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Say a commutative ring R is non-dyadic if 2 ∈ R×; otherwise we say R is dyadic.

As a general rule, the theory of quadratic forms over a ring R goes much more
smoothly if R is non-dyadic. Of course, if R is a field then this simply says that
we wish to avoid characteristic 2, but in general there is more to it than this. For
instance, the ring Z is dyadic according our definition whereas for an odd prime
power q Fq[t] is not, and indeed the theory of quadratic forms is somewhat easier
over the latter ring than the former.

The above dichotomy becomes especially clear when we consider the case of R
a CDVR, i.e., a ring which is complete with respect to a discrete valuation v. In
fact our primary perspective here is the analysis of quadratic forms over the fraction
field F of a CDVR, i.e., over a CDVF. Nevertheless we will certainly see the ring
R play a role in our analysis.

1. Non-dyadic CDVFs

Let R be a non-dyadic CDVR with fraction fieldK, valuation v : K× → Z, maximal
ideal p, residue field k = R/p. Let π denote a uniformizing element of R.

Lemma 1. Let R be Henselian and nondyadic. Then for x ∈ R×, TFAE:
(i) x is a square in K×.
(ii) x is a square in R×.
(iii) The image x of x in k is a square in k×.

Proof. (i) =⇒ (ii): Suppose there exists y ∈ K with y2 = x. Then y satisfies the
monic polynomial equation t2 − x = 0 so is integral over R. But R, being a DVR,
is integrally closed, so y ∈ R. Moreover, for any elements x, y in a commutative
ring R, xy ∈ R× ⇐⇒ x, y ∈ R×, so y2 ∈ R× =⇒ y ∈ R×.
(ii) =⇒ (iii): Indeed, if there is y ∈ R× with y2 = x, then after applying the
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quotient map we have y2 = x.
(iii) =⇒ (i): Let f(t) = t2 − x, let y ∈ k be such that y2 = x, and let ỹ be any

lift of y to R. Since f(ỹ) = 0, |f(ỹ)| < 1. Since R is nondyadic, f ′(ỹ) = 2y ̸= 0, so
|f ′(ỹ)| = 1. Thus |f(ỹ)| < |f ′(ỹ)|2, and Hensel’s Lemma applies to give a root y of
t2 − x. �
We immediately deduce the following key result.

Corollary 2. Let R be a Henselian nondyadic DVR. Then the canonical map
R → k induces an isomorphism of groups r : R×/R×2 → k×/k×2.

Remark: In fact the conclusion of Corollary 2 is the only completeness property of
R that will be needed for the coming results. So, to achieve maximum generality, we
can axiomatize this result by calling a non-dyadic DVR quadratically Henselian
if the natural map r : R×/R×2 → k×/k×2. On the other hand, we have nothing
specific to gain from this, so we will not use this terminology explicitly in what
follows (but see e.g. [S, p. 208]).

Lemma 3. Let R be a DVR.
a) There is a short exact sequence

1 → R× → K× v→ Z → 0.

This sequence is split, and splittings correspond to choices of a uniformizer π.
b) If R is Henselian and nondyadic, then there is a split exact sequence

1 → k×/k×2 → K×/K×2 → Z/2Z → 0.

Proof. Part a) is immediate. Modding out by squares, we get a split short exact
sequence

1 → R×/R×2 → K×/K×2 → Z/2Z → 0.

Further assuming that R is nondyadic and Henselian, we use the isomorphism of
Corollary 2 to get the desired result. �
In particular, any nondegenerate n-ary quadratic form has a diagonal representation
such that each coefficient has valuation 0 or 1 and thus a representaiton of the form

(1) q(x, y) = u1x
2
1 + . . .+ urx

2
r + πv1y

2
1 + . . .+ πvsy

2
s = q1(x) + πq2(y),

with ui, vj ∈ R× and r + s = n.

Theorem 4. Let R be a nondyadic DVR with fraction field K, uniformizer π and
residue field k. Let n ∈ Z+ and let r, s ∈ N with r+s = n. Let u1, . . . , ur, v1, . . . , vs ∈
R×, and let

(2) q(x, y) = u1x
2
1 + . . .+ urx

2
r + πv1y

2
1 + . . .+ πvsy

2
s = q1(x) + πq2(y),

be an n-ary quadratic form. Also write q1 and q2 for the reductions of q1 and q2
modulo π: these are nondegenerate quadratic forms over k.
a) Suppose that q1 and q2 are anisotropic over k. Then q is anisotropic over K.
b) Suppose that K is Henselian and q is anisotropic over K. Then q1 and q2 are
both anisotropic over k.

Proof. a) Suppose q1 and q2 are both anisotropic over k and, seeking a contradiction,
that q is isotropic. By rescaling, we get a primitive vector (x, y) such that q(x, y) =
0: that is, all xi, yj lie in R and not all of them are divisible by π.
Case 1: Suppose there exists 1 ≤ i ≤ r such that v(xi) = 0. Then reducing the
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equation q(x, y) = 0 modulo p gives q(x, y) = q1(x) = 0. Since xi ̸= 0, q1 is isotropic
over k, a contradiction.
Case 2: Suppose π | xi for all 1 ≤ i ≤ r and v(yj) = 0 for some 1 ≤ j ≤ s. Then
π2 | q1(x), so the equation q1(x) + πq2(y) = 0 implies q2(y) = 0. Since yj ̸= 0, q2
is isotropic over k, a contradiction.
b) Suppose q1 and q2 are not both anisotropic over k. If q1 is isotropic over k,
there is x ∈ kr with q1(x) = 0 and such that xi ̸= 0 for at least one i. Then
∂q1
∂xi

= 2xi ̸= 0 ∈ k, so by Hensel’s Lemma there is x′ ∈ Rr such that x′ (mod π) = x

and q1(x
′) = 0. In particular x′

i ̸= 0, so q1 is isotropic over K. Since q1 is a subform
of q, also q is isotropic over K. Similarly, if q2 is isotropic over k then q2 is isotropic
over K and thus so is the subform πq2 of q, so q is isotropic over K. �

Corollary 5. For R a non-dyadic DVR with fraction field K and residue field k:
a) We have u(K) ≥ 2u(k).
b) If R is Henselian, then u(K) = 2u(k).

Proof. a) Let q be an anistropic n-ary quadratic form over k, and let q be any lift of q
to a quadratic form with R-coefficients. Then by Theorem 4a) q(x, y) = q(x)+πq(y)
is anisotropic over K. Thus u(K) ≥ 2u(k).
b) By Lemma 4, every nondegenerate n-ary quadratic form is K-equivalent to a
form q as in (2). So if K is Henselian and n > 2u(k), then max r, s > n so at least
one of q1, q2 is isotropic over k. By Theorem 5b), q is isotropic. �

Corollary 6. Let K be a CDVF with residue field Fq, q odd.
a) We have u(K) = 4.
b) Let r ∈ F×

q \ F×2
q . Then an explicit anisotropic quaternary form over K is

q(x, y, z, w) = x2 − ry2 + πz2 − πrw2.

Proof. Exercise. �

By looking more carefully at we have already done, we get the following result.

Theorem 7. (Springer) Let R be a nondyadic Henselian DVR with fraction field
K and residue field k. The map q 7→ (q1, q2) induces an isomorphism of Witt groups

δ : W (K)
∼→ W (k)⊕W (k).

1.1. Murderizing quadratic forms over non-dyadic local fields.

Throughout this section we specialize to the case in whichR is a nondyadic Henselian
DVR with finite residue field Fq. (Note that the nondyadic hypothesis is equiv-
alent to q being odd.) In this case the results of the previous section give an
extremely explicit description of all quadratic forms over K, and this description
is extremely useful. Otherwise put, using what we now know we can murderize
quadratic forms over K – so, in particular, over Qp for odd p – and we aim to do so!

By Theorem 5, anisotropic quadratic forms q overK correspond to pairs of anisotropic
quadratic forms over k = Fq. Since we know there are exactly four anisotropic qua-
dratic forms over Fq – including the zero-dimensional form, as always! – it follows
that there are 42 = 16 anisotropic quadratic forms over K.

Let r ∈ F×
q \ F×2

q . If (and only if) q ≡ 3 (mod 4), we may choose r = −1; let
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us agree to do so in that case.

The four anisotropic quadratic forms over Fq are:

• The zero form 0.
• The two one-dimensional forms x2 and rx2.
• The two-dimensional form x2 − ry2.

Of course x2 − ry2 is anisotropic since r is not a square in Fq. But here is an-
other way to look at it: a binary form is isotropic iff it is hyperbolic iff it has
discriminant −1. Our form has discriminant −r, which, since r is not a square, is
not in the same square class as −1.

The square classes in K are represented by 1, r, π, rπ.

Now let us write down all the anisotropic forms over K and what square classes
they represent!

0.1: The zero form. (It doesn’t represent anything.)
1.1: The form x2. It represents the square class 1.
1.2: The form rx2. It represents the square class r.
1.3: The form πx2. It represents the square class p.
1.4 The form rπx2. It represents the square class rπ.

On to the binary forms. We can be even more murderous than simply writing
down representatives for the 6 anisotropic binary forms. In fact we can – and
might as well! – write down all 10 different-looking binary forms and determine all
isomorphisms between them, an/isotropy, and all square classes represented. The
ten forms in question are:

2.1 ⟨1, 1⟩.
2.2 ⟨1, r⟩.
2.3 ⟨1, π⟩.
2.4 ⟨1, rπ⟩.
2.5 ⟨r, r⟩.
2.6 ⟨r, π⟩.
2.7 ⟨r, rπ⟩.
2.8 ⟨π, π⟩.
2.9 ⟨π, rπ⟩.
2.10 ⟨rπ, rπ⟩.

We claim that any anisotropic such form represents precisely two of the four square
classes in K. Indeed, consider ⟨a, b⟩.
Case i: If a, b ∈ R×, then by our description of W (K), ax2 + by2 + uπz2 = 0 are
anisotropic for u ∈ R×, so ⟨a, b⟩ does not represent π, rπ. Similarly ax2+by2+uz2 =
0 is isotropic, so ⟨a, b⟩ represents 1, r.
Case 2: if a ∈ R× and b = πu, u ∈ R×, then for v ∈ R× ax2 + uπy2 + vz2 = 0
is isotropic iff −av ∈ k×2, so it represents one out of the two unit square classes.
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Moreover ax2+uπy2+ vπz2 = 0 is isotropic iff −uv ∈ k×2, so it represents one out
of the two non-unit square classes.
Case 3: If a = πu, b = πv, then ⟨a, b⟩ = π⟨u, v⟩, so by Case 1 it represents precisely
the two nonunit square classes.

Now, the isotropy of some of these forms depends upon whether q ≡ ±1 (mod 4),
so for proper murderization we consider these cases separately (serially?).

Case 1: q ≡ 1 (mod 4). Then:

2.1 has discriminant 1 ≡ −1 (mod k×), so is isotropic (and thus represents all
four square classes).
2.2 has discriminant r ≡ −r so is anisotropic. It represents the square classes
{1, r}.
2.3 has discriminant π so is anisotropic. It represents the square classes {1, π}.
2.4 has discriminant rπ so is anisotropic. It represents the square classes {1, rπ}.
2.5 has discriminant 1 ≡ −1 so is isotropic.
2.6 has discriminant rπ so is anisotropic. It represents the square classes {1, rπ}.
2.7 has discriminant π so is anisotropic. It represents the square classes {r, rπ}.
2.8 has discriminant 1 so is isotropic.
2.9 has discriminant r so is anisotropic. It represents the square classes {π, rπ}.
2.10 has discriminant 1 so is isotropic.

Let us retally the anisotropic square classes in the q ≡ 1 (mod 4) case:

21.1: ⟨1, r⟩ represents {1, r}.
21.2: ⟨1, π⟩ represents {1, π}.
21.3: ⟨1, rπ⟩ represents {1, rπ}.
21.4: ⟨r, π⟩ represents {r, π}.
21.5: ⟨r, rπ⟩ represents {r, rπ}.
21.6: ⟨π, rπ⟩ represents {π, rπ}.

Case 2: q ≡ 3 (mod 4). Recall that we take r = −1 here. Then:

2.1 has discriminant 1 ̸≡ −1 (mod k×), so is anisotropic. It represents the square
classes {1,−1}.
2.2 has discriminant r = −1 so is isotropic.
2.3 has discriminant π so is anisotropic. It represents the square classes {1, π}.
2.4 has discriminant −π so is anisotropic. It represents the square classes {1,−π}.
2.5 has discriminant 1 so is anisotropic. It represents the square classes {1,−1}.
2.6 has discriminant −π so is anisotropic. It represents the square classes {1,−π}.
2.7 has discriminant π so is anisotropic. It represents the square classes {−1,−π}.
2.8 has discriminant 1 so is anisotropic. It represents the square classes {π,−π}.
2.9 has discriminant −1 so is isotropic.
2.10 has discriminant 1 so is anisotropic. It represents the square classes {π,−π}.

But this gives us eight anisotropic forms: two too many! Two of them must be
isomorphic, and the only possible pairs are the one which represent the same square
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classes. Indeed, both 2.1 and 2.5 have the same discriminant and represent a com-
mon value so are isomorphic, and the same goes for 2.8 and 2.10.

We retally so as to list only distinct anisotropic forms when q ≡ 3 (mod 4):

23.1: ⟨1, 1⟩ ∼= ⟨−1,−1⟩ represents {1,−1}.
23.2: ⟨1, π⟩ represents {1, π}.
23.3: ⟨1,−π⟩ represents {1,−π}.
23.4: ⟨−1, π⟩ represents {−1, π}.
23.5: ⟨−1,−π⟩ represents {−1,−π}.
23.6: ⟨π, π⟩ ∼= ⟨−π,−π⟩ represents {π,−π}.

Notice that in each of the two cases we got, as advertised, precisely six classes
of anisotropic binary forms. Morever, we worked out above that any anisotropic
binary form represents precisely two out of the four square classes of K, and in fact
even more is true: of the 6 =

(
4
2

)
2-element subsets of {1, r, π, rπ}, each of them is

the set of square classes represented by a unique anisotropic binary form!

Ternary forms: Because we murderized the binary forms, understanding the ternary
forms is easy. To get an anisotropic ternary form we must start with an anisotropic
binary form ⟨a, b⟩ and add on c such that ⟨a, b⟩ does not represent the square class
−c. Thus each of the 6 anisotropic binary forms can be escalated to anisotropic
ternary forms in two different ways, giving 12 ternary forms in all. It happens that
there are only four distinct isomorphism classes here, so the 12 forms “come to-
gether” in groups of 3. Further, each of these four isomorphism classes of anisotropic
ternary forms represents exactly three out of the four square classes.

Again, we treat q ≡ 1 (mod 4) and q ≡ 3 (mod 4) separately.

Case 1: q ≡ 1 (mod 4):

For instance, the form 21.1: ⟨1, r⟩ can be escalated to a ternary form by adding on
−π ≡ π and −rπ ≡ rπ, giving us the two anisotropic forms:

31.1.1: ⟨1, r, π⟩
31.1.2 : ⟨1, r, rπ⟩.

Doing the same with the other six forms gives:

31.2.1: ⟨1, π, r⟩,
31.2.2: ⟨1, π, rπ⟩,
31.3.1: ⟨1, rπ, r⟩,
31.3.2: ⟨1, rπ, π⟩,
31.4.1: ⟨r, π, 1⟩,
31.4.2: ⟨r, π, rπ⟩,
31.5.1: ⟨r, rπ, 1⟩,
31.5.2: ⟨r, rπ, π⟩,
31.6.1: ⟨π, rπ, 1⟩,
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31.6.2: ⟨π, rπ, r⟩.

Looking at these 12 forms, it is now obvious how they “triple up”: they all have
distinct entries, so four each square class s, the three forms which omit s but con-
tain the other three square classes are obviously equivalent!

Note that the fact that these ternary anisotropic forms have coefficients lying in
distinct square classes is a consequence of −1 being a square in K: because of this,
having repeated coefficients is equivalent to having coefficients x,−x which gives a
hyperbolic plane inside q.

Therefore the most reasonable way to index these forms seems to be by the
omitted coefficient. Moreover, recall that no anisotropic ternary form q = ⟨a, b, c⟩
represents the square class −abc = −d(q). Since, again, −1 is a square, each of
these anisotropic ternary forms fails to represent a unique square class: the one
which does not appear as a diagonal coefficient. Thus:

31.(1): ⟨r, π, rπ⟩ represents all but 1.
31.(r): ⟨1, π, rπ⟩ represents all but r.
31.(π): ⟨1, r, rπ⟩ represents all but π.
31.(rπ): ⟨1, r, π⟩ represents all but rπ.

Now we turn to the case q ≡ 3 (mod 4). Performing the same escalation pro-
cess gives us 6 pairs of anisotropic ternary forms:

33.1.1: ⟨1, 1, π⟩
33.1.2: ⟨1, 1,−π⟩
33.2.1: ⟨1, 1, π⟩
33.2.2: ⟨1, π, π⟩
33.3.1: ⟨1, 1,−π⟩
33.3.2: ⟨1,−π,−π⟩
33.4.1: ⟨−1,−1, π⟩
33.4.2: ⟨−1, π, π⟩
33.5.1: ⟨−1,−1,−π⟩
33.5.2: ⟨−1,−π,−π⟩
33.6.1: ⟨−1, π, π⟩
33.6.2: ⟨1, π, π⟩

Now we perform the tripling up process.

Discriminant 1: the forms 33.2.2 and 33.6.2 are both ⟨1, π, π⟩. The other form
of discriminant 1 is 33.3.2: ⟨1,−π,−π⟩. But according to our list of anisotropic bi-
nary forms, ⟨π, π⟩ ∼= ⟨−π,−π⟩, so ⟨1, π, π⟩ ∼= ⟨1,−π,−π⟩. It is now also clear that
this form represents the square classes 1, π,−π and, like any anisotropic ternary
form, does not represent −disc q = −1.

Discriminant −1: the forms 33.4.2 = 33.6.1 are both ⟨−1, π, π⟩. The other form of
discriminant −1 is 33.5.2: ⟨−1,−π,−π⟩, and as above since ⟨π, π⟩ ∼= ⟨−π,−π⟩, it is
clear that these forms are equivalent, represent the three square classes −1, π,−π
and do not represent 1.
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Discriminant π: the forms 33.1.1 = 33.2.1 are both ⟨1, 1, π. The other form of
discriminant π is 33.4.1: ⟨−1,−1, π⟩. Since ⟨1, 1⟩ ∼= ⟨−1,−1⟩, these forms are
equivalent, represent the three square classes 1,−1, π, and do not represent −π.

Discriminant −π: the forms 33.3.1 = 33.5.1 are both ⟨1, 1,−π⟩. The other form of
discriminant −π is 33.5.1: ⟨−1,−1,−π⟩. Since ⟨1, 1⟩ ≡ ⟨−1,−1⟩, these forms are
equivalent, represent the three square classes 1,−1,−π, and do not represent π.

Thus:

33.(1): ⟨1, π, π⟩ ∼= ⟨1,−π,−π⟩ represents all but −1.
33.(−1): ⟨−1, π, π⟩ ∼= ⟨−1,−π,−π⟩ represents all but 1.
33.(π): ⟨1, 1, π⟩ ∼= ⟨−1,−1, π⟩ represents all but −π.
33.(−π): ⟨1, l,−π⟩ ∼= ⟨−1,−π,−π⟩ represents all but π.

Quaternary forms:

Every anisotropic quaternary form is obtained by passing from an anisotropic
ternary form q = ⟨a, b, c⟩ to ⟨a, b, c, d⟩, where q does not represent −d.

Case q ≡ 1 (mod 4): since −1 is a square, the unique way of completing each
anisotropic ternary form to an anistropic quaternary form is by taking d to be
−disc(q) = disc q. In each case we get a quaternary form whose coefficients are the
distinct square classes, so the unique anisotropic quaternary form is

41.1: ⟨1, r, π, rπ⟩.

This form is universal.

Case q ≡ 3 (mod 4): performing the same escalation process with each of our four
anisotropic ternary forms, we get four superficially different anisotropic ternary
forms:

⟨1, 1, π, π⟩
⟨1, 1,−π,−π⟩
⟨−1,−1, π, π⟩
⟨−1,−1,−π,−π⟩.

Since ⟨1, 1⟩ ≡ ⟨−1,−1⟩ and ⟨π, π⟩ ≡ ⟨−π,−π⟩, all four forms above are equiva-
lent, so up to isomorphism there is again a unique anisotropic quaternary form:

43.1: ⟨1, 1, π, π⟩ = ⟨1, 1,−π,−π⟩ = ⟨−1,−1, π, π⟩ = ⟨−1,−1,−π,−π⟩.

This form is universal.

The murderization is now complete.
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2. The Hilbert Symbol, The Hilbert Invariant and Applications

In this section K is a field endowed with a norm | · | with respect to which it is
locally compact and not discrete. That is, K is either the real or complex numbers,
a finite extension of Qp, or Fq((t)). (In fact the first two are trivial cases, and the
reasons for their inclusion here will become clear only later when we discuss global
fields.)

2.1. The Hilbert Symbol.

Let a, b ∈ K. We define the Hilbert symbol (a, b) to be 1 if the quadratic
form ax2 + by2 represents 1 and −1 otherwise. Equivalently, we define it to be 1
(resp. −1) if the ternary form ax2 + by2 − z2 is isotropc (resp. anisotropic).

Proposition 8. (First Properties of Hilbert Symbols) Let a, b, c, d ∈ K×.
a) If a ≡ c (mod K×2) and b ≡ d (mod K×2), then (a, b) = (c, d). In other words,
the Hilbert symbol factors through K×/K×2 ×K×/K×2.
b) (a, b) = (b, a).
c) (a2, b) = 1.
d) (a,−a) = (a, 1− a) = 1.

Exercise: Prove Proposition 8.

Exercise (Hilbert symbols over R and C):
a) Let K = C. Show that for all a, b ∈ C×, (a, b) = 1.
b) Let K be formally real. Show that if (a, b) = 1, then a and b are not both
negative.
c) Let K be real-closed (e.g. K = R!). Show that if a and b are not both negative,
(a, b) = 1.

Exercise (non-dyadic Hilbert symbols): a) Let K be a non-dyadic local field with
residue field Fq. Make a 4 × 4 table giving the values of the Hilbert symbol (a, b)
as a and b each run over all square classes {1, r, π, πr}. (Some of the entries in your
table well depend upon whether q is 1 or −1 modulo 4.)
b) Choose a uniformizing element π. Using this choice, for a ∈ K×, put ua = a

πv(a) .

Show that for a, b ∈ K×,

(a, b) = (−1)v(a)v(b)
q−1
2

(
ua

q

)v(b) (
ub

q

)v(a)

.

d) Viewing the Hilbert symbol as a map K×/K×2×K×/K×2 → {±1}, show it is :
(i) bilinear: (xy, z) = (x, z)(y, z), (x, yz) = (x, z)(y, z) and
(ii) nondegenerate: if (x, y) = 1 for all y ∈ K×, then x ∈ K×2.

Exercise (Hilbert symbols in Q2): Let K = Q2.
a) Fill in the 8 × 8 table of (a, b) as a and b each run over all square classes
{1, 2, 3, 5, 6, 7, 10, 14} of Q2.
b) Show that...
c) Show that the Hilbert symbol is a nondegenerate bilinear form.

The previous two exercises show, in particular, that the Hilbert symbol: K× ×
K× → {±1} is a Steinberg symbol in the sense of X.X, when K is either a nondyadic
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locally compact field or Q2. Accordingly, we may define a Hilbert invariant, in
a manner we will review in the next section.

Now let K be a proper, finite extension of Q2. For a, b ∈ K× we define (a, b)
exactly as above: namely as +1 if the form ax2 + by2 − z2 is isotropic and −1 if it
is anisotropic. It turns out that again this gives a Steinberg symbol, but to show
this requires more than the very elementary calculations done above. Further, the
Hilbert symbol is nondegenerate as a bilinear map K×/K×2 ×K×/K×2 → {±1}.
If we assume these facts for now, then we will be able to give a complete classifica-
tion of quadratic forms over locally compact fields that includes the general dyadic
case. Later we will go back and explain how these facts about the Hilbert symbol
follow from standard – but deep – facts of the arithmetic of local fields.

2.2. The Hilbert Invariant.

Let q = ⟨a1, . . . , an⟩ be a regular quadratic form over the non-discrete, locally
compact field K. We define the Hilbert invariant

H(a1, . . . , an) =
∏
i<j

(ai, aj).

(When n = 1, we set H(a1) = 1.) Our first order of business is to show that H is
indeed an invariant, i.e., that it depends only on the isometry class of q and not the
chosen diagonalization. For this we need a preliminary result which will be useful
in its own right.

Lemma 9. Let q = ⟨a1, a2⟩ be a regular binary form, and let b ∈ K×. TFAE:
(i) q represents b.
(ii) (b,−disc q) = (a1, a2).

Proof. q represents b iff a1x
2+a2y

2−bz2 = 0 is isotropic iff a1bx
2+a2by

2−z2 = 0 is
isotropic iff 1 = (a1b, a2b) = (a1, a2)(a1, b)(a2, b)(b, b) = (a1, a2)(disc q, b)(−1, b) =
(a1, a2)(−disc q, b). �

Proposition 10. Let ⟨a1, . . . , an, b1, . . . , bn ∈ K×. If ⟨a1, . . . , an⟩ ∼= ⟨b1, . . . , bn⟩,
then H(a1, . . . , an) = H(b1, . . . , bn).

Proof. The result is trivial for n = 1.
Step 1: Suppose n = 2, and q = ⟨a1, a2⟩ ∼= ⟨b1, b2⟩. Then q represents b1, so by
Lemma 9 (a1, a2) = (b1,−disc q) = (b1,−b1b2) = (b1,−b1)(b1, b2) = (b1, b2).
Step 2: Suppose n > 2. By the Chain Equivalence Theorem, we may suppose that
ai ̸= bi for at most two values of i. Further, since

∏
i<j(ai, aj) is independent of

the ordering of a1, . . . , an, we may suppose ai = bi for all i > 2 and (by Witt
Cancellation) that ⟨a1, a2⟩ ∼= ⟨b1, b2⟩. Thus a1a2 ≡ b1b2 (mod K×2) and (a1, a2) =
(b1, b2) by Step 1. Thus∏

i<j

(ai, aj) = (a1, a2)
∏
j>2

(a1a2, aj)
∏

2<i<j

(ai, aj)

= (b1, b2)
∏
j>2

(b1b2, bj)
∏

2<i<j

(bi, bj) =
∏
i<j

(bi, bj).

�
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In view of Proposition 10 we may write H(q) instead of H(a1, . . . , an), and we call
it the Hilbert invariant of q. As we are about to see, the Hilbert invariant is
the key piece of information beyond the dimension and the discriminant needed to
classify quadratic forms over Henselian fields with finite residue fields.

Proposition 11. For forms f, g over K, we have

H(f ⊕ g) = (disc f,disc g)H(f)H(g).

Proof. Writing f = ⟨a1, . . . , am⟩, g = ⟨b1, . . . , bn⟩, we have

H(f ⊕ g) =
∏
i<j

(ai, aj)
∏
i<j

(bi, bj)
∏
i,j

(ai, bj)

= H(f)H(g)(
∏
i

ai,
∏
i

, bj) = H(f)H(g)(disc f,disc g).

�
2.3. Applications of the Hilbert Invariant.

Throughout this section K denotes a Henselian discretely valued field with finite
residue field Fq.

Lemma 12. A ternary q/K is isotropic iff H(q) = (−1,−disc q).

Proof. Write q(x, y, z) = ax2 + by2 + cz2. First note that

(−ac,−bc) = (a, b)(a,−c)(b,−c)(−c,−c) = (a, b)(ab,−c)(−c,−1)

= (a, b)(−ab,−c) = (a, b)(−1,−1)(ab, c)(−1, abc).

Thus
H(q)(−1,−disc q) = (a, b)(a, c)(b, c)(−1,−abc)

= (a, b)(ab, c)(−1,−abc) = (a, b)(−1,−1)(ab, c)(−1, abc) = (−ac,−bc).

Since q is isotropic if −acx2−bcy2−z2 = 0 iff (−ac,−bc) = 1, the result follows. �
Lemma 13. A quaternary q/K is anisotropic iff disc q ∈ K×2 and H(q) = −(−1,−1).

Proof. We may write q = g(x)− h(y) = a1x
2
1 + a2x

2
2 − b1y

2
1 − b2y

2
2 . We claim q is

isotropic iff there exists d ∈ K× which is simultaneously represented by g and h.
It is immediate that if this holds then q is isotropic. Conversely, if q is isotropic
there are v, w ∈ K2, not both zero, such that g(v) = h(w). If this common value is
nonzero, then it is the d we want. If this common value is zero, then one of g and
h is the hyperbolic plane, hence universal, and the result is trivial.
Now, by Lemma 9, f and g both represent d ∈ K× iff

(d,−a1a2) = (a1, a2),

(d,−b1b2) = (b1, b2).

Note that ⟨a1, a2⟩ is hyperbolic iff−a1a2 ∈ K×2. In this case, (a1, a2) = (a1,−a1) =
1 and the first equation holds for all d. In this case q contains a hyperbolic sub-
form so is isotropic. Similarly for ⟨b1, b2⟩. Now assume that −a1a2 and −b1b2 are
both nonsquares: then (d,−a1a2) = (a1, a2) and (d,−b1b2) = (b1, b2) each hold for
precisely half of the square classes, and q is anisotropic iff these sets of d’s are com-
plementary. We claim this occurs iff a1a2K

×2 = b1b2K
×2 and (a1, a2) = −(b1, b2).

This is perhaps best seen by viewing K×/K×2 as a finite dimensional Z/2Z-vector
space and the two loci as affine hyperplanes in that space. Two affine hyperplanes
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do not intersect iff they are distinct and parallel, giving the above conditions.
The condition a1a2K

×2 = b1b2K
×2 gives disc q ∈ K×2, and the condition

(a1, a2) = −(b1, b2) gives

H(f) = −(b1, b2)(a1,−b1)(a1,−b2)(a2,−b1)(a2,−b2)(−b1,−b2)

= −(b1, b2)(a1, b1)(a1,−1)(a1, b2)(a1,−1)(a2, b1)(a2,−1)(a2, b2)(a2,−1)(−1,−1)(−1, b2)(−1, b1)(b1, b2)

= −(−1,−1)(a1, b1b2)(a2, b1b2)(−1, b1b2)

= −(−1,−1)(−a1a2, b1b2) = −(−1,−1)(−a1a2, a1a2) = −(−1,−1).

�
Corollary 14. A ternary q/K represents all square classes except possibly −disc f .

Proof. Indeed, if dK×2 ̸= (−disc q)K×2, then the ternary form q(x, y, z)−dw2 has
nonsquare discriminant so must be isotropic. �
Corollary 15. A form q/K in at least five variables is isotropic.

Proof. We may write q = ⟨a1, a2, a3, a4, a5⟩ and it suffices to find d ∈ K× which
is simultaneously represented by the ternary form ⟨a1, a2, a3⟩ and the binary form
-⟨a4, a5⟩. But indeed the ternary form represents all but possibly one square class,
and the binary form represents at least half of the square classes, hence at least two
square classes, so there must be a square class represented by both. �
Theorem 16. The dimension, discriminant and Hilbert invariant is a complete
system of invariants for regular quadratic forms over K. That is, for regular qua-
dratic forms f, g over K, TFAE:
(i) f ∼= g.
(ii) dim f = dim g, disc f = disc g and H(f) = H(g).

Proof. (i) =⇒ (ii) is clear.
(ii) =⇒ (i): The case of n = 1 is trivial. Suppose f = ⟨a1, a2⟩ and g = ⟨b1, b2⟩
have the same discriminant and the same Hilbert invariant. By Lemma 9, (a1, a2) =
(b1, b2) = (b1,−disc g) = (b1,−disc f), so f represents b1. Therefore f and g, being
binary forms of the same discriminant representing a common value, are isometric.
Now suppose n ≥ 3. Then the form f(x) − g(y) has at least six variables so is
isotropic, hence as in the proof of Lemma 13 f and g represent a common value
d ∈ K×. Therefore we may write f = ⟨d⟩ ⊕ f1, g = ⟨d⟩ ⊕ g1. Clearly f1 and g1
have the same dimension and the same discriminant, and by Proposition 11 they
have the same Hasse invariant. The result now follows by induction on n. �
Having shown that the dimension, discriminant and Hilbert invariant serve to clas-
sify forms over K, a natural followup question is what values these invariants can
take. Clearly in dimension one the Hasse invariant is 1; also, since any binary form
of discriminant −1 is isomorphic to ⟨1,−1⟩, the Hasse invariant of any such form
is 1. It turns out that these are the only restrictions.

Theorem 17. Let q be a quadratic form over K.
a) If dim q = 1, H(q) = 1.
b) If dim q = 2 and disc q = −1 then H(q) = 1. For any d ̸≡ −1 (mod K×2) and
any ϵ ∈ {±1}, there is a binary form q with disc q = d and H(q) = ϵ.
c) For any n ≥ 3, d ∈ K×/K×2 and ϵ ∈ {±1}, there is a form q with dim q = n,
disc q = d and H(q) = ϵ.
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Proof. a) This is clear.
b) As above, this follows because any binary form of discriminant −1 is isometric
to the hyperbolic plane ⟨1,−1⟩ and thus has trivial Hasse invariant. Now take
d ̸= −1; for any a ∈ K×, f = ⟨a, ad⟩ has discriminant d and Hilbert invariant
(a, ad) = (a, a)(a, d) = (−1, a)(d, a) = (−d, a). Because −d is not a square, we can
choose a so as to make the Hilbert symbol either ±1.
c) Suppose n ≥ 3 and the result has been shown for all forms of dimension n − 1.
Fix d ∈ K×, and choose a ∈ K× such that −ad is not a square. Consider ⟨a⟩ ⊕ g
with disc(g) = ad. Then disc f = d and H(f) = (a, ad)H(g). By induction we
may choose g such that H(g) has arbitrary sign, and therefore H(f) can have both
signs. �
Corollary 18. Let K be a locally compact, discretely valued field. Let 2δ =
#K×/K×2.
a) There is one anisotropic form of dimension zero.
b) There are 2δ anisotropic forms of dimension one.
c) There are 2(2δ − 1) anisotropic forms of dimension two.
d) There are 2δ anisotropic forms of dimension three.
e) There is one anisotropic form of dimension four.
Thus #W (K) = 2δ+2.

Proof. Exercise. �
Exercise: Suppose K is non-dyadic. Then #K×/K×2 = 4, so #W (K) = 16. Show
(again!) that W (K) ∼= Z/4Z× Z/4Z.

Exercise: Suppose K = Q2. Then #K×/K×2 = 8, so #W (K) = 32. Show
that W (Q2) ∼= Z/8Z× Z/2Z× Z/2Z.
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