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1. The Hasse Principle(s) For Quadratic Forms Over Global Fields

All quadratic forms and quadratic spaces will be assumed nondegenerate unless
otherwise noted.

1.1. Reminders on global fields.

A number field is a field K which is a finite-dimensional field extension of Q.

Let k be a field. A function field over k is a field K which can be expressed as
a finite degree separable extension of the rational function field k(t). (By the Sep-
arable Noether Normalization Theorem, it follows that the class of function
fields over k is not enlarged if the word “separable” is omitted.)

A global field is a field which is either a number field or a function field over

Thanks to France Dacar, Timo Keller and Danny Krashen for helpful comments.
1



2 PETE L. CLARK

a finite field F.

To any global field K we associate the set ΣK of places of K, namely equiva-
lence classes of absolute values on K.

BIG OSTROWSKI

1.2. Statement of the Hasse Principles.

Let q be a quadratic form over the global field K, and let v be a place of K.
We write qv for the base change of q to a quadratic form over Kv.

Now we can state one of the most important and influential results in quadratic
forms theory and number theory.

Theorem 1. (Hasse Principle) For a quadratic form q over the global field K, the
following are equivalent:
(i) q is isotropic.
(ii) q is locally isotropic: for all places v of K, qv is isotropic.

It will take us most of the chapter to give a complete proof of Theorem 1. For now
we assume it and derive further “Hasse Principles”.

For a quadratic space (V,B) over a global field K and v ∈ ΣK , write Vv for
(V ⊗K Kv, B ⊗K Kv).

Theorem 2. (Hasse Principle for Isometric Embedding) For quadratic spaces V,W
over a global field K, TFAE:
(i) There is an isometric embedding V ↪→W .
(ii) For all v ∈ ΣK , there are isometric embeddings Vv ↪→Wv.

Proof. (i) =⇒ (ii) is immediate.
(ii) =⇒ (i): We go by induction on dimV . The case dimV = 0 being trivial,
suppose n ≥ 1, that the result holds in dimension n − 1, and write V = 〈α〉 ⊕ V ′.
For v ∈ ΣK , we have 〈α〉v ↪→ Vv ↪→ Wv, i.e., Wv represents α. By the First
Representation Theorem, the space W ⊕ 〈−α〉 is locally isotropic, so by the Hasse
Principle it is isotropic, and thus we may write W = 〈α〉 ⊕W ′. However, for all
v ∈ σK , since Vv is a nondegenerate subspace of Wv, we may write

〈α〉 ⊕W ′v = Wv = Vv ⊕Xv = 〈α〉 ⊕ V ′v ⊕Xv.

Applying Witt Cancellation, we get isometric embeddings V ′v ↪→W ′v for all v ∈ ΣK .
We are done by induction. �

The case of dimV = dimW is important enough to be stated separately.

Theorem 3. (Hasse Principle for Isomorphism) For quadratic forms q, q′ over
the global field K, the following are equivalent:
(i) q ∼=K q′.
(ii) q and q′ are locally isomorphic: for all places v of K, qv ∼=Kv

q′v.

For a quadratic form q/K and v ∈ ΣK , we define the v-adic Hilbert symbol
simply as the Hilbert symbol of the base change: Hv(q) = H(qv).
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Corollary 4. (Classification of Quadratic Forms Over Global Fields) For quadratic
forms q, q′ over a global field K, the following are equivalent:
(i) q ∼= q′,
(ii) All of the following hold:
(a) dim q = dim q′.
(b) disc q = disc q′.
(c) For all places v ∈ ΣK , Hv(q) = Hv(q

′).

Proof. This follows immediately from the Hasse Principle for Isomorphism and the
fact that for all v ∈ ΣK , quadratic forms over Kv are classified by their dimension,
discriminant and Hasse invariant (XXX). �

Exercise: Show that Corollary 4 gives an explicit procedure for testing isomorphism
of quadratic forms over global fields.

Recall that we say a rational quadratic form q is indefinite if qR is isotropic:
i.e., neither positive nor negative definite.

Corollary 5. (Meyer) For n ≥ 5, an indefinite n-ary quadratic form qQ is isotropic.

Proof. This follows from the Hasse Principle together with the fact that for all
primes p, every quadratic form in at least five variables over Qp is isotropic. �

Corollary 6. For a global field K, the following are equivalent:
(i) The u-invariant of K is 4.
(ii) K has no real places.

Exercise: Prove Corollary 6. (Don’t forget to show that u(K) ≥ 4, i.e., that K
admits an anisotropic quaternary form.)

Exercise: Prove (that the Hasse Principle implies) the Hasse Principle for Hy-
perbolicity: if q is a quadratic form over a global field K, then q is hyperbolic iff
qv is hyperbolic for all v ∈ ΣK .

2. The Hasse Principle Over Q

2.1. Preliminary Results: Reciprocity and Approximation.

Let a, b ∈ Q×. Then for all v ∈ ΣQ we have the Hilbert symbol (a, b)v. One
of the key ideas in this subject is to examine relations among the various (a, b)v.

Lemma 7. Let a, b ∈ Q×.
a) For all odd primes p - ab, (a, b)p = 1.
b) In particular, {v ∈ ΣQ | (a, b)v = −1} is finite.

Exercise: Prove Lemma 7.

Exercise: Let a, b ∈ Q×. Show that if the quadratic form ax2 + by2 − z2 = 0
is isotropic, (a, b)v = 1 for all v ∈ ΣQ.

Theorem 8. (Hilbert Reciprocity Law) For a, b ∈ Q×, we have

(1)
∏
v∈ΣQ

(a, b)v = 1.
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Proof. Because of the bilinearity of Hilbert symbols, it suffices to prove the result
when each of a and b is either −1 or a prime number. Moreover, of course what we
are trying to establish is that in each case, #{v ∈ ΣQ | (a, b)v = −1} is even.
Case 1: a = b = −1. We have (−1,−1)v = −1 iff v ∈ {2,∞}.
Case 2: a = −1, b = 2. Since −(1)2 + 2(1)2 − (1)2 = 0, by Exercise X.X we have
(−1, 2)v = 1 for all v ∈ ΣQ.
Case 3: a = −1, b = ` an odd prime. We have (−1, `)v = 1 except possibly for

v ∈ {2, `} and (−1, `)2 = (1, `)` = (−1)
`−1
2 .

Case 4: a = b = p is a pime (possibly 2). By X.X, for all v ∈ ΣQ, (a, a)v = (−1, a)v,
so we are reduced to Cases 2 and 3.
Case 5: a = 2, b = ` an odd prime. We have (2, `)v = 1 except possibly for
v ∈ {2, `}. Further, we have

(2, `)2 = 1 ⇐⇒ ` ≡ ±1 (mod 8),

(2, `)` = 1 ⇐⇒
(

2

`

)
= 1 ⇐⇒ ` ≡ ±1 (mod 8),

where we have used the second supplement to the Quadratic Reciprocity Law.
Case 5: a = `1, b = `2 are distinct odd primes. Then (`1, `2)v = 1 except possibly
for v ∈ {2, `1, `2}. Further:

(`1, `2)2 = (−1)
(`1−1)

2
(`2−1)

2 ,

(`1, `2)`1 =

(
`2
`1

)
,

(`1, `2)`2 =

(
`1
`2

)
.

Thus the fact that (`1, `2)2(`1, `2)`1(`1, `2)`2 = 1 follows from – indeed, is – the
Quadratic Reciprocity Law. �

Exercise: If you haven’t realized it already, verify that Theorem 8 is equivalent to
quadratic reciprocity together with its first and second supplements. However, for
the study of quadratic forms over global fields it is an especially graceful formulation
of these classical results: as we will see later, Hilbert’s Reciprocity Law extends
verbatim to any global field.

Theorem 9. (Global Existence Theorem) Let a1, . . . , aN ∈ Q×. For each 1 ≤ i ≤
N and v ∈ ΣQ, let εi,v ∈ {±1}. The following are equivalent:
(i) There is α ∈ Q× such that for all 1 ≤ i ≤ N and all v ∈ ΣQ,

(α, ai)v = εi,v.

(ii) All of the following hold:
(a) {(i, v) | εi,v = −1} is finite.
(b) For 1 ≤ i ≤ N , we have

∏
v∈ΣQ

εi,v = 1.

(c) For all v ∈ ΣQ, there is αv ∈ Q×v such that (αv, ai)v = εi,v.

Proof. (i) =⇒ (ii): Condition (a) follows from Lemma 7, condition (b) follows
from Theorem 8, and condition (c) is obvious: take αv = α for all v.
(ii) =⇒ (i): It is no loss of generality to assume that ai ∈ Z for all i. Let S ⊂ ΣQ
consist of 2,∞ and all primes dividing at least one ai, and let T ⊂ ΣQ be the set of
all places such that εi,v = −1 for some i: these are finite sets.
Case 1 (S ∩ T = ∅):
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Let a =
∏
`∈T\{∞} ` and m = 8

∏
`∈S\{2,∞} `. Since S and T are disjoint, a and m

are coprime, so by Dirichlet’s Theorem on Primes in Arithmetic Progression there
is a prime number p ≡ a (mod m) and p /∈ S ∪ T . We may take α = ap. The
verification of this is left to the reader as an exercise (or see [Se, pp. 25-26]).
Case 2 (General Case):
For v ∈ ΣQ, Q×2

v is open in Q×v . By Artin-Whaples Approximation, there is α′ ∈ Q×

such that for all v ∈ S, α′

αv
∈ Q×2

v and thus

(α′, ai)v = (αv, ai)v = εi,v ∀v ∈ S.

Let ηi,v = εi,v(α
′, ai)v; then the family (ηi,v) satisfies conditions (a), (b) and (c) and

ηi,v = 1 for all v ∈ S. By Case 1 above, there is β ∈ Q× such that (β, ai)v = ηi,v
for all i and all v ∈ ΣQ. We may take α = βα′. �

Exercise: Fill in the details of Case 1 in the proof of Theorem 9.

Let R be a Dedekind domain with fraction field R. Then the discrete valuations
on K with valuation ring containing R are precisely the p-adic valuations vp for
p a nonzero prime ideal of R. For each such p, let | · |p denote a corresponding

non-Archimedean absolute value on R, say x 7→ e−vp(x).

Theorem 10. (Dedekind Approximation Theorem) Let R be a Dedekind domain
with fraction field K. Let P be a finite set of nonzero prime ideals of R. For each
p ∈ P we give ourselves np ∈ Z and xp ∈ K. Then there is x ∈ K such that:
(i) For all p ∈ P, vp(x− xp) = np and
(ii) vq(x) ≥ 0 for all nonzero prime ideals q /∈ P.

Proof. Step 1: For p ∈ P, the set Up of elements y ∈ Kp such that vp(y − xp) =
np is nonempty and (cl)open. Applying Artin-Whaples Approximation to the set
{| · |p}p∈P , we get y ∈ K such that vp(y − xp) = np for all p ∈ P.
Step 2: Let Q be the finite set of prime ideals q /∈ P such that vq(y) < 0. If Q = ∅,
then we’re done – take x = y – so assume Q 6= ∅. For each p ∈ P, there exists a
positive integer ap such that for all z ∈ R with z ≡ 1 (mod pap), vp(yz − xi) = np.
Applying the Chinese Remainder Theorem to the set {pap | p ∈ P}

∐
Q of pairwise

comaximal ideals of R, we get z ∈ R such that for all p ∈ P vp(yz − xp) = np and
for all q ∈ Q, vq(yz) = 0. So we may take x = yz. �

Theorem 11. Let P be a finite subset of ΣQ. Suppose given tp ∈ Q×2
p for all

v ∈ P. Then there is t ∈ Q× such that
(i) t ≡ tp (mod Q×2

p ) for all v ∈ P, and
(ii) |t|p = 1 for all but possibly at most one finite prime p /∈ P.

Proof. Let Pf = P \ {∞}. Let ε ∈ {±1} have the same sign as p∞ if ∞ ∈ P; if
∞ /∈ P, put ε = 1. Put

β = ε
∏
p∈Pf

pvp(tp).

Then for all p ∈ Pf , we may write β = uptp for some up ∈ Z×p ; if 2 /∈ P, put u2 = 1.
By the Dedekind Approximation Theorem, there is z ∈ Z such that z ≡ up (mod p)
for all odd p ∈ Pf and z ≡ u2 (mod 8). By the Local Square Theorem, z ≡ up
(mod Q×2

p ) for all p ∈ Pf . Since gcd(z, 8
∏
p∈Pf

p) = 1, by Dirichlet’s Theorem

there is a prime p0 ≡ z (mod 8
∏
p∈Pf

p). We may take t = p0β. �
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2.2. n ≤ 1.

These cases are absolutely trivial, as every quadratic form over a field in at most
one variable is anisotropic!

2.3. n = 2.

Recall that a binary form q over any field K is isotropic iff −disc q ∈ K×2.

Let q be a binary form over Q – we may assume that q has Z-coefficients – such
that qv = q/Qv

is isotropic for all v ∈ ΣQ. By the above remark, for all v ∈ ΣQ,

−disc q ∈ Q×2
v . For v = ∞ this says −disc q > 0. For v = p a finite prime it cer-

tainly implies that vp(− disc q) is even. By unique factorization in Z, this implies
that − disc q = n2 for some n ∈ Z, so disc q ≡ −1 (mod Q×2) and q is isotropic.

2.4. n = 3.

The Hasse Principle for ternary forms over Q is equivalent to the following classical
theorem of Legendre. Let qQ be a locally isotropic ternary quadratic form. Via a
change of variables, we may take q to have the form

q(x, y, z) = ax2
1 + bx2

2 + cx2
3,

with a, b, c nonzero squarefree integers. If a, b, c were all positive or all negative,
q/R would be anisotropic. Thus, up to relabeling and multiplying through by −1,
we may – and shall – assume that a is positive and b and c are negative.

Finally, we may reduce to the case in which a, b, c are coprime in pairs, or equiv-
alently that abc is squarefree. We leave this as a simple but enlightening exercise
for the reader. Thus we are led to consider the Legendre equation

(2) ax2 + by2 + cz2 = 0,

with a > 0, b, c < 0 and abc squarefree.

We can “remove the p-adic numbers” via the following observation: qQp
is isotropic

for all primes p iff qZp
is isotropic for all primes p iff qZ/pnZ is isotropic for all p and

n iff q/Z/nZ is isotropic for all n ∈ Z+.

We claim that if q(x, y, z) is isotropic, then −bc is a square modulo a, −ac is
a square modulo b, and −ab is a square modulo c. Indeed, suppose there are
x, y, z ∈ Q, not all zero, such that ax2 + by2 + cz2 = 0. By rescaling, we may
assume that (x, y, z) ∈ Z3 and gcd(x, y, z) = 1.

Let p be a prime dividing a. Reducing 2 modulo a gives

by2 + cz2 ≡ 0 (mod p).

If y and z were both divisible by p, then since ax2 + by2 + cz2 = 0, p | ax2. Since
p | a and gcd(a, c) = 1, p | x2 and thus p | x, contradicting gcd(x, y, z) = 1. So we
may assume that at least one of y and z is invertible modulo p; with no real loss of
generality we assume y is invertible modulo p. Then by2 ≡ −cz2 (mod p), so

−bc ≡
(
cz

y

)2

(mod p),
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i.e., −bc is a square modulo p. Since this argument holds for every prime dividing
the squarefree integer a, by the Chinese Remainder Theorem −bc is a square mod-
ulo a. And of course a perfectly symmetrical argument shows that −ac is a square
modulo b and that −ab is a square modulo c.

This was easy. Remarkably, Legendre showed that these easy necessary condi-
tions are also sufficient for the existence of a nontrivial solution to 2.

Theorem 12. (Legendre) The Legendre Equation

q(x, y, z) = ax2 + by2 + cz2 = 0

has a nontrivial integer solution iff −bc is a square modulo a, −ac is a square
modulo b and −ab is a square modulo c.

We will give a geometry of numbers proof of Theorem 12. For an even more
elementary proof, see [NT, §17.2].

Lemma 13. Let m ∈ Z+ and let ε1, ε2, ε3 ∈ R>0 be such that ε1ε2ε3 ≥ m. Let
`(x, y, z) = αx + βy + γz ∈ Z[x, y, z] be any linear polynomial. Then there are
(x, y, z) ∈ (Z3)• such that

(3) `(x, y, z) ≡ 0 (mod m)

and |x| ≤ ε1, |y| ≤ ε2, |z| ≤ ε3.

Exercise: Prove Lemma 13. (Suggestion: show that (3) defines a sublattice Λ ⊂ Z3

of index dividing m, and apply Minkowski’s Linear Forms Theorem [GoN, §9.2].)

We now begin the proof of Legendre’s Theorem. First, we may assume that b
and c are not both −1. Indeed, if b = c = −1, then the condition −bc is a square
modulo a gives that −1 is a square modulo a and thus a is a sum of two integer
squares, yielding a nontrivial solution to ax2 − y2 − z2 = 0.

We claim that our congruence conditions force q(x, y, z) are necessary and suffi-
cient for the existence of linear forms L1(x, y, z), L2(x, y, z) ∈ Z[x, y, z] such that

q(x, y, z) ≡ L1(x, y, z)L2(x, y, z) (mod abc).

Since a, b, c are coprime in pairs, it is sufficient to show the factorization of q into
linear forms modulo a, modulo b and modulo c; then by the Chinese Remainder
Theorem we may choose L1, L2 ∈ Z[x, y, z] which reduce modulo a, b and c to the
linear factors of q. So: let r be such that r2 ≡ −bc (mod a), and let c′ be such that
cc′ ≡ 1 (mod a). Then

q(x, y, z) = ax2 + by2 + cz2 ≡ by2 + cz2 ≡ cc′(by2 + cz2) ≡ c′(bcy2 + c2z2)

≡ c′(c2z2 − r2y2) ≡ c′(cz + ry)(cz − ry) ≡ L1(x, y, z)L2(x, y, z) (mod a).

By symmetry similar arguments can be made modulo b and c. So we get

q(x, y, z) ≡ L1(x, y, z)L2(x, y, z) = (αx+ βy + γz)(α′x+ β′y + γ′z) (mod abc).

Now apply Lemma 13 with m = abc, ε1 =
√
|bc|, ε2 =

√
|ac|, ε3 =

√
|ab|: there are

(x1, y1, z1) ∈ (Z3)• with

|x1| ≤
√
bc, |y1| ≤

√
ac, |z1| ≤

√
ab

and
L1(x1, y1, z1) ≡ 0 (mod abc).
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Since q ≡ L1L2 (mod abc), this implies

q(x1, y1, z1) ≡ 0 (mod abc).

Note that we have
x2

1 ≤ bc, y2
1 ≤ −ac, z2

1 ≤ −ab.
In fact, since bc is squarefree and greater than 1, we must have x2

1 < bc. Similarly,
if y2

1 = −ac then a = 1 and c = −1, and if z2
1 = −ab then a = 1 and b = −1, so at

least one of the two inequalities must be strict and thus

−2abc < by2
1 + cz2

1 ≤ ax2
1 + by2

1 + cz2
1 ≤ ax2

1 < abc.

Thus either q(x1, y1, z1) = 0 – great! – or q(x1, y1, z1) = −abc. In the latter case,
the ternary form q represents −disc(q) hence is isotropic by [NCA, Cor. 95].1 If
one wants to avoid this result, here is a completely elementary finish: put

x2 = −by1 + x1z1,

y2 = ax1 + y1z1,

z2 = z2
1 + ab.

Then

q(x2, y2, z2) = ab(ax2
1 + by2

1 + cz2
1) + z2

1(ax2
1 + by2

1 + cz2
1) + abcz2

1 + a2b2c

= ab(−abc)− abcz2
1 + abcz2

1 + a2b2c = 0,

so (x2, y2, z2) satisfies 2. If z2 = z2
1 + ab = 0 then a = 1, b = −1, and (1, 1, 0) is a

nontrivial solution of 2.

Before moving on we record the following strengthening of the ternary Hasse Prin-
ciple over Q.

Theorem 14. Let q be a ternary rational quadratic form, and let p0 ∈ ΣQ. If for
all p ∈ ΣQ \ {p0}, qp is isotropic, then q is isotropic.

Proof. Since an/isotropy is not affected by scaling, we may assume q = 〈a, b,−1〉,
so for any v ∈ ΣQ, qv is isotropic iff (a, b)v = 1. By Hilbert Reciprocity we have
1 =

∏
v∈ΣQ

(a, b)v = (a, b)v0 . Thus qv0 is also isotropic, i.e., q is locally isotropic,

and by the ternary Hasse Princile q is isotropic. �

2.5. n = 4.

After consulting the literature, we were not able to choose between two differ-
ent proofs of the n = 4 case. We will give both of them: the first is taken from [Se],
the second from [C] and [G].

First proof : Let q = 〈a, b〉 − 〈c, d〉 be locally isotropic. By the Isotropy Criterion,
for each v ∈ ΣQ, since qv is isotropic, there is αv ∈ Q×v which is Qv-represented by
both ax2

1 + bx2
2 and cx2

3 + dx2
4. By [QF4, Lemma 9], for all v ∈ ΣQ,

(αv,−ab)v = (a, b)v, (αv,−cd)v = (c, d)v.

We may now apply Theorem 7 to get α ∈ Q× such that

(α,−ab)v = (a, b)v, (α,−cd)v = (c, d)v ∀v ∈ ΣQ.

1I am indebted to Danny Krashen for pointing out this simplification of the end of the proof.
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By [QF4, Lemma 9] the binary form 〈a, b〉 Kv-represents α for all v ∈ ΣQ; equiv-
alently, the ternary form 〈a, b,−α〉 is locally isotropic and thus isotropic by the
previous section; equivalently, 〈a, b〉 represents α. Similarly, 〈a, b〉 repesents α, and
thus by the Isotropy Condition q is isotropic.

Second proof : We may take q of the form 〈a1, a2, a3, a4〉, with each ai a square-
free integer. Let P = {p | p | 2 disc q} ∪ {∞}. Then for all p /∈ P, we have
(ai, aj)p = 1 for all 1 ≤ i, j ≤ 4. For p ∈ ΣQ, since qp is isotropic, by the Isotropy
Criterion there is tp ∈ Q×p such that 〈a1, a2〉p and 〈a3, a4〉p both Qp-represent tp.
Apply Theorem 11 to get t ∈ Z and a prime number p0. Then 〈a1, a2,−t〉p and
〈a3, a4,−t〉p are isotropic for all p ∈ P. Further, for all p /∈ (P ∪{p0}), 〈a1, a2,−t〉p
and 〈a3, a4,−t〉p are isotropic since their entries are p-adic units. Thus the ternary
forms 〈a1, a2,−t〉 and 〈a3, a4,−t〉 are locally isotropic except possibly at p0, so by
Theorem 14 they are both isotropic. Then 〈a1, a2〉 and 〈a3, a4〉 both Q-represent t,
so q = 〈a1, a2〉 − 〈a3, a4〉 is isotropic.

2.6. n ≥ 5.

Since every quadratic form in at least five variables over a CDVR with finite residue
field is isotropic, in this case the Hasse Principle for isotropy amounts to: if q is
indefinite, then q is isotropic. An indefinite form in more than five variables has an
indefinite subform in exactly five variables, so it suffices to treat the case n = 5.

Now write h = 〈a1, a2〉 − 〈a3, a4, a5〉. Let V be ∞ together with the set of primes
dividing 2a1 · · · a5. For each v ∈ V, hv is isotropic, so by the Isotropy Criterion
there is αv ∈ Q×v such that 〈a1, a2,−αv〉 and 〈a3, a4, a5,−αv〉 are both isotropic.
In particular, for each v ∈ V there are b1,v, b2,v ∈ Qv such that

αv = a1b
2
1,v + a2b

2
2,v.

By Artin-Whaples Approximation, there are b1, b2 ∈ Q× such that for all v ∈ V,

a1b
2
1 + a2b

2
2 ≡ αv (mod Q×2

v ) ∀v ∈ V.

Put α = a1b
2
1 + a2b

2
2. It follows that 〈a3, a4, a5,−α〉 is Qv-isotropic for all v ∈ V. It

also Qv-isotropic for all other v – indeed, the ternary subform 〈a3, a4, a5〉 already
has this property – so by the n = 4 case 〈a3, a4, a5,−α〉 is Q-isotropic: there are
x3, x4, x5, y ∈ Q, not all 0, such that

a3x
2
3 + a4x

2
4 + a5x

2
5 = αy2 = a1(b1y)2 + a2(b2y)2,

and thus h is Q-isotropic.

3. The Hasse Principle Over a Global Field

We now wish to prove the Hasse Principle for Isotropy for quadratic forms over an
arbitrary global field K. Here are the main ideas of the proof: the case n ≤ 1 is
still trivial, of course. Each of the cases n = 2 and n = 3 turns out to follow from a
big theorem in algebraic number theory, as we will explain (and then outsource to
standard works). On the other hand, via a dirty trick it will turn out that knowing
the n = 3 case of the Hasse Principle for all global fields allows for an easier proof
of the n = 4 case of the Hasse Principle over our fixed global field K! Finally, the
case of n ≥ 5 goes exactly as in the case of K = Q.
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3.1. n = 2.

Let q be a binary form over K. As in the case K = Q, it comes down to the follow-
ing: given that −disc q ∈ K×2

v for all v ∈ ΣK , we must show that − disc q ∈ K×2.
The following theorem accomplishes this.

Theorem 15. (Global Square Theorem) For a ∈ K×, the following are equivalent:
(i) a is a square in K: there exists b ∈ K with b2 = a.
(ii) a is a local square: for all v ∈ Σv, there is bv ∈ Kv with b2v = a.

Proof. (i) =⇒ (ii) is immediate.
¬ (i) =⇒ ¬ (ii): suppose that a ∈ K× \K×2: then L = K(

√
a) is a quadratic field

extension (and even a Galois extension, since we are “globally” excluding the case
of characteristic 2). We may therefore apply a case of the celebrated Cebotarev
Density Theorem: the set of finite places v of K which split in the extension L/K
has density equal to 1

[L:K] . In particular, there are infinitely many places v which do

not split in L, which means that Kv ⊗K L = Kv(
√
a) is a quadratic field extension

of Kv, so a ∈ K×v \K×2
v . �

Exercise: Let K be a global field. Show that the natural map

K×/K×2 →
∏
v∈ΣK

K×v /K
×2
v

is injective.

Exercise: Let q/K be a binary quadratic form, and let Sq = {v ∈ ΣK | qv is isotropic }.
a) Show that if q is isotropic, Sq = ΣK .
b) Show that if q is anisotropic, Sq has density 1

2 .

3.2. n = 3.

Proposition 16. For a global field K, the following are equivalent:
(i) The Hasse Principle holds for ternary quadratic forms over K.
(ii) The Hasse Principle holds for Hilbert Symbols over K: for a, b ∈ K×, we have
(a, b) = 1 iff (a, b)v = 1 for all v ∈ ΣK .
(iii) The Hasse Principle holds for plane conics over K: if C/K is a smooth plane
conic such that C(Kv) 6= ∅ for all v ∈ ΣK , then C(K) 6= ∅.
(iv) The Hasse Principle holds for quaternion algebras over K: if B/K is a quater-
nion algebra such that Bv = B ⊗K Kv

∼= M2(Kv) for all v ∈ ΣK .
(v) The Hasse Principle holds for quaternary quadratic forms over K of square
discriminant.

Proof. First observe that a form q is isotropic iff any similar form αq (for α ∈ K×
is isotropic.
(i) =⇒ (ii): This is immediate, since the Hilbert symbol (a, b) tracks the an/isotropy
of the ternary form ax2 + by2 − z2 = 0.
(ii) =⇒ (i): Every ternary quadratic form is similar to some ax2 + by2 − z2 = 0.
(i) ⇐⇒ (iii) is immediate.
(iii) ⇐⇒ (iv) follows from the equivalence between conics and quaternion algebras.
(iv) ⇐⇒ (v): A quadratic form is quaternary of square discriminant iff it is similar
to the norm form of a quaternion algebra. �
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Proposition 16 gives us several possible avenues of attack. For instance, to show
that (ii) holds, we may reason as follows: for any field K, the Hilbert symbol
(a, b) = 1 – i.e., the quadratic form ax2 + by2 − z2 = 0 is isotropic – iff a is a norm

from the quadratic extension K(
√
b)/K. So if (a, b)v = 1 for all v ∈ ΣK , then for

all v ∈ ΣK , a is a norm from the quadratic algebra Lv = K(
√
b) ⊗K Kv. Now we

invoke the following deep result.

Theorem 17. (Hasse Norm Theorem) Let L/K be a cyclic Galois extension of
global fields. For a ∈ K×, TFAE:
(i) a ∈ NL/K(L).
(ii) a is a local norm: for all v ∈ ΣK , a ∈ NL⊗KKv/Kv

(L⊗K Kv).

Proof. See e.g. [M-CFT, Thm. VIII.1.4]. �

This works! On the other hand, (iv) gives us a chance to apply an even deeper
theorem to get a slightly (but usefully!) stronger result.

Theorem 18. (Albert-Brauer-Hasse-Noether)
a) There is an exact sequence

(4) 0 −→ BrK −→
⊕
v∈ΣK

Br(Kv)
inv−→ Q/Z −→ 0.

b) Every element of Br(K)[2] and Br(Kv)[2] is a quaternion algebra, and there is
an exact sequence

(5) 0 −→ (BrK)[2] −→
⊕
v∈ΣK

(BrKv)[2]
inv−→ Z/2Z −→ 0.

Proof. See [P, Ch. 18]. �

In more down to earth terms, part b) asserts that the Hasse principle holds for
Hilbert symbols together with the following result.

Theorem 19. (Hilbert Reciprocity Law) For a, b ∈ K×, we have
∏
v∈ΣK

(a, b)v = 1.

From this we deduce the following result.

Theorem 20. Let q be a ternary quadratic form over a global field K. Let v0 ∈ ΣK .
If for all v 6= v0, qv is isotropic, then q is isotropic.

3.3. n = 4.

Let q be a locally isotropic quadratic form over K. If disc q = 1, then by the
work of the previous section – and, especially, by Proposition 16(v) – q is isotropic.
The case in which disc q 6= 1 really is different.

Exercise: Let q be a quaternary form over a global field.
a) Suppose that there is v0 ∈ ΣK such that qv is isotrpic for all v 6= v0. Show that
q is isotropic.
b) Show that the quadratic form q = 〈1, 1, 1, 7〉 over Q is anisotropic at v =∞ and
at no finite place.

To get around this dichotomy we do something sneaky: we extend the base.
This is justified by the following result.
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Theorem 21. Let K be a field, α ∈ K× \ K×2, and put L = K(
√
α). For an

anisotropic form q over K, TFAE:
(i) qL is isotropic.
(ii) q contains a binary subform f of discriminant −α.

Proof. (i) =⇒ (ii): Let q = 〈a1, . . . , an〉. Since qL is isotropic, there are
x1, . . . , xn, y1, . . . , yn ∈ K, not all zero, such that

∑n
i=1 ai(xi + yi

√
α)2 = 0. Re-

solving this equation into its rational and irrational parts, we get

(6)

n∑
i=1

aix
2
i + α

n∑
i=1

aiy
2
i = 0,

(7)

n∑
i=1

aixiyi = 0.

Equation (7) tells us that x = (x1, . . . , xn) and y = (y1, . . . , yn) are orthgonal in
the quadratic space (Kn, q), whereas (6) tells us that q(x) = −αq(y), which, since
q anisotropic, implies that both x and y are nonzero vectors. Since α is not a
square, q(x) and q(y) lie in different square classes, so the vectors x and y are a
basis for a two-dimensional subspace on which q restricts to the quadratic form
f = 〈q(x), q(y)〉, of discriminant q(x)q(y) = −α.
(ii) =⇒ (i): Since disc f = −α, disc fL = −1. Thus fL ∼= H is a subform of qL, so
qL is isotropic. �

Corollary 22. Let K be a field, and let q be a quaternary quadratic form over K
with disc q = α 6= 1. Put L = K(

√
α). If qL is isotropic, then q is isotropic. Then

qL is anisotropic.

Proof. By Theorem 21, q = f ⊕g, with dim f = 2 and disc f = −α. But then g is a
binary form of discriminant −1, i.e., g ∼= H is a subform of q, so q is isotropic. �

It should now be clear how to complete the proof of the Hasse Principle for qua-
ternary forms: let q is a locally isotropic quaternary form, and let L = K(

√
disc q).

Then qL is locally isotropic of square discriminant, so it is isotropic, hence by
Corollary 22 so is q.

3.4. n ≥ 5.

The proof that we gave in the case K = Q carries over verbatim to the case of
an arbitrary global field K, as we invite the reader to check.

4. Some Applications to Integral Forms

4.1. The Aubry-Davenport-Cassels Lemma.

Theorem 23. (Aubry-Davenport-Cassels) Let q(x) = q(x1, . . . , xn) ∈ Z[x] be an
integral quadratic form. We suppose that for any y = (y1, . . . , yn) ∈ Qn \ Zn, there
exists x = (x1, . . . , xn) ∈ Zn such that

0 < |q(x− y)| < 1.

Then, for any integer d, q represents d rationally iff q represents d integrally.
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Proof. For x, y ∈ Qn, put x · y := 1
2 (q(x+ y)− q(x)− q(x)). Then (x, y) 7→ x · y is

bilinear and x · x = q(x). Note that for x, y ∈ Zn, we need not have x · y ∈ Z, but
certainly we have 2(x · y) ∈ Z. Our computations below are parenthesized so as to
emphasize this integrality property.
Let d ∈ Z, and suppose that there exists x ∈ Qn such that q(x) = d. Equivalently,
there exists t ∈ Z and x′ ∈ Zn such that t2d = x′ ·x′. We choose x′ and t such that
|t| is minimal, and it is enough to show that |t| = 1.

Applying the hypothesis to x = x′

d , there is y ∈ Zn such that if z = x − y, we
have 0 < |q(z)| < 1. Now put

a = y · y − d,

b = 2(dt− x′ · y),

T = at+ b,

X = ax′ + by.

Then a, b, T ∈ Z, and X ∈ Zn.
Claim: X ·X = T 2d.
Indeed,

X ·X = a2(x′ · x′) + ab(2x′ · y) = b2(y · y) = a2t2d+ ab(2dt− b) + b2(d+ a)

= d(a2t2 + 2abt+ b2) = T 2d.

Claim: T = t(z · z).
Indeed,

tT = at2 + bt = t2(y · y)− dt2 + 2dt2 − t(2x′ · y)

= t2(y · y)− t(2x′ · y) + x′ · x′ = (ty − x′) · (ty − x′) = (−tz) · (−tz) = t2(z · z).
Since 0 < |z · z| < 1, we have 0 < |T | < |t|, contradicting the minimality of |t|. �

Remark: Theorem 23 has a curious history. So far as I know there is no paper
of Davenport and Cassels which contains it: it is more folkloric. The attribution
of this result is due to J.-P. Serre in his influential text [Se]. Later, André Weil
pointed out [W] that in the special case of f(x) = x2

1 +x2
2 +x2

3, the result goes back
to a 1912 paper of the amateur mathematician L. Aubry [Au12].

Let us say an integral quadratic form q is Euclidean if for all y = (y1, . . . , yn) ∈
Qn \ Zn, there is x = (x1, . . . , xn) ∈ Zn such that 0 < |q(x − y)| < 1. An integral
quadratic form is ADC if for all d ∈ Z, if q Q-represents d, then q Z-represents d.

With this new terminology, we get a pithy restatement of Theorem 23.

Theorem 24. (Aubry-Davenport-Cassels) Every Euclidean integral form is ADC.

Exercise: a) Suppose that q(x) ∈ Z[x] is an anisotropic quadratic form. Show that
q is Euclidean iff for all x ∈ Qn, there exists y ∈ Zn such that |q(x− y)| < 1.
b) Show that the criterion of part a) does not work for isotropic forms by considering
q(x, y) = x2 − y2.

Proposition 25. Let n, a1, . . . , an ∈ Z+. Then the integral quadratic form q(x) =
a1x

2
1 + . . .+ anx

2
n is Euclidean iff

∑
i ai < 4.

Exercise: Prove Proposition 25.
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4.2. Two, Three and Four Squares.

Our goal in this section is to prove the following celebrated classical results.

Theorem 26. (Fermat-Euler Two Squares Theorem)
For n ∈ Z+, the following are equivalent:
(i) For every prime p ≡ 3 (mod 4), vp(n) is even.
(ii) n is a sum of two integer squares: there are x, y ∈ Z with x2 + y2 = n.

Theorem 27. (Legendre-Gauss Three Squares Theorem) For n ∈ Z+, the following
are equivalent:
(i) n is not of the form 4a(8k + 7) for any a ∈ N and k ∈ Z.
(ii) n is a sum of three integer squares: there are x, y, z ∈ Z with x2 + y2 + z2 = n.

Theorem 28. (Lagrange Four Squares Theorem)
For all n ∈ Z+, there are x, y, z, w ∈ Z+ such that n = x2 + y2 + z2 + w2.

4.2.1. Proof of the Two Squares Theorem.

Let q = 〈1, 1〉 and n ∈ Z+. Since 1 + 1 < 4, by Proposition 25 q is Euclidean,
and thus by Theorem 23 q Z-represents an integer n iff it Q-represents n. Fur-
ther, q Q-represents n ∈ Z• iff the ternary form 〈1, 1,−n〉 is isotropic, which holds
iff (−1, n) = 1, which by the Hasse Principle plus the Reciprocity law holds iff
(−1, n)∞ = 1 and for all odd primes `, (−1, n)` = 1. Clearly (−1, n)∞ = 1 ⇐⇒
n > 0, which we assume henceforth. Further, for every odd prime ` we have

(−1, p)` = 1 if ` 6= p and (−1, `)` = (−1)
`−1
2 , i.e., 1 iff ` ≡ 1 (mod 4). Now write

n = 2apb11 · · · pbrr q
c1
1 · · · qcss ,

where the pi’s are primes which are 1 modulo 4, the qj ’s are primes which are three
modulo 4 and a, bi, cj ∈ N. Now:
(i) =⇒ (ii): if each ci = 2Ci is even, for every odd prime `,

(−1, n)` = (−1, 2)a` (−1, p1)b1` · · · (−1, pr)
br
` ((−1, q1)C1

` )2 · · · ((−1, qs)
Cs

` )2 = 1.

(ii) =⇒ (i): if for some 1 ≤ j ≤ s we have cj is odd, then

(−1, n)qj = (−1, qj)
cj
qj = −1,

so q does not Q-represent n.

4.2.2. Proof of the Three Squares Theorem.

Proposition 29. For n ∈ Z+ the following are equivalent:
(i) n is not of the form 4a(8k + 7).
(ii) n is Q-represented by q.

Proof. Let n ∈ Z•. In particular n ∈ Q, so by Hasse-Minkowski, q Q-represents
n iff q Qv-represents n for all v ∈ ΣQ. (Conversely, if we know which integers
q Q-represents, then we know which raitonal numbers it Q-represents, since q Q-
represents a

b iff it Q-represents ab.) As usual, we write qv for qQv
.

Step 1: If qv is isotropic, then it is universal, i.e., there is no condition at v for q to
represent n. For v ∈ ΣQ, qv is isotropic iff (−1,−1)v = −1 iff v ∈ {2,∞}. Indeed,
with no calculation we know that (−1,−1)p = 1 for all odd p and (−1,−1)∞ = −1,
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so by the Hilbert Reciprocity Law we conclude (−1,−1)2 = −1.2

Step 2: Let v =∞. Clearly q∞ = x2 + y2 + z2 R-represents n ∈ Z iff n ≥ 0.
Step 3: Let v = 2. By [QF-LOCAL, §2.3] the anisotropic ternary form q2 Q2-
represents every square class in Q2 except −disc q = −1. Further, n ≡ −1
(mod Q×2

2 ) iff v2(n) is even and n
2v2(n) ≡ −1 (mod 8). We’re done. �

Now consider q = 〈1, 1, 1〉 as an integral form. Since 1 + 1 + 1 < 4, by Proposition
25 q is Euclidean, hence by Theorem 23 it is ADC, so the Legendre-Gauss Three
Squares Theorem follows immediately from Proposition 29.

4.2.3. Proof of the Four Squares Theorem.

Exercise (Square-squarefree decomposition): For all n ∈ Z+, there are unique
a,m ∈ Z+ with m squarefree such that n = a2m.

Let q = 〈1, 1, 1, 1〉. If for some x ∈ Z4, q(x) = m, then q(ax) = a2m. So it
suffices to show that q Z-represents every squarefree positive integer m. By the
Three Squares Theorem, m is a sum of three integer squares unless m = 8k + 7.
But if m = 8k + 7, then m − 1 = 8k + 6. Now ord2(8k + 6) = 1, so 8k + 6 is not
of the form 4a(8k+7), hence 8k+6 = x2+y2+z2 and m = 8k+7 = x2+y2+z2+12.

Similar ideas can be used to prove the following mild generalization.

Theorem 30. For d ∈ Z+, the following are equivalent:
(i) The quadratic form q = 〈1, 1, 1, d〉 Z-represents all positive integers.
(ii) 1 ≤ d ≤ 7.

Exercise: Prove Theorem 30.

Exercise: Show that for n ∈ Z+, the following are equivalent:
(i) There are integers x, y, z, w such that n = x2 + y2 + z2 + 8w2.
(ii) n 6≡ 7 (mod 8).

Exercise: Prove or disprove the following claims:
a) If d is a positive integer which is not divisible by 8, then the quadratic form
x2 + y2 + z2 + dw2 integrally represents all sufficiently large positive integers.
b) If d = 8d′ is a positive integer, then the quadratic form x2 + y2 + z2 + dw2

integrally represents all sufficiently large positive integers which are not 7 (mod 8).

Exercise: Let n ≥ 4, and let q ∈ Z[x] a positive definite n-ary form. Show TFAE:
(i) q is an ADC form.
(ii) q Z-represents every positive integer.

4.3. More on Euclidean Forms and ADC Forms.

We will report on the main results of [ADCII]...as soon as that paper is complete!

2This is a circular argument in the sense that we needed to evaluate (−1,−1)2 to prove the
Hilbert Reciprocity Law, but it is nice to be able to make quick calculations.
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