problem, but we have come much farther in recent years:

Theorem 5. (Lubotzky [8]) Every uniform tree admits an expander.
1This trick can be used to compute the entire spectrum of K s: A2 has distinct non-negative

eigenvalues, and since K, s is bipartite, both squareroots of any given eigenvalue of A% occur as
eigenvalues of A.
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Concerning the proof we can only say: “property 7”. As usual, the Ramanujan
property holds a special allure. Recall that a d-regular Ramanujan graph is a
graph all of whose eigenvalues except PF(G) — and, if G is bipartite, its negative
— are at most 2v/d — 1 in absolute value. This definition comes from the following
result:

Theorem 6. (Alon-Boppana) Let {G,} be any d-regular family. Then
liminf A\ (G,,) > 2vd — 1.

Note that last time we said precisely nothing about the proof. Here we want to
view the proof as a conjunction of two different theorems in spectral theory and see
how this could be generalized to irregular graphs.

4. SPECTRAL THEORY ON L*(7)

As above let 7 be an infinite tree which covers some finite graph. This neces-
sitates that 7 have certain properties which make for a nice spectral theory. In
particular 7 is locally finite, so the adjacency relation gives rise to a well-defined
linear operator on the Hilbert space L?(7). In fact the vertex degrees of 7 must be
uniformly bounded, and this implies that A is a bounded self-adjoint operator on
L?(T). Whereas in the last lecture we amused ourself by interpreting the adjacency
matrix of a finite graph as a self-adjoint operator on a finite-dimensional Hilbert
space, the current situation is less quaint: we are interested in the spectrum of A,
that is, the set of real numbers A such that AI — A fails to have a bounded inverse:
this is a compact subset of the real line, so the spectral radius p is well-defined.

Warning: p # PF(T)! E.g. for 7; it looks like the constant function should
again be an eigenfunction with eigenvalue d, but a constant function is not in L?!

In fact we have the following theorem:
Theorem 7. The spectral radius of the d-reqular tree Ty is 2v/d — 1.

Now one has to think that this explains the Alon-Boppana bound. And indeed it
does, and more:

Theorem 8. (Greenberg-Cioaba [1]) Fix a uniform tree T and € > 0. Then there
exists C = C(e,T) such that for any finite graph G covered by T, we have

#{X € SpecG | A > p(T) — €} > CH#V(G).}

We remark that with |A| in place of A, this is a theorem of Greenberg, which was
unfortunately never published. Cioaba’s recent (my copy is dated 12/05) preprint
gives a nice writeup of the slightly stronger result. In the case of d-regular graphs
the result is in fact due to Serre. Serre’s beautiful 1997 JAMS paper places this
result in the larger context of equidistribution of eigenvalues of graphs and of Frobe-
nius operators on curves of finite fields (highly recommended!).

Putting these two theorems together we get the Alon-Boppana theorem. Note
that this is not at all Alon-Boppana’s proof: in fact their proof gives an explicit
error bound in terms of the girth of the graph. There have been many other papers
pursuing variations.
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This of course makes us want to compute the spectral radius of the universal cov-
ering tree of other finite graphs. There are algorithms for doing this (which I do
not understand as well as I would like); we state only one more case, which is quite
striking:

Theorem 9. (Li-Solé, [6]) The spectral radius of the semiregular tree T, 5 is /1 — 1+
s—1.

Thus:

Corollary 10. In any infinite family of (r, s)-semireqular bipartite graphs we have
infA\; >vr—14++s—1.

In fact:

Proposition 11. A\ (K, ) =+vr—1++s— 1L

This very strongly suggests that an (r, s)-semiregular graph should be called Ra-
manujan if it satisfies Ay < +/r — 1+ /s — 1. This definition was in fact made
about 20 years ago in a paper by Hasimoto, who as mentioned above, thought very
deeply about bipartite graphs. There are in fact other reasons for believing that
this is “the right definition” of a semiregular Ramanujan graph, involving the zeta
function, which we cannot try to squeeze into this talk. One nice consequence of
Hashimoto’s theory is the following:

Corollary 12. ([3]) If G is a Ramanujan d-regular graph, then the barycentric
subdivision G' is a Ramanujan (d,2)-semiregular graph.

In particular, combining with the known results on regular Ramanujan graphs, this
shows that the trees 7,41 2 cover infinitely many Ramanujan graphs for any prime
power q. Because we have at least the one Ramanujan graph K, . for any pair
(r, s), however, it is natural to conjecture more:

Conjecture 13. Every 7, s covers infinitely many Ramanujan graphs.

In fact there is a chance at using the strategy of the proof of the 7 4, case to
prove that, e.g. when (r,5) = (p+1,p?+ 1), 7, s covers infinitely many Ramanujan
graphs. All we can say here is that the g + 1-regular tree shows up naturally as the
Bruhat-Tits tree for SLs of a local field K/Q, whose residue field has cardinality
q (a sort of p-adic symmetric space). There are certain more exotic K-adic Lie
groups with K-rank 1 whose Bruhat-Tits building is a (p + 1,p? + 1)-semiregular
tree: the complete list of possibilities is found in a paper of Hashimoto and Hori [4].
It should be possible to use work of Helm on a Jacquet-Langlands correspondence
for the associated Shimura varieties to derive the Ramanujancy of these semiregular
graphs! This would make for a hell of a thesis project.

5. WHAT IS AN IRREGULAR RAMANUJAN GRAPH?

Note that we have not quite said what it means for a finite graph to be Ramanu-
jan. The preceding theory spells out a plausible definition, again propounded by
Greenberg in his thesis. I am not sure whether it is the “correct” definition. Let
me give it and then explain why I feel this way.

Our setup thus far involves starting with a tree 7 which covers at least one (and
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hence infinitely many) finite graphs G. Associated to 7 we have the spectral radius
p, and as we saw earlier the finite graphs G all have a common Perron-Frobenius
eigenvalue \o(G) = PF(T), with the property that any eigenvalue A # £PF(7) is
smaller in absolute value. This suggests the following:

A finite graph G is Ramanujan if for every eigenvalue A with |A\| < A9, we have
A < p(T), where T is the universal covering tree of G.

One’s first reaction to the definition is that given an actual finite graph G, it is
not completely clear how to compute p(7(G)). In fact there is a paper of Nag-
nibeda [10] which gives an algorithm for this.

But it is a little strange to ask whether a given graph is Ramanujan according
to this definition: Ramanujancy is a property which (as far as we have said) be-
comes significant only upon consideration of a family of graphs with a common
universal covering tree. So more natural is to define a (uniform, i.e., covering some
finite graphs) tree 7 to be Ramanujan if it covers infinitely many finite graphs
G with A (G) < p(7). Again, with this definition we unforunately do not know
whether 77 is Ramanujan.

On the other hand, we know that 77 covers at least one Ramanujan graph, namely
Kg. (For the record, it is easy to modify Kjg to get a fair-sized handful of Ramanu-
jan 7-regular graphs; what we cannot do as yet is produce infinitely many.) So
let us say that a uniform tree 7 is weakly Ramanujan if it covers at least one
Ramanujan graph. Now we have the following surprising result:

Theorem 14. (Lubotzsky-Nagnibeda [9]) There exist uniform trees which are not
even weakly Ramanujan.

This is a very interesting result, but I confess that it makes me think that this def-
inition of Ramanujancy is not the right one. Note for instance that the Greenberg-
Cioaba theorem deals with much more than the second-largest eigenvalue: it says
that asymptotically lots of eigenvalues will have to approach the spectral radius of
the universal covering. In the simplest cases it happens that there is always at least
one eigenvalue — the Perron-Frobenius eigenvalue — which lies above this bound. If
we are willing to ignore one eigenvalue, why not try ignoring a finite number?

So here is another definition, which starts at the bottom rather than the top.

Suppose G is a finite graph. For a finite covering graph H — G, define the relative
spectrum Spec,,.,,(H) to be Spec H \ SpecG.

Definition: We say that H is a Ramanujan covering of G if every A € Spec
satisfies || < p(G).

(H)

new

It is then tempting to make the following

Conjecture 15. (Ramanujan covering conjecture) Every finite graph G admits
infinitely many Ramanujan covering graphs.
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Note that an immediate consequence of this conjecture is that weakly Ramanujan
implies strongly Ramanujan. Even applied to d-regular graphs the conjecture is a
priori stronger than this: it is conceivable that the set of all d-regular Ramanujan
graphs is infinite but “horizontal” in the sense that no fixed graph has infinitely
many coverings. But we note that in all cases in which we know an infinite family of
d-regular Ramanujan graphs, we actually have infinitely many coverings of any fixed
graph. (In fact, much more is true: for a given graph in the family, the Ramanujan
coverings are cofinal in the set of all finite covering graphs.) Let us note that Joel
Friedman has some recent results which show — using probabilistic methods — that
any finite graph has infinitely many coverings whose new eigenvalues are “close” to
the Ramanujan bound.

Finally, the conjecture can be cleanly phrased in terms of the Ihara(-Hashimoto-
Bass) zeta functions of the graphs, a topic which we unfortunately found no time
to discuss.
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