
RAMANUJAN GRAPHS AND SHIMURA CURVES

PETE L. CLARK

What follows are some long, rambling notes of mine on Ramanujan graphs. For a
period of about two months in 2006 I thought very intensely on this subject and had
thoughts running in several different directions. In paricular this document contains
the most complete exposition so far of my construction of expander graphs using
Hecke operators on Shimura curves. I am posting this document now (March 2009)
by request of John Voight.

Introduction

Let q be a positive integer. A finite, connected graph G in which each vertex has
degree q+1 and for which every eigenvalue λ of the adjacency matrix A(G) satisfies
|λ| = q + 1 (such eigenvalues are said to be trivial) or |λ| ≤ 2

√
q is a Ramanujan

graph, and an infinite sequence Gi of pairwise nonisomorphic Ramanujan graphs of
common vertex degree q + 1 is called a Ramanujan family.

These definitions may not in themselves arouse immediate excitement, but in
fact the search for Ramanujan families of vertex degree q + 1 has made for some
of the most intriguing and beautiful mathematics of recent times. In this paper we
offer a survey of the theory of Ramanujan graphs and families, together with a new
result and a “new” perspective in terms of relations to (Drinfeld-)Shimura curves.

We must mention straightaway that the literature already contains many fine
surveys on Ramanujan graphs: especially recommended are the introductory treat-
ment of Murty [?], the short book of Davidoff, Sarnak and Vallette [?] (which can be
appreciated by undergraduates and research mathematicians alike), and the beau-
tiful books of Sarnak [?] and Lubotzsky [?], which are especially deft at exposing
connections to many different areas of mathematics. (Not to mention several works
of W. Li, Terras, Stark-Terras,. . .) Originally I was leery adding another survey-
type paper on Ramanujan graphs to the stack, until I realized: it is much more
dubious when the stack is empty (perhaps no one else cares about the topic) or
contains a single paper (perhaps the extant paper is definitive). Here, the fact that
there are so many survey papers on Ramanujan graphs indicates that many are
interested in the subject and that this is a theme which fruitfully admits many
different variations.

The main result on Ramanujan families is that they are known to exist when q+1 is
a prime power; all other cases are open. This has been the state of affairs for almost
15 years. Nevertheless more than 100 papers on Ramanujan graphs have appeared
in the past decade. Some of these papers – notably, those of Li, Terras and their
students – deal with families of Ramanujan graphs of variable vertex degree, a topic
that we almost entirely omit here for lack of anything new to say. The remaining
papers deal with generalizations of Ramanujan graphs, of which there are at least
three: (i) a notion of “Ramanujancy” for graphs with unequal vertex degrees; (ii)
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Morgenstern’s “Ramanujan diagrams” – a special kind of infinite weighted graph
closely related to the more exotic behavior of congruence subgroups acting on the
Bruhat-Tits tree in the equicharacteristic case; and (iii) various higher-dimensional
analogues: Ramanujan hypergraphs/complexes.

Here we discuss the case of graphs of unequal vertex degrees: it is not any more
cumbersome technically, and leads to an array of interesting new problems: for
instance, which trees cover at least one finite Ramanujan graph? It must be men-
tioned that the definition of irregular Ramanujan graphs is not universally agreed
upon: a somewhat weaker notion, which we unimaginatively call quasi-Ramanujan
may turn out to be more interesting. On the other hand, the notion of Ramanu-
jancy for (r, s)-semi-regular graphs – i.e., graphs admitting a bipartition for which
the vertices in the first set all have degree r and vertices in the second set all have
degree s – looks quite promising, and in itself justifies the more general definition.
We believe (following Lubotzky) that every (pa, pb)-semiregular Bruhat-Tits tree
should lead to the construction of (pa, pb)-semiregular Ramanujan families.

The most exciting recent work has been on on Ramanujan hypergraphs/complexes.
This has been pursued independently by several research groups, leading to slightly
different setups and results. I would dearly like to compare and unify these higher-
dimensional constructions, but they all use aspects of the theory of automorphic
forms, p-adic representations, and Bruhat-Tits buildings (and, implicitly, Shimura
varieties and p-adic uniformization) for a reductive group G/Q of higher rank: these
matters are well outside the scope of my current technical expertise. What I can
hope is that clarifying the underlying geometry of the one-dimensional situation
will give some clues as to the form a definitive higher-dimensional theory ought to
take.

Finally we come to the main point of this paper: to present the construction of
families of q + 1-regular Ramanujan graphs for all prime powers q in terms of a
Hecke-equivariant correspondence between two quaternionic Shimura curves over
a totally real global field F . When F = Q we are essentially just adding level N
structure (i.e., passing to a congruence subgroup) to a 40 year-old construction of
Ihara, which treats the case in which q is prime. We also attain as a special case
the graphs constructed in the seminal paper of Lubotzky-Philips-Sarnak [?]. We
note that the fact that the Ramanujan property for these graphs follows directly
from the Riemann hypothesis for classical modular curves over finite fields seems
to be missing from the literature: c.f. [?, Note 7.5.1]. When F = Fq(T ) we are giv-
ing a more geometric description of a construction originally due to Morgenstern.
Strangely, the construction does not seem to have been pursued for totally real
number fields F 6= Q (except in passing in the work of Jordan and Livné), despite
the fact when correctly set up, the construction goes through in the general case
with only minor technical complications.1

1Except that when F has even degree over its prime subfield, we need to assume the existence

of one more finite ramified prime than the general setup guarantees us. This shall be discussed in
more detail later.
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What is gained from these generalizations and recastings of work of Ihara, L-P-
S and Morgenstern? First, there is a technical advantage: by exploiting the most
basic difference between number fields and function fields – in particular, that for
all integers q + 1 ≥ 2 there exists a totally real number field F and a squarefree
ideal of F of norm q + 1, we are able to prove the following

Theorem 1. For q ≥ 2, there is a family of (q + 1)-regular graphs {Gn} each of
whose nontrivial eigenvalues satisfy

λ(Gn) ≤ 2ω(q+1)√q,

where ω(n) is the number of distinct prime divisors of n. The graphs Gn are
constructed deterministically.

Note that these graphs are Ramanujan graphs whenever q + 1 is a prime power;
for arbitrary q this is to my knowledge the best known bound on the nontrivial
eigenvalues in a deterministically constructed family of q + 1-regular graphs. In
particular, it improves upon a prior bound of Pizer [?], who used only the case of
quaternion algebras over Q.

There is another conclusion to be drawn. As we shall recall, Ihara attached to
every q + 1-regular graph G a zeta function ZG(s), a rational function of s of the
following special form:

ZG(s) = (1− u2)−q|G|/2 det(I −A(G)u + qu2)−1, u = q−s,

where |G| is the number of vertices of G and A(G) is the adjacency matrix. It
follows immediately that G is Ramanujan iff the reciprocal roots of the polynomial
PG(u) = det(I−A(G)u+ qu2) all have absolute value

√
q, i.e., are Weil q-numbers.

No arithmetic geometer could see this without being reminded of the Riemann hy-
pothesis for varieties over a finite field: for any smooth, connected projective variety
V/Fq

, all the roots of the characteristic polynomial PV (u) of the q-power Frobenius
Frq acting on H1(V, Q`) are Weil q-numbers. Thus one way to show that a graph
is Ramanujan is to identify an algebraic variety V such that PG(u) = PV (U).

This is in fact what the above construction accomplishes: we take V to be the
(good) reduction modulo a prime p of F of a suitable Shimura curve X/F . In other
words: for every prime power q, all but finitely many known q +1-regular Ramanu-
jan graphs G are obtained by identifying – up to trivial factors – the Ihara zeta
function of G with the Hasse-Weil zeta function of an algebraic curve!

I find this result to be remarkable in that it is simultaneously very exciting and quite
deflating: it indicates how completely dependent the constructions of Ramanujan
families are on arithmetic geometry. Since Theorem 22 is surely the best bound
we can wring from arithmetic-geometric methods, what then can we possibly do to
improve upon it?

1. Spectra of finite graphs

1.1. Graph-theoretic terminology. We shall assume that the reader has a prior
acquaintance with graph-theoretical notions and terminology. In view of the many
minor variations in the definitions and terminology, we shall begin with a few basics.

A graph G is a set V (of vertices), a set E (of oriented edges) and a map E → V ×V ,
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which we shall write as e 7→ (o(e), t(e)); here o(e) is the origin of e and t(e) is the
terminus. We shall require the existence of a fixed-point free involution i : E → E,
such that o(i(e)) = t(e), t(i(e)) = o(e); the i-equivalence classes will be referred to
as geometric edges. A choice of a set of representatives O for E/i is called an ori-
entation of G,2 and a pair (G,O) is called an oriented graph. However, in practice
we will suppress the O from our notation.

To an oriented graph G one associates a one-dimensional CW-complex, with
0-skeleton V , and whose 1-skeleton is O, with the obvious attaching maps. Con-
versely, the CW-complex determines the oriented graph. The underlying topological
space (which, by abuse of notation, we will also denote by G) is independent of the
choice of O. The fundamental group of G (at any basepoint) is a free group, and
the homology groups Hi(G, Z) are free abelian groups: hi(G, Z) = 0 for all i ≥ 2;
h0(G, Z) is equal to the number of connected components; and we put r = hi(G, Z),
the rank of G (which is the rank of π1(G) if G is connected). Suppose that G is
connected: then, as it is locally simply connected it admits a universal cover T (G),
a tree. Every covering space of G has in a canonical way the structure of a CW-
complex, hence it makes sense to speak of the coverings of a graph G. It follows
that there is a purely graph-theoretic notion of covering; we leave it to the reader
to formalize this.

For (i, j) ∈ V (G)2, let a(i, j) denote the cardinality of the set of edges e with
o(e) = i, t(e) = j. We say that i and j are adjacent if a(i, j) > 0. For any ver-
tex i, the degree of i is

∑
j∈V (G) a(i, j). Note well that we allow more than one

edge to join a pair of vertices, and we also allow edges with o(e) = t(e), i.e., loops.
Moreover, according to our conventions, each geometric loop based at a vertex i
contributes 2 to its degree. G is locally finite if each vertex has finite degree, and
has bounded degrees if supi∈V (G) d(i) = D < ∞.

1.2. Spectra of graphs. To a graph G, we may consider the Hilbert space H(G) =
`2(V (G)) for which the vertices of G form an orthonormal basis. If G is locally finite,
we can define the adjacency operator A, by

A(i) =
∑

j∈V (G)

a(i, j)j.

Evidently A is a self-adjoint linear operator on H(G); it is bounded iff G has
bounded degrees, in which case a rich and fruitful spectral theory applies. From now
on it shall go without saying that all our graphs have bounded degrees. Moreover,
in the remainder of this introductory section we shall assume that G is finite: in
this case, after identifying V (G) with {1, . . . , n}, we may represent the adjacency
operator by a matrix A whose (i, j)th entry is simply a(i, j). We define the spectrum
Spec G to be the set of (real, since A is symmetric) eigenvalues of A, taken with
(geometric = algebraic) multiplicities: we may write

Spec G = {{λ0 ≥ λ1 ≥ . . . ≥ λr}},

where the double braces are there to remind us that we have a set with multiplici-
ties (or a “multiset”).

2Notice that orientations always exist.
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The spectrum of a finite graph is an interesting invariant, to be viewed in anal-
ogy with the spectrum of the Laplacian on a compact Riemannian manifold. In
fact, one can define a combinatorial Laplacian (“on functions”) on an arbitrary
finite CW-complex; in the case of a finite graph, this turns out to be the linear
operator whose matrix representative with respect to our canonical basis is D−A,
where D is the diagonal matrix with (i, i) entry equal to d(i).

The following facts are easy to prove and left to the reader.

Proposition 2. For a finite graph G, let d = 1
|G|

∑
i∈V (G) d(i) be the average vertex

degree. Then Spec G ⊂ [−d, d].

A graph is d-regular if every vertex has degree d; these graphs have an especially
clean spectral theory and will be of most interest to us here (although the case of
irregular graphs leads to many interesting open problems).

Proposition 3. If G is d-regular, then the d-eigenspace consists of the locally
constant functions.

In particular, for a d-regular graph we have λ0 = d, and the multiplicity of d is
equal to the number of connected components (or, equivalently, to h0(G, Z).) If G
is connected, then in H(G), which is now just the set of all C-valued functions on
the vertices of G, the orthogonal complement of the d-eigenspace is the set of all
functions f with

∑
i∈V f(i) = 0.

In general the top eigenvalue λ0 depends only on the local geometry:

Theorem 4. (Greenberg) Suppose G1, G2 are two connected finite graphs with
isomorphic universal coverings. Then λ0(G1) = λ0(G2).

Example: The universal cover of any d-regular graph is the d-regular tree Td.

Recall that a graph is bipartite if we can paritition V (G) into V1

∐
V2 such that

two vertices are adjacent only if one is in V1 and the other is in V2.

Example X: A graph is (d1, d2)-semiregular if it admits a bipartition V1

∐
V2 such

that each vertex in Vi has degree di. The universal cover of such a graph is the
(d1, d2)-semiregular tree.3 We claim that for a finite (d1, d2)-semiregular graph,
λ0 =

√
d1d2. Indeed, let A be its adjacency matrix. Then B := A2 is the matrix

whose (i, j) entry counts the number of paths of length 2 from i to j. For any i,∑
j b(i, j) is equal to the number of length 2 paths starting at i, which is evidently

d1d2. Thus (as in Proposition 3), the constant function is an eigenfunction for B
of eigenvalue d1d2, which means that at least one of ±

√
d1d2 is an eigenvalue of A.

The following proposition shows that both occur.

Proposition 5. For a finite graph G, the following are equivalent:
a) Spec G = −Spec G (with multiplicities).
b) G is bipartite.
c) If G is d-regular, −d ∈ Spec G.

3In other words, we claim that there is, up to isomorphism, a unique (d1, d2)-semiregular tree,
a fact we leave to the reader to verify.
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For a d-regular graph G, we define the cuspidal spectrum Specc G = Spec G∩(−d, d),
and

λ = λ(G) = max{|λ| | λ ∈ Specc G}.
Example X: Let Kr be the complete graph on r vertices (i.e., a(i, j) = 1− δ(i, j)).
Then

Spec Kr = {{r − 1,−1, . . . ,−1}},
where −1 occurs with multiplicity r − 1. Indeed, the case of r = 2 is immediate,
so assume r ≥ 3. As Kr is not bipartite, Specc Kr = {f : V → C |

∑
i f(vi) = 0}.

For any such function,

(Af)(vi) =
∑
j 6=i

f(vj) =
∑

i

f(vi)− f(vi) = −f(vi).

Example 4: Let Cr be the r-cycle, i.e., the graph with vertex set Z/rZ and with i
adjacent to i − 1 and i + 1 (mod r). It turns out that the eigenfunctions are the
characters: for 0 ≤ a < r, let χa : V → C by χa(i) = e2π

√
−1 a

r i. Then

Aχa(i) = χa(i + 1) + χa(i− 1) = χa(i) (χa(1) + χa(−1)) ,

so χa is an eigenfunction with eigenvalue χa(1) + χa(−1) = 2 cos( 2πa
r ). So

Spec Cr = {2 cos(
2πi

r
)}0≤a<r}.

Semiloops: From a purely algebraic standpoint, it seems artificial to proscribe ad-
jacency matrices whose diagonal elements can be odd positive integers. We can
give such matrices a geometric interpretation (of a sort) in terms of semiloops: in
other words, an edge e with o(e) = t(e) and which is equal to its own inverse. Such
a thing would contribute 1 to the degree of its incident vertex. In fact graphs with
semiloops arise naturally, namely as the quotient of an honest graph under the ac-
tion of a group which fixes a geometric edge but reverses its orientation. There is,
in general, no reason why a group action should not do this, and by restricting to
group actions without inversions one misses out on some fundamental phenomena
(see [?]). In this note we will use graphs with semiloops as intermediate steps in
constructions (so the reader who finds them distasteful is free to make other slightly
more complicated, constructions to avoid them). One annoying feature is that a
graph with (possible) semiloops is no longer uniquely determined by its adjacency
matrix when a(i, i) > 1. To build graphs from adjacency matrices, we will make
the convention here of minimal semiloops: i.e., given an adjacency matrix, we build
the corresponding graph with zero (resp. 1) semiloops at a vertex i if a(i, i) is even
(resp. odd).

Example 3 (L operator): Consider the operator L on finite graphs (with semiloops)
which takes the adjacency matrix A to I + A: geometrically speaking, L adds a
semiloop to each vertex. Clearly Spec LG = 1 + Spec G.

Example 4 (bipartite cover): Consider the operator G 7→ G̃, which takes A to[
0 A
At 0

]
; we call G̃ the bipartite cover of G.

Proposition 6. a) For any finite graph G, G̃ is a bipartite graph.
G itself is bipartite iff G̃ is not connected.
c) Spec G̃ = Spec G

∐
(−Spec G).
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Note that the construction is strongly reminiscent of the orientation covering of a
manifold.4 It also gives a sense in which nonbipartite graphs are more interesting
than bipartite graphs: given any nonbipartite graph, we can always produce a bi-
partite graph with the same absolute values of eigenvalues (in particular, given a
graph with semiloops we can always build an graph with the same positive eigen-
values) but the converse is not necessarily true.

Example 5: Let Kr,r := L̃Kr. It follows from the above that its spectrum is
{{±r, 0}}, where 0 occurs with multiplicity 2r − 2.

1.3. Automorphisms and spectra.

Clearly the spectrum of a given finite graph is a computable invariant, either exactly
– as the characteristic polynomial of the adjacency matrix – or approximately – i.e.,
one can find the multiplicities of all the elements of the spectrum and computing
them as decimal numbers to any prescribed degree of accuracy – , as a built-in fea-
ture of almost any mathematical software package.5 (How much time and memory
are required to do these computations as a function of the size of G is an issue that
my ignorance forces me to omit completely.) However, given a family of graphs
{Gi} it is in general quite challenging to say something about the limiting behavior
of their spectra. Necessarily then the exploration of graphs with interesting spectral
properties involves finding certain special kinds of graphs whose spectra are easy
(or at least easier) to compute.

The most useful idea is to consider graphs with symmetry: let G be a finite group
acting effectively on V (G) (on the right, let us say) by graph automorphisms. Then
the elements g of G act isometrically on H(G) = {f : V (G) → C} – indeed, on
HQ(G) = {f : V (G) → Q} – and commute with the self-adjoint operator A:

(gAf)(i) = g
∑

j

a(i, j)f(j) =
∑

j

a(i, j)f(g−1j) =
∑

j

a(g−1i, g−1j)f(g−1j)

=
∑
g(j)

a(g−1i, j)f(j) = (Agf)(i).

Thus the λ-eigenspaces of A are G-stable, from which we may deduce relations be-
tween Aut(G) and Spec G: for instance, if all the eigenspaces are one-dimensional,
then G embeds into the group of |G| × |G| diagonal matrices with real entries, so
that G is abelian of exponent 2.

The following is a key result:

Theorem 7. (Babai, Diaconis-Shashahani) Let G be a finite loopless graph, and
G a finite group acting simply transitively on V (G), so that after fixing a vertex
1 we may identify V (G) with G. Let S be the multiset in which g ∈ V (G) occurs
with multiplicity a(1, g). Assume that S is stable under inner automorphisms of G.
Let ρ1, . . . , ρr be the irreducible complex characters of G, and di = dim ρi = ρi(e).
Then the eigenvalues of G are λi = 1

di

∑
s∈S χi(s), occurring with multiplicity d2

i .

4Indeed, I presume that both are special cases of some more general construction.
5Probably MATLAB is the best at these sort of computations
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For the proof (which will obviously require some notions from representation the-
ory) see [?, p. 106-107]. In the case that G is abelian, the result much simplifies:
there are no nontrivial inner automorphisms, and the irreducible characters χi of
G are all one-dimensional. Indeed, we need only observe that χi, viewed as an el-
ement of H(G), is an eigenfunction with eigenvalue

∑
s∈S χi(s), i.e., the argument

of Example X applies.

Example X: Let G be the one-skeleton of the n-dimensional hypercube. We have an
evident simply transitive action by G = Fn

2 with S = {ei}n
i=1, where ei(j) = δ(i, j)

is the ith standard basis element. After identifying the groups F2 and ±1, the
F2-linear functionals ϕ : Fn

2 → F2 on G are precisely the irreducible characters
χ : Fn

2 → C× of G. Thus the eigenvalues are
∑n

i=1 χ(ei). Since the 2n linear func-
tionals are obtained by linear extension of the 2n maps f : S → F2, we find that
the eigenvalues are precisely the sums of all possible sign sequences (ε1, . . . , εn) of
length n. So for all k, 0 ≤ k ≤ n, we have an eigenvalue n−2k with multiplicity

(
n
k

)
.

Example X: Given graphs G1, G2, we can form a graph G1 ⊕ G2 with vertex
set V = V (G1)× V (G2) and edge set E = E(G1)× V (E2)

∐
V (G1)×E(G2), with

the obvious projection map E → V . (This is indeed the direct sum in the category
of graphs.) Then (when G1, G2 are finite) [?]

Spec(G1 ⊕G2) = Spec G1 + Spec G2 = {{λi + µj | λi ∈ Spec G1, µj ∈ Spec G2}.
Since G =

⊕n
i=1 • − •, and Spec(• − •) = {±1}, this gives another computation of

its spectrum.

Conversely, given a (not necessarily finite) group G, and a multisubset S of G \ 1,
we can construct a directed graph with a simply transitive (right) G-action: namely
we take V (G) = G and for every g ∈ G and s ∈ S insert an oriented edge e with
o(e) = g, t(e) = gs. Assume moreover that S = S−1; then (g, gs) 7→ (gs, g) =
(gs, gss−1) defines a fixed-point free involution on the oriented edges giving us the
structure of a graph. This construction is called the Cayley graph of G with respect
to S and written Cay(G, S).

Proposition 8. a) Cay(G, S) is connected iff S generates G.
b) Cay(G, S) is simple iff elements of S occur with multiplicity 1.

An order two element x ∈ S plays a special role: as an automorphism of G x inverts
the edge corresponding to s, whereas elements of order n ∈ [3,∞] act without in-
versions. Moreover, the condition S = S−1 means that given a set S′ = {γ1, γr+s}
of nontrivial generators for a group G, if γ1, . . . , γr have order 2 and γr+1, . . . , γr+s

do not, then the corresponding symmetrized generating set S = S′ ∪ S′−1 leads to
a Cayley graph of degree r + 2s.

For an arbitrary multisubset S′ ⊂ G\1, let us define Cay(G, S′) = Cay(G, S′∪S′−1).

Example X.X: Let Fn = Free(x1, . . . , xn) be the free group on the set S′ =
{x1, . . . , xn}. Then Cay(F, S′) is the regular tree of degree 2n. Conversely, a
group acting freely without inversions on a tree is necessarily a free group (CITE).

Example X.X: Consider the free product G = Fr
i=1Z/2Z ? Fs

j=1Z, or if you like,
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the group with presentation:

〈x1, . . . , xr, y1, . . . , ys | x2
1 = . . . = x2

r = 1〉.
Then Cay(G, {x1, . . . , xr, y1, . . . , ys}) is a regular tree of degree r+2s – indeed, the
only relations x2

i = 1 correspond to paths with backtracking on the Cayley graph.
Conversely, a group acting freely on a tree is necessarily the free product of some
(possibly infinite) number of copies of Z/2Z with some number of copies of Z.

The Cayley graph construction generalizes to merely transitive group actions: in-
deed, given a group G, a subgroup H, and a symmetric multisubset S of G, we
may build a graph with vertex set given by the left coset space H\G, and with
edges (gH, sgH). This called a Schreier graph, and will be (a bit unfairly) denoted
by Cay(G/H, S). There is a similar result to Theorem XX for the computation of
the spectrum of a Schreier graph (when S is stable under conjugation): the only
difference is that H(G), as a C[G]-module, is now isomorphic to C[G/H] (or, if you
like, the induction from H to G of the trivial module). Thus, for each irreducible
character χi the eigenvalue 1

di

∑
s∈S χi(s) occurs with multiplicity equal to di times

the multiplicity of χi in C[G/H].

2. Expanders and Ramanujan graphs

2.1. Definitions. For a finite graph G, the spectral gap is the quantity ω(G) =
λ0(G)− λ1(G).

We will be interested in studying infinite sequences of finite graphs. To avoid
trivialities, it is convenient to define a family F to be a sequence {Gi} of finite
graphs satisfying:

(F1) |V (Gi)| → ∞ with i.
(F2) The number of connected components h0(Gi, Z) is a bounded function of i.
(F3) There is a fixed tree T such that the universal cover of every connected com-
ponent of every Gi is isomorphic to T .

Definition: A q-family is a family of (q + 1)-regular graphs.6

Remark: The ordering of the elements in a family is not of any importance. When
one is comparing two families F1 and F2, it is convenient to choose some universal
enumeration {Gi} of all finite graphs and then put the elements of the family in
order according to this enumeration (or, rather, to keep in mind that this can be
done!).

Remark: By (F1), a given graph may occur up to isomorphism in a family F
only finitely many times. Thus any family has a subfamily of pairwise nonisomor-
phic graphs; the maximal such family – i.e., in which we just take each isomorphism
type occurring in the family exactly once. We call this Fs, the reduced subfamily
of F .

Definition: We will say that a family F1 is essentially contained in another family

6The reasons for this strange normalization will become clear later.
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F2 if all but finitely many graphs in F1 occur (up to isomorphism, of course) i F2;
we denote this by F1 ≤ F2. If F1 ≤ F2 and F2 ≤ F1 we will say that the two
families are essentially equal and write F1

∼= F2.

Definition: An expander is a family {Gi}∞i=1 of finite graphs such that inf ω(Gi) > 0.

Remark: Note that (E) implies that Gi is connected for all i, since ω(G) = 0
for disconnected graphs.

An adequate explanation of the importance of expanding graphs in (e.g.) com-
puter science and network design is beyond the scope of our expertise: we refer the
reader to XXX. Roughly speaking, a family of expanders gives us a way of building
a sequence of networks which are sparse – (F3) implies that the number of edges
grows linearly with the number of vertices – but nevertheless propagate information
very efficiently. To get at least an idea of what the latter statement might mean,
we define the isoperimetric constant h of a connected finite graph G: namely, for
all ways of partitioning V (G) into two subsets V1

∐
V2, consider the ratio of the

number of edges running between V1 and V2 to the smaller of |V1| and |V2|. The
least number obtained in this way is, by definition, h(G). Define h(G) = 0 if G is
not connected.

Theorem 9. Let {Gi} be a family of finite graphs satisfying (E1) and (E2). Then
inf ω(Gi) > 0 iff inf h(Gi) > 0.

This is a corollary of a more precise double inequality, due to Alon, Dodziuk,
Milman and Tanner: see e.g. [?], [?].

It turns out that in fact, “most” families of graphs satisfying (E1) and (E2) also
satisfy (E3). In other words, there exists ε > 0, depending upon G̃ = G̃i, such that
the probability that a graph G with n vertices and universal cover G̃ has ω(G) ≥ ε
tends to 1 as n →∞. (We will not enter into the details of the probabilistic model;
the result holds for any reasonable way of counting.) The proof is not at all difficult:
see [?, §1.2] for the case when G̃ is the k-regular tree.

The idea of showing existence of a discrete structure with certain properties by
showing that the probability that a random structure has the property is positive
(“the probabilistic method”) is due to Erdos and Renyi; their original paper in fact
addresses this kind of result. The probabilistic method has had a revolutionary
effect on discrete mathematics: for most problems, it is much easier to prove the
existence of a structure with the desired properties probabilistically than to give
an explicit construction.7 Of course, if you are building a fiber-optic network, then
the existence, or even the probabilistic ubiquity, of networks with good expansion
properties, is not of much use to you: you want an explicit construction, and ideally
a method for producing explicit constructions robust enough to incorporate other
properties you want or need your network to have.

7Gian-Carlo Rota has written that the problem conversion of probabilistic methods into explicit

constructions is one that should be of interest to philosophers of mathematics (rather than, say,
the problem of the existence of the number 2.
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We will view the above discussion as some motivation for being interested in the
spectral gap ω. But in fact, we will be more interested in families {Gi} not only
with ω = inf ω(Gi) > 0, but in fact with ω as large as possible. In other words,
despite the fact that maximizing ω is not necessarily the same thing as maximizing
h = inf h(Gi), we will be interested in the former problem. Our reasons for this
will become more clear presently. In any event, we can ask: how large can the
asymptotic spectral gap ω possibly be?

The answer comes from the spectral theory of the adjacency operator A on the
(infinite-dimensional!) Hilbert space H(G̃): like any bounded self-adjoint linear
operator on Hilbert space, it has a spectrum Spec A, the set of real numbers λ such
that λI −A does not have a bounded inverse (i.e., either it is not invertible, or the
inverse is unbounded), a compact subset of R. In the case of the adjacency opera-
tor on a tree G̃, then as in the finite case, the bipartiteness implies that Spec A is
symmetric about the origin. The maximum element of Spec A is called the spectral
radius ρ of A; it can also be characterized as the norm of A and in many other
ways. The following key result explains how the geometry of the universal cover
gives an upper bound on the spectral gap.

Theorem 10. (Greenberg) Let {Gi} be a family of finite connected graphs with
isomorphic universal covers, and let ρ be the spectral radius of the universal cover.
Then λ1 := inf λ1(Gi) ≥ ρ.

Since λ0(Gi) is constant in any family, the result is equivalent to an upper bound
on the spectral gap: ω ≤ λ0(G)− ρ.

The spectral radius of the universal cover of a finite graph is an algebraic num-
ber, and an algorithm for computing it is given in [?]. The most important case is
the following:

Theorem 11. (Li-Solé) For r, s ≥ 2, let Tr,s be the (r, s)-semiregular tree. Then
ρ =

√
r − 1 +

√
s− 1.

Taking r = s and combining the previous two results we get the following im-
portant result (which predates Theorems 10 and 11 and was originally proved by
more elementary methods):

Corollary 12. (Alon-Boppana) Let {Gi} be a sequence of q-regular graphs. Then
lim infi λ1(Gi) ≥ 2

√
q.

Definition (Lubotzky-Tagnibeda): A finite graph G is Ramanujan if |λ1(G)| ≤
ρ(G̃). A Ramanujan family is a family {Gi} of Ramanujan graphs, i.e., a family
with |λ1(Gi)| ≤ ρ(G̃) for all i. Note that Greenberg’s theorem now implies that
|λ1(G)| = inf |λ1(Gi)| = ρ(G̃). Thus, although we have defined what it means for a
single graph to be Ramanujan, the motivation for the definition comes from families:
a Ramanujan family is precisely a family whose first eigenvalue |λ1| = inf |λ1(Gi)|
attains the Alon-Boppana-Greenberg bound ρ(T (F)).

Definition: An infinite tree (all our trees will be infinite, from now on) T is Ra-
manujan if it is the universal cover of a Ramanujan family, and weakly Ramanujan
if it is the universal cover of at least one Ramanujan graph.
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Given a tree T , define R(T ) to be the set of all Ramanujan quotient graphs of
T . We abbreviate Rq = R(Tq+1) and Rr,s = R(Tr+1,s+1).

Example X (q = 2): The 2-regular tree T2 is a doubly infinite path, the Cay-
ley graph of G = Z. Its finite quotients are precisely the r-cycles Cr – corre-
sponding to the “congruence subgroups” rZ of Z – and by Example X.X we have
λ1(Cr) ≤ 2 = 2

√
2− 1. Thus every finite quotient of T2 (and in fact there are

no nontrivial infinite quotients) is Ramanujan. On the other hand, note that
λ0(Gi) = 2, so ω = inf 2 − λ1(Gi) = 0, so this is not an expander. This is an
exceptional situation:

Proposition 13. For any (r, s) 6= (1, 1), T (r, s)-Ramanujan families are ex-
panders.

Proof: By Example X.X, λ0(Gi) =
√

(r + 1)(s + 1) >
√

r +
√

s = ρ(Tr,s).

We are now ready to ask some very difficult questions:

Question 14. For a bounded tree T , describe R(T ). Is it nonempty? Is it infinite?

Clearly a necessary condition for R(T ) to be nonempty is that T cover some finite
graph – this is called uniform – and a necessary condition for this is that T be
almost regular, i.e, that its automorphism group has finitely many orbits on T . It
is clear that “most” trees of bounded degree are not almost regular (e.g. the set of
isomorphism classes of trees of bounded degree is uncountable but there are only
countably many isomorphism classes of almost regular trees), so for most trees we
have R(T ) = ∅ for trivial reasons. On the other hand, a much more surprising
result of Lubotzky-Nagnibeda constructs a large family of uniform trees which are
not weakly Ramanujan.

Remark: More precisely, L-N construct trees T such that any finite quotient G
of T has λ1(G) > ρ(T ). In analogy with the fact that λ0(G) > ρ(T ) for every
regular graph, it is tempting to view λ1(G) as being another “trivial” eigenvalue.
Indeed, if one can show of a tree T that it admits finite quotients and that for
every finite quotient we have k ≥ 1 eigenvalues exceeding, in absolute value, the
spectral radius ρ(T ), then it is tempting to throw these out. In this way, one could
define a tree T to be quasi-Ramanujan if there exists some k ∈ Z and an infinite
sequence of finite quotients Gi such that for all but k of the eigenvalues λ of Gi we
have |λ| ≤ ρ(T ). It is then conceivable that every uniform tree is quasi-Ramanujan.

Although these speculations on the nature of Ramanujancy for very irregular graphs
seem interesting, the case of semiregular graphs is much more interesting. Indeed,
the following question gets to the heart of the matter:

Question 15. Is every weakly Ramanujan tree Ramanujan?

In other words, given one Ramanujan graph G, can we somehow “replicate” it to
give infinitely many Ramanujan graphs with the same universal cover? In partic-
ular, can we find infinitely many covers of G which are Ramanujan? It is very
tempting to believe that the answer is yes (in fact I do believe it), but there is
no simple toplogical or group-theoretical construction. For instance, one can check
that, unless G is 2-regular, not all of its finite coverings are Ramanujan graphs.
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(EXPLAIN)

Nevertheless our best guess is that Question 15 has an affirmative answer. In-
deed, there are no known counterexamples, and it is known to hold for infinitely
many regular and semi-regular trees.

3. Examples of non/expanding and non/Ramanujan families

Example X: The graphs Kr, Kr,s are all Ramanujan graphs. Therefore the trees
Tr,s are weakly Ramanujan, and none of them are known not to be Ramanujan.
As we shall see later, there are infinitely many pairs (r, s) for which Tr,s is known
to be Ramanujan, but for most pairs – in particular, for all pairs with 2 < r < s –
the problem remains wide open.

Example X.X: The hypercube graphs (Cay((Z/2Z)n, {e1, . . . , en}) of Example X.X
are Ramanujan iff n ≤ 6.

Example X.X: Given a single non-Ramanujan graph G (which is not a tree), we can
build a non-Ramanujan family by taking any family of finite coverings Gn of G.
Indeed, if G′ → G is a covering map of finite graphs then Spec G ⊂ Spec G′ (with
multiplicities): indeed, each eigenfunction for AG pulls back to an eigenfunction
for AG′ with the same eigenvalue. Combining with the previous example, we get
non-Ramanujan q-families for q ≥ 6.

Example X.X: Let Mn be the nth Mobius ladder, i.e., the Cayley graph for the group
Z2n = 〈γ | γ2n = 1〉 with respect to the symmetric generating set S = {γ, γ−1, γn}.
The eigenvector corresponding to the character χ2 : γr 7→ eπ

√
−12r/n has eigenvalue

χ2(1) + χ2(−1) + χ2(n) = 2 cos(2π/n) + 1. As n →∞, this eigenvalue approaches
3 = λ0(Mn), so this gives a simple example of a cubic nonexpander (a fortiori a
non-Ramanujan family). By taking the element γn with multiplicity k ≥ 1, we get
a family of nonexpanders of degree 2 + k, i.e., all possible degrees.

Example X.X: More generally, for any k ≥ 2, it is not too hard to see that if {Gi} is
any family of k-regular Cayley graphs on finite abelian groups, then limi λ1(Gi) = k.
See [Murty et. al.] for a quantitative refinement.

3.1. Planar Ramanujan graphs. Non-example X: For fixed q > 1, there are only
finitely many planar Ramanujan q-graphs. More generally: define the embeddability
genus of a finite graph to be the least g ≥ 0 such that G embeds in a compact
orientable surface of genus g. (To see that g is finite, we may embed G in R3 and
then take the boundary of a sufficiently small tubular neighborhood.) Note that
“planar” is equivalent to “embeddability genus 0.”

Theorem 16. (Kelner) Let Gn be a sequence of graphs whose vertex degrees and
embeddability genera are both uniformly bounded. Then limn→∞ ω(Gn) = 0.

Even if we consider all vertex degrees d ≥ 3 simultaneously, it is an open problem
whether there are infinitely many planar Ramanujan graphs; apparently the largest
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known example has 84 vertices.

Example: The one-skeleton of each of the five platonic solids – i.e., the tetra-
hedron, the cube, the octahedron, the dodecahedron and the icosahedron – is a
planar Ramanujan graph. What is to be made of this?

One can check that not all of the (one-skeleta of the) semiregular polytopes are
Ramanujan graphs, so this is the wrong generalization. On the other hand, con-
sider first the cube (degree 3) and the dodecahedron (degree 5). These are the first
two graphs in an infinite sequence, as follows: for an odd prime let X(p) = Γ(p)\H
be the compactification of the Riemann surface uniformized by the principal con-
gruence subgroup Γ(p) ⊂ PSL2(Z) = Γ(1). Since Γ(p) is normal with quotient
PSL2(Fp), we get a Galois covering X(p) → X(1) = Γ(1)\H ∼= P1(C), i.e., the
Riemann sphere, the isomorphism being given by the modular function j. On X(1)
consider the three points with j-invariant 1728, 0,∞; these are the three ramifi-
cation points of the cover, with ramification indices (2, 3, p). There is a unique
geodesic circle connecting these three points; this gives a triangulation of X(1) into
two triangles, which we intuitively think as having two different colors, say red and
green. The preimage of this triangulation gives a triangulation on X(p) with a nat-
ural biparition: there are #PSL2(Fp) red and #PSL2(Fp) green triangles, and the
automorphism group acts simple transitively on triangles of a given color. Notice
however that PSL2(Fp) does not act transitively on the vertices, but rather has
three orbits, corresponding to the three vertex degrees 4, 6 and 2p. However, we
can restrict attention to the cusps, i.e., the preimages of j = ∞, which have degree
2p: namely, we remove all the edges which run between the vertices of degree 4
and 6. In other words, we remove preimage of the open geodesic segment (0, 1728)
on X(1). On the resulting graph, the preimages of 0 and 1728 now have degree 2
and we cease to regard them as vertices. This defines a finite graph G(p) which is
immediately seen to be a p-regular Schreier graph of PSL2(Fp) modulo an order p
(unipotent) subgroup U .

Theorem 17. (Gunnells) For all odd primes p, the graph G(p) is a p-regular
Ramanujan graph.

For p = 3 and 5 (and no other primes) X(p) has genus zero, so that the graphs
G(3) and G(5) give triangulations on the Riemann sphere, with respective symme-
try groups PSL2(F3) ∼= A4 and PSL2(F5) ∼= A5. These spherical triangulations
are well-known: G(3) is the tetrahedron and G(5) is the icosahedron. What about
the octahedron? Indeed X(4) also has genus zero, and PSL2(Z/4Z) ∼= S4, and the
analogously defined triangulation G(4) is the octahedron. (It follows from Gun-
nells’ work that for most composite values of n, G(n) is not a Ramanujan graph;
the case of n = 4 is exceptional.)

There are many other interesting graphs related to this construction. For instance,
consider instead the preimage of [0, 1728] under the covering H → Γ(1)\H. We
get the action of PSL2(Z) on the semiregular tree T2,3 with vertex stabilizers
Z/2Z and Z/3Z which exhibits the classical isomorphism PSL2(Z)Z/2Z ∗ Z/3Z
(cite Serre). For any congruence subgroup Γ ⊂ Γ(1), we may therefore consider
the finite graph Γ\T2,3. Assuming that Γ is torsionfree – e.g. Γ(p) for all p – we
get a family of (2, 3)-semiregular quotients. These are the barycentric subdivisions
of 3-regular graphs, indeed the Schreier graphs G′(p) = X(PSL2(Fp)/〈R〉, {S, T}),
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where R = [01 − 1 − 1], S = [01 − 10 and T = RS = [1101]. It follows from deep
results of Selberg on the spectrum of the hyperbolic Riemannian surfaces Y (p) that
this family of graphs forms an expander. The Cayley graphs themselves also appear
in the picture: we can pair each red triangle with a unique green triangle so as to
make a triangle with angles π/3, π/3, 2π/p: PSL2(Fp) acts simply transitively on
these paired triangles; regarding two paired triangles as adjacent if they share an
edge, we get Cay(PSL2(Fp), {S, T}). Might it be possible to relate the spectra of
G′(p) and G(p) and therefore deduce this from Theorem 17?

More generally, given a hyperbolic triangle group ∆(a, b, c), one can define, following
Beasley-Cohen and Wolfart, a family of congruence subgroups Γ of ∆; the principal
congruence subgroups are normal, of finite index, with quotients PSL2 or PGL2

with coefficients in certain finite rings. The map X(Γ) = Γ\H → ∆(a, b, c)\H =
X(1) ∼= P1 is a Galois Belyi map, so as above we get an associated triangulation
of the Riemann surface X(Γ) (a “dessin d’enfant”). For all but 85 triples (a, b, c),
these are (so-called!) non-arithmetic Fuchsian groups, so the methods of Selberg
do not apply. However, it seems likely that we will nevertheless get families of
expanders.
In particular, any q-family with bounded embeddability genus (e.g. planar graphs!)
is not even an expander, let alone (for q > 1) a Ramanujan family.

There is a natural infinite sequence of cubic (i.e., 3-regular) graphs whose first
three members are the tetrahedron, the octahedron and the icosahedron. Namely,
for any prime p, consider the modular curve X(p) (as, for now, a compact Rie-
mann surface) and its canonical map X(p) → X(1) ∼= P1, the isomorphism being
given by the modular function j. The standard (Dirichlet) fundamental domain for
Γ(1) = PSL2(Z) acting on H gives rise to a tiling of the extended upper halfplane
by pairs of (2, 3, p) hyperbolic triangles joined along a common side; since Γ(p) is
normal of finite index in Γ(1), the quotient PSL2(Fp) acts on the tiling, and the
orbit of a given double triangle gives a fundamental domain for Γ(p). Taking the
one-skeleton, we get a planar graph G̃(p). Moreover, for every oriented exterior
edge e, there exists a unique element γ ∈ Γ(p) such that γ(e) is another oriented
exterior edge, and this defines a quotient graph G(p) which admits a natural ac-
tion of PSL2(Fp) with vertex stabilizer a unipotent (cyclic) group of order p. In
particular, for odd p, G(p) is regular of degree 1/2(p+1)(p2−p)

p = p2−1
2 (and degree

3 for p = 2). In particular G(p) is a Schreier graph for PSL2(Fp)/U , where U is
a unipotent group (with respect to a particular set of generators), and from this
observation Gunnells shows, using nothing but the known representation theory of
PSL2(Fp), that all the graphs G(p) are Ramanujan graphs.

(Explain how the Ramanujancy of the cube and the dodecahedron follows from
“planar duality.”)

Example X.X: For a graph G, we define its barycentric subdivision G(2) by
placing a vertex in the middle of each edge. This replaces an r-regular graph by a
(r, 2)-semiregular bipartite graph.
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Proposition 18. (Hashimoto) Let G be a d-regular finite graph. Then G is Ra-
manujan iff G(2) is Ramanujan.

Proof: . . .

Remark: It seems likely that the result holds for all finite graphs, although I have
not tried to do the computation. (Perhaps it is even true that the Ramanujan
property is preserved by all edge subdivisions, i.e., is a homeomorphism invari-
ant.) However, it is especially easy to check that starting with a (r, s)-biregular
Ramanujan graph, repeated barycentric subdivision preserves the Ramanujan prop-
erty. Thus there exist weakly Ramanujan trees T with arbitrarily many orbits of
Aut(T ).

Most bounded trees do not have enough symmetry to cover any finite graphs,
let alone Ramanujan graphs. More surprisingly, Lubotzky and Tagnibeda have
constructed classes of trees T covering finite graphs but with R(T ) = ∅. Their trees
have the property that there is a unique minimal finite G0, with λ = λ1(G0) > ρ.
This implies, as in Example X.X, that every finite quotient G of T has the eigenvalue
λ: since ρ < λ < λ0(G) = λ0(G0), G is again not Ramanujan.

3.2. Some non-Ramanujan graphs.
G. Rota has written of the importance of illuminating a key definition with non-
examples as well as examples. So let us give two ways of constructing families of
non-Ramanujan graphs, and indeed, non-expanders.

Note that X(p) has genus 0 only if p ≤ 5 (indeed X(7) is Klein’s quartic surface,
of genus 3), so we may not conclude that the other G(p)’s are planar (presumably
only finitely many of them are planar). On the other hand, using the fact that
G(p) is the 1-skeleton of a 2-dimensional cell complex, we may consider the “dual”
graph G∨(p) whose vertices are the 2-cells and whose edges are the 1-cells; this is
evidently a cubic graph. It follows from a celebrated theorem of Selberg (on the
point spectrum of the Riemannian manifold Y (p) = Γ(p)\H) that the G∨(p)’s form
an expander; we refer the interested reader to the discussion in [?]. From this result
and Kelner’s theorem we may conclude that the genus of X(p) tends to infinity with
p!8

Example: Let ∆ = ∆(2, 3, 7) be the Fuchsian group generated by ra ◦ rb, rb ◦
rc, rc ◦ra, where ra, rb, rc are reflections through the sides of a hyperbolic triangle
whose angles are π/2, π/3, π/7. This Fuchsian group is well-known to be arith-
metic; it is the group of norm 1 units in the quaternion algebra over F = Q(ζ7+ζ−1

7 )
which is ramified at two infinite places and unramified at every finite place. For
any prime ideal p in the ring of integers of F , we have the notion of a principal
congruence subgroup Γ(p) and hence a cover X(p) → X(1) ∼= P1. Similarly to the
above example, we get a tesselation of a fundamental region for Γ(p) by pairs of

8Of course, this also follows from the above description of the branched cover X(p) → X(1)
together with the Riemann-Hurwitz formula.
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(2, 3, 7) hyperbolic triangles as the orbit of a single paired triangle under the group
PSL2(Fq), where Fq = oF /p. This leads to graphs G̃(p)and G(p), endowed with a
transitive action of PSL2(Fq) with vertex stabilizer an order 7 (cyclic!) subgroup
H. When p is the unique of F above 7, this is exactly the graph G(7) constructed
above; for all other primes H is not a unipotent subgroup, so this gives something
new. One should be able to check whether these graphs are Ramanujan by using
the same (well-known, but nontrivial) methods as [?] and [?]; I have not done the
computation. On the other hand, the “dual” cubic graphs G∨(p) form a family of
expanders for the same reason: Selberg’s work extends to all congruence arithmetic
Fuchsian groups.

More generally, for any hyperbolic triangle group ∆ = ∆(a, b, c), one can define
congruence subgroups Γ(p) corresponding to prime ideals of F = F (. . .) and get a
similar family of Schreier graphs G(p) for PSL2(Fq) modulo a cyclic subgroup of
order c. Whether or not these graphs are Ramanujan is again a purely algebraic
question; more interesting is whether the dual cubic graphs G∨(p) form an expand-
ing family in the general case, since only 85 of the hyperbolic triangle groups are
arithmetic.

Other classes of Schreier graphs on PSL2(Fq) having the Ramanujan property
(or, in some cases, narrowly missing the Ramanujan bound) are constructed by
Li and Meemark, also by representation-theoretic methods. Whereas our graphs
are closely related to triangulations of certain “modular” Riemann surfaces, it is
remarked in [?] that their constructions can be interpreted as triangulations (in a
certain formal sense) on Drinfeld modular curves, i.e., on the geometry of analyti-
cally uniformized curves in positive characteristic (!).

Remark: One cannot help but wonder what to make of the “duality” between
G(p) and G∨(p): can the (deep!) expander property of G∨(p) be deduced directly
from the (elementary!) Ramanujancy of G∨(p)?

Question: If the point of this entire dicussion was to “explain” why the platonic
solids are Ramanujan graphs, then what is the corresponding explanation for the
Peterson graph?

3.3. Probabilistic constructions of expanders. It may well be that most q+1-
regular graphs are Ramanujan graphs, i.e., that the proportion of Ramanujan q+1-
regular graphs on N vertices tends to 1 as N → ∞. The following result shows
that this at least “very nearly” the case (whether q is a prime power or not!):

Theorem 19. (Friedman) For any q > 1 and ε > 0, the probability that a simple
q-graph on n vertices has λ1 ≥ 2

√
q + ε tends to 0 as n →∞.

something to do with a duality between the spectra of two different combinatorial
Laplacians on the same family of 2-dimensional cell complexes.

3.4. The zig-zag product. We must mention the recent beautiful work of Rein-
gold, Vadhan and Wigderson, which attains a holy grail in the theory of expanding
graphs: given two finite graphs G1 and G2, they define a zig-zag product G of G1

and G2 such that the spectral gap ω(G) can be bounded below in terms of the
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spectal gaps ω(G1) and ω(G2). However the zig-zag product does not preserve the
degree, so while it gives what is certainly the most elementary explicit construction
of d-regular expanders for infinitely many d (including d = 3 and d = N2 for any
N > 1), it does not, so far as I know, yield expanders of all vertex degrees.

4. Fundamental Theorems on Ramanujan graphs

For the last decade, the state of our knowledge on Ramanujan q-families has
been the following:

Theorem 20. (Ihara, Lubotzky-Phillips-Sarnak, Chiu, Morgenstern) For any prime
power q, there exists a family of (q + 1)-regular Ramanujan graphs.

Remark: In other words, there is a Ramanujan q-family for all prime power q, which
begins to explain the terminology.

It is important to remark that this result is in all senses constructive. Indeed,
in all of the constructions except Ihara’s the graphs are ultimately gotten as Cay-
ley graphs of PSL2(Fq) or PGL2(Fq) with respect to certain explicitly given sets
of generators. These graphs have indeed been implemented by computer scientists.

Let us say a bit about the history of this important result. The case in which
q is a prime was shown in 1966 by Ihara in the seminal work [?], which analyzes
zeta functions of discrete cocompact subgroups the q+1-regular tree. His approach
uses Eichler’s Hecke-equivariant isomorphism of a certain Brandt module category
with the Hecke module of modular forms on an appropriate modular curve, together
with a “good reduction” result of Igusa and the Riemann hypothesis for the zeta
function of a curve over a finite field, due of course to Weil.

Like much of Ihara’s work, [?] was ahead of its time, and it appears that it began
to be truly appreciated in the late 1980’s. The case in which q is an odd prime is
revisited from a different perspective in the 1988 paper [?]. Apart from rephrasing
the construction in terms of quaternary quadratic forms (an aesthetically pleasing
but inessential conceit), the paper introduces many innovations: first, the graphs
themselves are presented in a truly elementary way, as Cayley graphs of either
PSL2(Fq) or PGL2(Fq) with respect to an explicitly given set of generators. As we
shall see later, the fact that the graphs can be taken to be Cayley graphs follows
from the fact that the definite quaternion algebra intervening in the construction
has class number one – L-P-S use the “Hamilton” algebra H/Q of discriminant 2 (in
which a maximal order has a left-Euclidean algorithm). Moreover, their graphs are
shown to satisfy many other extremal properties, such as having simultaneously
larger girth and chromatic number than any other deterministically constructed
family of graphs! They also coin the term “Ramanujan graph,” because in their
quadratic form setup the needed spectral bounds come as a sort of deus ex machina
from the estimates on the coefficients of a weight k cusp form on Γ1(N) conjec-
tured by Ramanujan and Petersson: |ap| ≤ 2p

k−1
2 and proved in full generality by

Deligne as a consequence of the Riemann hypothesis for higher-dimensional abelian
varieties.

Let us pause for a crotchety remark. Ramanujan’s original conjecture concerned
the coefficients of the weight 12 cusp form ∆, and was generalized by Petersson
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to cusp forms of all weights (and all possible level structures). The full conjecture
was proved by Deligne in 1973, but the modular forms which intervene in all the
constructions of Ramanujan graphs have weight 2, so appeal only to the case of
the Weil conjectures resolved by Weil himself, as well as work of Eichler, Igusa and
– for a general congruence subgroup – Shimura. (Indeed, note that Ihara’s paper
predates the resolution of the Ramanujan-Petersson conjecture.) Thus the naming
of these graphs “Ramanujan” is a rhetorical flourish: they would more accurately
be called Ihara-Eichler-Igusa-Weil graphs. Of course the authors of [?] know this
(indeed, it appears in their paper itself), but many more recent authors are not as
conversant with these subtleties.

The L-P-S construction was extended to the case of q = 2 in a 1991 paper of P.
Chiu [?]. In place of the quadratic form / order in H considered by L-P-S, Chiu
needs to work with the quadratic form associated to a maximal order of a class num-
ber one definite quaternion algebra D/Q which is split at 2. He uses the quaternion
algebra of discriminant 13, with norm form W 2 + 2X2 + 13Y 2 + 26Z2 = 0. Why
13? Well, there are only finitely many definite rational quaternion algebras of class
number one; among these, the ones that are split at 2 have discriminant 3, 5, 7 and
13. So there is not much choice here.9

In general, it seems tempting to work with totally definite quaternion algebras
over totally real number fields. However, in this context one cannot expect to al-
ways be in a class number one situation – indeed, it seems likely that there exist
only finitely many totally definite quaternion algebras over any totally real field
of class number one.10 So Morgenstern changes gears considerably and works with
“definite” quaternion algebras over the function field Fq(x), and one can show that
there are always Euclidean orders over such fields. Now Morgenstern uses Drinfeld’s
solution of the function field version of the Ramanujan-Petersson conjecture (again
for automorphic forms of all integral weights) to carry through the analogue of the
L-P-S construction, including the bounds on girth, chromatic number, and so forth.

When q is a prime power, we still know rather little about the family Rq of all
(q + 1)-regular Ramanujan graphs. Computations suggests that it may be quite
large indeed; Sarnak and XX present numerical evidence that about 5?% of all
cubic graphs (q = 2) are Ramanujan. This seems quite far out of present reach.

Many mathematicians have sought to extend Theorem 20 to the case where q is not
a prime power. From a hard-nosed perspective these efforts have come to precisely
nothing: whether or not there exists a family of q + 1-Regular Ramanujan graphs
for any non-prime power q – e.g. q = 6 is wide open. Rather, many researchers
have become intrigued by the method of proof of Theorem 20 and sought more
general contexts in which this methods may be applied.

It turns out that the method of proof of Theorem 20 can nevertheless be used

9Still, why 13 and not 3, 5 or 7? The construction will still work with these other primes, but

presumably the fact that 13 is 1 (mod 4) and 1 (mod 3) simplifies some of the explicit calculations.
10As far as I know, this is an open problem, although the finiteness is known over the class of

all totally real fields in which the maximal number of roots of unity in a CM quadratic extension
remains bounded, so in particular over all totally real fields of fixed degree.
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to give an explicit construction of q + 1-regular expanders for all q > 1. This was
done by Pizer, who proved the following result.

Theorem 21. (Pizer) For q ≥ 2, there is a family of (q + 1)-regular graphs {Gn}
satisfying

λ(Gn) ≤ d0(q + 1)
√

q

for all n, where d0(n) is the number of divisors of n.

Here we will combine Pizer’s idea with work of Weil, Eichler, Shimura, Jacquet and
Langlands to prove the following result, a simultaneous generalization of Theorems
20 and 21.

Theorem 22. For q ≥ 2, there is a family of (q+1)-regular graphs {Gn} satisfying

λ(Gn) ≤ 2ω(q+1)√q,

where ω(n) is the number of distinct prime divisors of n. The graphs Gn are
constructed deterministically.

Thus, like Pizer’s theorem, Theorem 22 gives an explicit construction of (q + 1)-
regular expanding families for all q, but with a better bound on the spectral gap
(although, when q is not a prime power, the bound is still not as good as Friedman’s
bound obtained using the probabilistic method).

The basic strategy of the proof is one which may have occurred to the reader
in the course of our account of the various cases of Theorem 20: namely, we will ex-
ploit the arithmetic of totally definite quaternion algebras over totally real number
fields. This is very much in the spirit of Ihara’s original proof, except that we get
a Hecke-module isomorphism from a Brandt module category to S2(X(Γ′′)) where
X(Γ) is a certain quaternionic Shimura curve over F . On this Shimura curve X(Γ)
we can apply the Eichler-Shimura congruence relation and then the Weil bounds
to get the desired estimates for the eigenvalues of the adjacency matrix.

Finally we follow Pizer’s idea of using not just the Tp-Hecke operator for some
prime ideal p but instead a product of such Hecke operators corresponding to a
factorization of q + 1 into pa1

1 · · · par
r . Pizer in his argument simply takes the q + 1-

Hecke operator which splits as a product T (q + 1) =
∏r

i=1 T (pai
i ). He therefore

gets the bound
∏

i(ai + 1)
√

pai
i = d0(q + 1)

√
q. Instead we will choose a totally

real field F having prime ideals pi of norm pai
i , and then we lose nothing from the

Ramanujan bound in taking a prime power instead of a prime.

It is amusing to note that this strategy cannot be carried out in the case of a
function field F of characteristic p, since in this case all of the residue fields have
degree a power of p!

Remark: Conversely, it ought to be possible to eliminate the dependence on the
full Ramanujan Conjecture for GL2(Fq(t)) in favor of transferring from the Hecke
module of Brandt matrices to the Hecke module of S2(X), where X is a “Drinfeld-
Shimura curve” (a moduli space of D-elliptic sheaves with quaternionic multiplica-
tion) in the sense of Taelman [?]. It is hard to claim that this effects any kind of
simplification of Morgenstern’s construction (we are just asserting our preference
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for one brand of technology over another), but it has the following intriguing con-
sequence:

Every known instance of a Ramanujan q-family comes from a family
of algebraic curves.

5. The main result

Let F be a totally real number field of degree g; fix a real place ∞1 of F . Let
B/F be a division quaternion algebra which is split at ∞1 but ramified at every
other infinite place ∞i 2 ≤ i ≤ g (we abbreviate this by saying that B if of type
(1, g − 1)); we write D for the discriminant of B: it is an integral F -ideal. Fix O a
maximal order of B. Let Γ(1) be the group of totally positive units in O, and let
Γ ⊂ Γ(1) be a congruence subgroup, of level prime to D.

Let X(Γ)/F be the algebraic curve constructed by Shimura: it is nonsingular, pro-
jective and irreducible, but is, in general, geometrically reducible. Indeed, the set
of geometric components is a principal homogeneous space for the (∞2 ·. . .·∞g)-ray
class group of F , so in particular is at most the narrow class number h(F ) of F .

We assume that there exists a prime ideal p of F dividing D; note that this
is automatic when g is odd. Recall that Cerednik has constructed a canonical
model of X(Γ) over Op, the ring of integers of the completion of F at p. Let Fp

be the residue field at p, say of cardinality q; then the fiber of X(Γ) over Fp is a
semistable curve, such that every geometric component has geometric genus zero.
As for any semistable curve, we may consider the dual graph G(Γ), whose vertices
are the geometric components, and in which two vertices Ci and Cj are connected
by aij := Ci · Cj edges. The graph can be explicitly given as a quotient of the
q+1-regular tree Tq+1 by a congruence subgroup Γ′ ⊂ PGL2(Fp). We shall assume
that Γ′ is torsionfree – i.e., contains no nontrivial elements of finite order (later we
will recall some mild conditions on F and Γ which suffice to guarantee this), and
in this case a theorem of Ihara asserts that Γ′ acts freely on Tq+1 (so is itself a
free group), so that the map Tq+1 → Γ′\Tq+1 = G(Γ) is the universal covering. In
particular, G(Γ) is (q + 1)-regular.

Claim: The adjacency operator on the vertex set of G(Γ) is nothing else than
the Tp-Hecke operator from the theory of automorphic forms. (This follows from
Ribet’s setup; discuss it a bit.)

Note that we could have started with a level N congruence subgroup Γ′ of the
totally definite quaternion algebra D′ – with (N , D′) = 1 – and considered, for any
prime p prime to ND′, the Hecke operator Tp on Γ′\Tq+1, so our earlier assumption
on the assumed divisibility of D by p was no loss of generality – we can perform
the construction for all but finitely many prime p. However, we will now assume
more: that there exists another prime ideal q 6= p dividing D – or equivalently, that
D′ = D/p is divisible by some finite prime. Then:

Theorem 23. Let F be a totally real number field, D = pqD′′ be a squarefree
product of at least two primes of F , let B be the unique quaternion algebra of
F of discriminant D and type (1, g − 1), let Γ be a congruence subgroup of B of
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level N prime to D. Then the dual graph of the special fiber of the Cerednik-
Drinfeld canonical model of the Shimura curve X(Γ) is Ramanujan. Moreover, the
sequence of all isomorphism classes of connected components of such graphs forms
a Ramanujan q-family.

Proof: Let B′′ be the unique quaternion algebra over F of type (1, g − 1) and dis-
criminant D′′ = D/(pq), and let Γ′′ be the congruence subgroup of B′′ which is,
locally at every prime r different from q, equal to the congruence subgroup Γ′, and
which is locally at q equal to Γ0(q). Then the Jacquet-Langlands correspondence
gives an isomorphism of Tp-modules from [introduce the notation for the two Hecke
algebras]. Moreover, by the Eichler-Shimura congruence relation, the characteristic
polynomial of Tp on S2(X(Γ′′)) is equal to the numerator of the Hasse-Weil zeta
function of the (good!) reduction of X(Γ′′) modulo p.

Recall that X(Γ′′)/Fq
need not be geometrically irreducible: nevertheless, with

just a little care we may apply the Weil bounds to conclude that the cuspidal spec-
trum of the adjacency matrix of G(Γ) satisfies the Riemann hypothesis. Namely,
whether or not the i-dimensional part of a zeta function of a scheme over Fq sat-
isfies the Riemann hypothesis is faithfully preserved by base extension to Fqr , and
after a suitable finite base extension we get that X(Γ′′)/Fqr is a disjoint union of
smooth, projective, geometrically irreducible curves Ci, so that the numerator of
Z(X(Γ′′))/Fqr is just the product of the numerators of the Z(Ci)’s, each of which
does, by Weil, satisfy the Riemann hypothesis. Thus X(Γ′′)/Fqr and hence also
X(Γ)//Fq satisfies the Riemann hypothesis.

To prove the second part of the theorem . . ..

The various components of G(Γ) all have the same number of vertices (morally,
this occurs because the connected components of the Shimura curve X(Γ) are Ga-
lois conjugates).

Proof of Theorem 20: For any q ≥ 2, consider the factorization of q + 1 into
prime powers:

q + 1 =
r∏

i=1

pai
i .

For each i, choose a field extension Ki/Qpi
of degree a =

∏
i ai whose maximum

unramified subextension has degree ai over Qp. For all i, let Pi ∈ Q[T ] be such
that Qp[T ]/(Pi) = Ki. By a standard weak approximation / Krasner’s Lemma
argument, one can find a degree a polynomial P ∈ Q[T ] which is for all i pi-
adically close enough to Pi and which is ∞-adically close enough to (T − 1)a such
that K := Q[T ]/(P ) is totally real and has residue degree pai

i at each pi, for all
1 ≤ i ≤ r.
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