
RATIONAL POINTS ON ATKIN-LEHNER TWISTS OF

MODULAR CURVES

PETE L. CLARK

These are the (more detailed) notes accompanying a talk that I am to give at
the University of Pennsylvania on July 21, 2006. The topic is rational points on
Atkin-Lehner twists of the modular curves X0(N). Apart from being an interesting
Diophantine problem in its own right, there is an ulterior motive: Q-rational points
correspond to “elliptic Q-curves” and thus to projective Galois representations.
We will see that this leads to a realization of infinitely many new groups PSL2(Fp)
as Galois groups conditional on the Birch Swinnerton-Dyer conjecture, and to a
“natural” infinite sequence of curves violating the Hasse principle.

These last two results, which are taken from a 2005 note [Cl1] and a very recent
preprint [Cl2] of mine, might sound deep and/or impressive, but the proofs are easy
to the point of raising the question of why they were not done before. In response,
I would have to say that this circle of objects and ideas – so close to the number-
theoretic mainstream (what I was taught in grad school were the three mainstays of
number theory – Diophantine geometry, Galois theory, and automorphic forms – are
all clearly present and up to their usual tricks) – seems profoundly underexplored. I
think there are many interesting and tractable problems here, and I will try to justify
this impression (to the extent that I am able; I have almost nothing intelligent to
say about the automorphic side of things) as much as to showcase any result of
mine.

1. Quadratic twists

Let C/Q be an algebraic curve endowed with a Q-rational involution ι. Then,

for each quadratic field extension Q(
√
d)/Q, we may define a new curve called

T (C, ι,Q(
√
d)/Q) – or, when we can get away with it, Cd. It is a curve which

becomes isomorphic to C over Q(
√
d) but has a twisted Galois action on its Q(

√
d)-

rational points: if σd is the generator of Gal(Q(
√
d)/Q), then for P ∈ Cd(Q(

√
d)),

σd(P ) := ι(σd(P )),

where the := is to be interpreted as in computer science: the new σd is the
old σd followed by ι. (This a special case of the principle of Galois descent:

H1(Q, 〈ι〉) = Hom(Q,Z/2Z) ∼= Q×/Q×2.) In plainer terms, a Q(
√
d)-rational point

P is Q-rational on Cd iff σd(P ) = ι(P ).

Let us make the convention that d ranges through squarefree (positive or nega-
tive) integers, and that C1 = C itself. Then there is a close relationship between
the Q-points on C/ι, the Q-points on the various curves Cd, and certain quadratic
points on C. On the one hand, since Cd/ι = C/ι, every Q-point on Cd maps to a
Q-point on C/ι. Moreover, the preimage of every nonbranch point P ∈ (C/ι)(Q)
is a set of two points {Q1, Q2} which is stable both under ι and under the action
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of Galois, so Q1 = σd(Q2) for a unique squarefree d, and these two points are Q-
rational on Cd (and not on Cd′ for any other squarefree d′). On the other hand a
Q-rational branch point has, set-theoretically, a unique preimage Q ∈ C(Q) which
satisfies, for all d, σd(Q) = Q and ι(Q) = Q, so rational ι-fixed points stay rational
on all the twists Cd.

Theorem 1. Let (C, ι)/Q be a curve endowed with an involution ι. Suppose:
(i) {P ∈ C(Q) | ι(P ) = P} = ∅.
(ii) There exists P0 ∈ C(Q) such that ι(P0) = P0.
(iii) (C/ι)(Q) is finite.
(iv) For all ` ≤ ∞, C(Q`) 6= ∅.
Then the primes p ≡ 1 (mod 4) such that the twisted curve Cp = T (C, ι,Q(

√
p)/Q)

violates the Hasse principle over Q have positive density.

We will content ourselves with the following remarks: combining (i) and (iii) we
get that Cd(Q) = ∅ for all but finitely many squarefree d (prime or otherwise). The
hypothesis (ii) ensures that Cp(Qp) 6= ∅ for any prime p splitting completely in the
field of definition of P0. By an argument using (in particular) the Weil bounds for
curves over finite fields, one finds that the other places can be handled by requiring
p to be a quadratic residue modulo sufficiently many small primes `, and we con-
clude by applying the Cebotarev density theorem.

Once we assume that C has points everywhere locally (e.g. if it has an obvious
Q-point!) and admits an involution ι, the other hypotheses look rather mild: (i)
holds e.g. if g(C) is even (for “topological” reasons), (iii) holds whenever g(C/ι) ≥ 2
by Faltings’ finiteness theorem, and surely (ii) holds “generically” whenever there
are at least two branch points.

Remark: Note that (i) and (ii) are necessary for the conclusion of the theorem:
as we saw, if (i) did not hold, we get Q-points on all quadratic twists (an obser-
vation which we will be able to exploit later!). If (ii) did not hold, then it follows
from a theorem of Chevalley-Weil that only finitely many of the twists can have
points even everywhere locally.1 It might be interesting to try to weaken (iii) or (iv).

Remark: To answer (again) a question I was asked at the talk, the density can
be bounded below in terms of the genera of C and C/ι.

We will want to apply this theorem to Atkin-Lehner twists of modular curves,
so let us now talk about them.

2. A semistable model for X0(N)

Let us choose a squarefree2 integer N = p1 · · · pr > 1 and consider the modular
curve X0(N). As a Riemann surface we recognize it as the upper half plane H
modulo the subgroup Γ0(N) of SL2(Z) consisting of matrices which are upper tri-
angular modulo N – or more precisely, the compactification thereof obtained by

1This fact – which holds for all geometrically Galois unramified coverings – is what makes
possible the descent method for studying rational points on curves [Poo].

2In the talk itself I took N to be prime, for simplicity: almost nothing is lost.
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adding 2r cusps. The noncuspidal points3 of this Riemann surface parameterize
elliptic curves over the complex numbers together with a distinguished order N
cyclic subgroup C.4 Or, what is a clearly equivalent but sometimes useful alter-
nate viewpoint, it parameterizes triples (E,E′, f) where f : E → E′ is a degree N
isogeny (indeed all such f arise as E → E/C for C as above, and conversely). We
also have a natural involution WN , which carries f to its dual isogeny f ′ : E′ → E
(uniquely characterized by f ′ ◦ f = [N ]).

Although X0(N) is already interesting as a Riemann surface,5 it is very much
more interesting as a curve defined over a smaller base, like Q. But let’s go whole
hog and introduce the integral canonical model, i.e., define a curve over Z (a.k.a.
an “arithmetic surface”) whose basechange to C is Y0(N). Indeed we can just cling
to the moduli problem: we want the coarse moduli scheme attached to the functor
which takes a scheme S to the isomorphism classes of pairs (E,C), where E/S is
an elliptic curve and C is an “order N subgroup” of E. As long as N is invert-
ible on S this works exactly as in the complex case, and we get a smooth curve
X0(N)/Z[1/N ].

6 When we work over a Zp-scheme with p | N things become more
interesting: we must speak explicitly in terms of subgroup schemes. The generic
elliptic curve E in characteristic p has E[p] ∼= Z/pZ × µp, and the moduli problem
here instructs us to choose – along with a necessarily étale order N/p subgroup –
an order p subgroup scheme of E[p], and instead of #P1(Fp) = p+ 1 choices, there
are visibly just 2. Thus the fiber of X0(N) → X0(N/p) over each ordinary point
consists of two (reduced!) points. On the other hand there are always finitely many
nonsingular points, for which E[p] is a nontrivial extension of αp = Ga[p] by itself,
and here there is only one order p subgroup scheme.

We have given what is somewhere between an explanation and a proof of the
following statement: X0(N)/Fp

is obtained from two copies of the smooth curve
X0(N/p)/Fp

by glueing each supersingular point on the first copy to a supersingu-
lar point on the second copy. There is a slight twist: the isogeny E 7→ E/αp is
the Frobenius map, so a point (E,Cp, CN/p) gets glued not to the identical elliptic
curve on the other copy, but to its twist by Fp2/Fp Frobenius. So the special fiber
looks like “double helix” in which – as with real DNA! – the two strands are some-
how glued together with orientations reversed. Note well that the Atkin-Lehner
involution wN interchanges the two components.

In particular, X0(N)/Z is a semistable model for X0(N) (i.e., the only singular-
ities of the geometric fibers are ordinary double points). A key point is that this
“modular” Z-model of X0(N) is not necessarily regular ; however, because it is a
semistable model, it is easy to construct from it a regular model, and in fact the
minimal regular model (assuming the genus is positive).7 For this we need to know

3In fact, the cusps can be viewed as parameterizing semistable singular curves of arithmetic
genus one, an observation of Néron that is useful in many contexts, but not for us today.

4Since N is squarefree the cyclicity is guaranteed.
5E.g., which complex elliptic curves does it cover?
6The facts that the coarse moduli space exists, and that it is smooth, are of course not obvious,

but rather follow from work of Igusa.
7Calling this curve X0(N)/Z is nonstandard (and bad): Mazur and Rapoport call it M0(N)/Z

(“M” standing for “moduli”, presumably) and reserve X0(N)/Z for the regularization of this
model. This is more sensible because given any positive genus curve C over Q, there is a unique
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what the strict complete local ring at each of the supersingular points – when
viewed as a closed point in the ambient arithmetic surface – looks like. It will
be isomorphic to W (Fp)[[x, y]]/(xy − pa) for some positive integer a, and to get a
regular model we must blow up a− 1 times. There is a recipe for what a is, but let
me come back to it later when it shall seem much more exciting.

This was interesting enough, but why do I bring it up? Certainly it is key knowl-
edge for much of the deep work on modular curves: for instance, Ken Ribet used
this model – together with a description of the regular model for Shimura curves8

XD
0 (N) which is partly analogous but requires an extra tool (Cerednik-Drinfeld

uniformization) – to show that modularity of elliptic curves implies Fermat’s last
theorem. It also comes up prominently in the following result:

Theorem 2. (mostly9 Mazur) For N > 163, X0(N)(Q) consists only of cusps.

When studying the Diophantine geometry of any curve C/Q, it is nice to have an
explicit regular Z-model, as one can use it to determine whether or not the curve
has Qp-rational points. Indeed, (one of many versions of) Hensel’s Lemma says
that C(Qp) 6= ∅ iff there exists a nonsingular Fp-rational point on the special fiber.
This remark may seem strange for two reasons: first, many of us are taught that it
is easy to determine whether or not a curve – or any variety – defined over Q has
points over any given Qp. This is true in a certain sense – given a particular set
of defining equations, there is in principle and sometimes even in practice an algo-
rithm to determine the complete set of places p ≤ ∞ for which C(Qp) ≤ ∞. But
aside from the fact that most varieties are not a priori given to us by an explicit
set of equations, it is clear that if we are interested in analyzing local points on an
infinite family of cognate varieties, then unless we have an infinite amount of time
the algorithmic approach is not the way to go.

But secondly: of course we do have Q-rational points on X0(N) for all squarefree
N : the cusps are all Q-rational.10 So of course local methods are useless for deter-
mining the Q-rational points on X0(N). (But they will be relevant for the curves
C(N, p) to be defined shortly.) This is in fact what makes the problem, along with
Fermat’s Last Theorem, so difficult: we have at least some powerful tools – e.g.,
local methods and the Brauer-Manin obstruction11 – to show that a curve has no
rational points at all, but there is no general method for showing statements like
“The only rational points on C are. . .”

minimal regular model, or in other words a canonical nicest way to extend C to a curve over Z.
We should reserve the notation C/Z for this model. Why I chose the bad notation I now forget.

8Some of the results I will describe have Shimura curve analogues; for others it is an interesting
problem whether such analogues exist. Indeed, as Prof. Chai commented at the end of the talk,
one would like to work in the generality of Shimura curves over totally real fields.

9Mazur’s paper treats the case of prime N only; to get from this case to squarefree N is not
difficult. But in fact, [RI] beings with a list of all known exceptional values of N (the largest being
N = 163), squarefree or otherwise, and this list was eventually shown to be complete by Kenku
and others.

10When N is not squarefree all of the cusps need not be Q-rational, but at least one of them
always is.

11It has been conjectured that the Brauer-Manin obstruction is the only one to the existence of
rational points on curves. Since hidden in this assertion is the claim that Shafarevich-Tate groups
are finite, this is not likely to be proved anytime soon, but it has strongly influenced recent work
in the subject.
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However, there is one favorable case for the enumeration of Q-points on a curve C
(of positive genus; the other case is easy): namely, if its Jacobian has a Q-factor A
of rank zero, then – assuming we have at least one point! – there is a finite-to-one
map from C(Q) to A(Q), so we can just compute the preimages and see how many
of them are Q-rational. This always happens for X0(N) – here A is the quotient by
the famed Eisenstein ideal of EndJ0(N) – so as soon as Mazur was able to show
this (quite deep) “fact” he knew immediately that all positive genus X0(N) had
finitely many Q-rational points. (Note that his work preceded Faltings’ finiteness
theorem.) Again this is quite different from finding the rational points on all the
curves X0(N) at once; for the latter, many more wonderful ideas are needed.12

3. Atkin-Lehner quotients and Atkin-Lehner twists

For a much sterner challenge, consider the curve

X+
0 (N) = X0(N)/wN .

The Atkin-Lehner theory of signs of functional equations – together with the con-
jecture of Birch and Swinnerton-Dyer – implies that the Jacobian J+

0 (N) of X0(N)
has the property that every Q-factor has rank exceeding its dimension.13 For ex-
ample, X+

0 (37) is the first elliptic curve of positive rank. Thus none of the standard
methods apply for finding the rational points on X+

0 (N), and the only reason that
we know that X+

0 (N)(Q) is finite when the genus is at least 2 – that is, for N > 131
– is because of Faltings’ finiteness theorem.

In fact, unlikeX0(N), it is the case that for infinitely manyN there are non-cuspidal
rational points on X+

0 (N) – namely, under certain (well understood) congruence
conditions there will exist a rational CM point. Let us call a noncuspidal, non-CM
point exceptional. Then it is a “folk conjecture” that for sufficiently large N , there
are no exceptional Q-rational points. As far as I know, the only reason to believe
this is what I might call Horatio’s philosophy on rational points on curves: except
for the ones which we can see with our own eyes, Q-rational points are few and far
between.

Why do we care about rational points on X+
0 (N)? Well, it too has a natural

and interesting moduli interpretation, closely related to that of X0(N): Q-points
on X0(N) correspond to dual pairs of N -isogenies ι : E → E′, ι′ : E′ → E which
are as a pair defined over Q: in other words, either (E, ι) is itself defined over Q

– the trivial case, which by Mazur’s theorem we can rule out when N > 163 – or
(E, ι) is defined over some quadratic field Q(

√
d) and the nontrivial automorphism

σ of this quadratic field sends (E, ι) to its dual. Such a thing is called a quadratic
Q-curve of degree N .14

12In the paper [EI], Barry had “only” enough wonderful ideas to handle the easier case of
X1(N); and only a year or two later did he see to solve the X0(N) case [RI].

13In particular, one of the “relations” in the Eisenstein ideal is wN = −1, so J+

0
(N) is a priori

orthogonal to the Eisenstein quotient.
14In fact, a result of Elkies says that all non-CM elliptic curves which are isogenous to all of

their Galois conjugates come from a rational point on the full Atkin-Lehner quotient X0(N)/W ,
i.e., are defined over a multiquadratic extension.
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Such curves are interesting for many reasons that we shall not have time to explain:
see [Ell] for more motivation. We shall concentrate on the following property: for
p prime to N , a quadratic Q-curve gives rise to a projective Galois representation,
i.e., to a homomorphism ρ : GalQ → PGL2(Fp).

Here is a brief explanation of how this works: first, if E were defined over Q,
by letting GalQ act on E[p] we would get a homomorphism GalQ → Aut(E[p]) =

GL2(Fp). Since the data of Q-curve is two elliptic curves defined over K = Q(
√
d),

each one of them gives a representation GalK → GL2(Fp). Now consider the fact
that the cyclic N -isogeny between them induces an isomorphism on the p-torsion
subgroups (indeed on the entire p-adic Tate module, since (p,N) = 1), and more-
over – since E,E′ are not CM, they do not have any endomorphisms of order N
– this isomorphism is unique up to a scalar matrix. So the generator σ of GalK/Q

induces an Fp-linear map from E[p] to E′[p], and by composing with ι′ we get a
canonical element of Aut(PE[p]) = PGL2(Fp).

This has applications to the inverse Galois problem, although this is not imme-
diately clear: e.g., it is well-known that PGL2(Fp) occurs as a Galois group over Q

for all p. Indeed GL2(Fp) does, a stronger statement. In fact there exists a single
elliptic curve C/Q for which the representation on p-torsion is surjective for all odd
primes p (a result of Serre) – and getting GL2(F2) ∼= S3 as a Galois group, via
elliptic curves or otherwise, is easy. On the other hand, since PSL2(Fp) is not a
quotient but a subgroup of PGL2(Fp), the above arguments do not suffice. It may
seem at first that this should also be easy to do with elliptic curves: the covering
X(p) → X(1) has Galois group PSL2(Fp) – however it is only geometrically Ga-
lois. A little analysis shows that one can realize it minimally as a Galois cover over
Q(

√
p∗) - i.e., we are a quadratic extension away.

Here is where Q-curves can come in to help: if we have a Q-curve defined over
Q(

√
p∗), and if (N

p ) = −1, then the associated homomorphism in fact lands in

PSL2(Fp): in some sense we have “twisted away” the undesired quadratic exten-
sion. A more geometric way of saying this is as follows:

Theorem 3. (Shih) Let N be squarefree, and p a prime with (N
p ) = −1. Let

C(N, p) be the quadratic twist of X0(N) by wN and Q(
√
p∗)/Q. Then there exists

a regular PSL2(Fp)-Galois covering ψ : Y → C(N, p) defined over Q.

Now we have an obvious strategy: find a Q-rational point P on C(N, p) such that
the fiber of ϕ over P remains irreducible over Q; this is equivalent to the Galois
representation on the corresponding Q-curve being surjective. Note that CM points
will (apart from a few trivial cases) never work, since their Galois representations
will have solvable image. Intuitively, we feel that “most” non-CM points should
have surjective image, so if there are “many” Q-rational points on C(N, p), our
strategy is a good one.

There is a well-known classical case: if C(N, p) ∼= P1, then a theorem of Hilbert
assures that a density one set of specializations will remain irreducible (more pre-
cisely, this property holds on the complement of a thin set): in this case we say
that PSL2(Fp) occurs regularly over Q. Remarkably, Serre observed that it follows
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from Faltings’ theorem that there are also infinitely many irreducible specializations
when C(N, p) is an elliptic curve of positive rank15 (so, whenever C(N, p)(Q) is in-
finite). There is no similar general criterion for the case of finitely many rational
points (in particular, when X0(N) has genus at least 2 – i.e., for N > 21).16

So, among the squarefree N > 1 for which X0(N) has genus 0 – namely

N = 2, 3, 5, 7, 10, 13;

or genus one – namely
N = 11, 14, 15, 17, 19, 21;

our task is to determine for which primes p such that (N
p ) = −1, C(N, p)(Q) is

infinite.

Theorem 4.

a) (Shih) If N ∈ {2, 3, 7}, then C(N, p) ∼= P1 for all p.
b) (many people) C(5, p)(Q5) = C(10, p)(Q5) = C(13, p)(Q13) = ∅.
c) (C—) Let N be 11 or 19. Then C(N, p) is an elliptic curve, which has odd
analytic rank iff p ≡ 1 (mod 4).
d) (Gonzalez, C—) C(15, p)(Q5) = C(17, p)(Q17) = ∅.
To sum up: PSL2(Fp) certainly occurs as a Galois group over Q if at least one
of 2, 3, 7 is a quadratic nonresidue mod p. Recall that conjecture of Birch and
Swinnerton-Dyer asserts, among other things, that the analytic rank is equal to the
Mordell-Weil rank; that at least the two ranks are equal mod 2 is called the parity
conjecture, and thanks to recent work of Nekovar, if only we knew that Shafarevich-
Tate groups were finite this would follow. Anyway, assuming some portion of BSD,
the theorem says that we also get PSL2(Fp) as a Galois group if p ≡ 1 (mod 4)
and either 11 or 19 is a quadratic nonresidue mod p. If p ≡ −1 (mod 4) then the
analytic rank is even, but it can still be positive. A famous conjecture (much less
universally believed than BSD; I am not quite ready to endorse it myself) says that
most elliptic curves should have rank 0 or 1, so it may well be that the density of
the set of primes p ≡ 1 (mod 4) such that C(11, p)(Q) or C(19, p)(Q) is infinite is
equal to zero. However, there are certainly such primes, e.g. p = 47 (Elkies). Based
on some computer calculations, I am willing to conjecture that there are infinitely
many.

The other parts of the theorem give values of N for which the method fails. Note
that the two values of N not addressed in the theorem – namely 14 and 21 – would
not help to realize any new values of p, since ( `1`2

p ) = −1 implies ( `1
p ) = −1 or

( `2
p ) = −1.17

It is a remarkable fact that we have just described all known instances of PSL2(Fp)
as a Galois group over Q, except one: in 1991, G. Malle proved that if ( 7

p ) = 1,

15This is not literally an extension of Hilbert’s irreducibility theorem to all regular Galois
extensions of the function field of a positive rank elliptic curve; there are some extra hypotheses
to check.

16I am not aware of a single example of a surjective homomorphism GalQ → PSL2(Fp) coming

from a degree N Q-curve when g(X0(N)) ≥ 2. Exceptional rational points on X+

0
(N) are rare

enough, and it is relatively unlikely that their field of definition will be Q(
√
−p) for a prime p with

(N
p

) = −1.
17Neither does removing the requirement that N be squarefree.
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( 5
p ) = −1, then PSL2(Fp) is a (regular) Galois group over Q, using purely group-

theoretical methods. Or to put matters in chronological order: Shih showed that
PSL2(Fp) occurs over Q for 7

8 of all primes; Malle showed it for 1
4 of all primes, and

together their results give 15
16 of all primes. My results give, conditionally on BSD,

3
8 of all primes, leaving 5

128 of the primes unaccounted for. Before writing up my
results, I did a couple of hours of computer calculation and found 614 primes for
which PSL2(Fp) certainly occurs over Q by my results but not by Shih’s or Malle’s,
including two primes p ≡ 1 (mod 4) for which the curves have analytic rank 2.

Probably you noticed among the prime values of N , we are claiming infinitely
many rational points iff N 6≡ 1 (mod 4) iff Q(

√
−N) has class number 1. (The

second observation implies the first, since it is well known that if N ≡ 1 (mod 4),
the class number of Q(

√
−N) is even.)

Recall from §1 that the points P which are simultaneously Q-rational on C(N, p)
and on X0(N) are those satisfying the equations

σ(P ) = P, ι(σ(P )) = P,

or equivalently:

ι(P ) = σ(P ) = P.

In other words, Q-rational ι-fixed points will stay rational on all twists. Now wN on
X0(N) (for squarefree N > 3; N = 2 and N = 3 work a little bit differently) always
has fixed points: namely, there is one complete Galois orbit of points corresponding
to the ideal classes in the order Z[

√
−N ], and there is a complete Galois orbit of

points corresponding to the ideal classes in the maximal order of Q(
√
−N). If N is

1 (mod 4), we have said the same thing twice, and there is indeed just one orbit.
If N is −1 (mod 4) these are distinct orders and we get two different Galois orbits.
Either way, we get a Galois orbit consisting of a single element iff Q(

√
−N) has

class number 1. This already proves the result in the genus 0 case, since a conic
with a rational point is P1. In the genus 1 case, we have a Q-rational point, so
we can take it as the origin and give C(N, p) (for all p) the structure of an elliptic
curve. The involution wN has three other fixed points (you can check this either
geometrically by Riemann-Hurwitz or algebraically by Dedekind’s formula for the
class number of a nonmaximal order), so modding out by wN gives a degree 2 map
to P1 branched over 4 points, at least one of which is rational. We may choose
our coordinate function on P1 so that the image of our distinguished point P on
C(N, p) maps to ∞, and we then have precisely the data for a Weierstrass equation
y2 = P3(x), and wN takes (x, y) 7→ (x,−y). This means that the quadratic twist by
Q(

√
p∗) is the usual twist by p∗ in the sense of elliptic curves. In particular we are

twisting the L-function by the quadratic character of conductor p, and the theory
of signs of functional equations gives the result on the parity of the analytic rank!

The negative result is a consequence of the following

Theorem 5. Suppose N is prime. Then C(N, p)(QN ) = ∅ ⇐⇒ N ≡ 1 (mod 4).

Proof: Well, as it happens we know what the reduction of X0(N) mod N looks
like: two copies of P1 joined along the supersingular points. The running hypothesis
(N

p ) = −1 means that the special fiber at N of C(N, p) is the quadratic twist by



RATIONAL POINTS ON ATKIN-LEHNER TWISTS OF MODULAR CURVES 9

wN and the unique quadratic extension FN2/FN . This means that the only FN -
rational points are the FN -rational supersingular points, which are all singular.
It would seem then that Hensel’s Lemma is telling us that C(N, p)(QN ) = ∅,
but this is obviously wrong so we’ve been too hasty. Recall that X0(N)/ZN

was
not necessarily regular. Indeed at a supersingular point, the exponent a in the
strict complete local ring is equal to half the number of automorphisms of the
corresponding elliptic curve E (see the appendix of [EI]). We always have ±1 as
a group of automorphisms; assuming that N > 3 for simplicity (we already know
what happens in the other cases), then even in characteristic N the only elliptic
curves with further automorphisms are the one with j-invariant 0 (which has 6
automorphisms) and the one with j-invariant 1728 (which has 4). Thus if 0 is a
supersingular j-invariant, we must blow up 6/2 − 1 = 2 times to get the regular
model, replacing the singular point by a chain of two rational curves. But this
doesn’t help: the Galois action on this chain is still twisted, so it interchanges the
two components of the chain. However, if 1728 is a supersingular j-invariant then
we must blow up 4/2 − 1 = 1 time to get a single rational component, evidently
stabilized by the Galois action, giving a genus zero curve over FN which necessarily
has at least 3 rational points, so at least one nonsingular rational point. By a well-
known result of Deuring, 1728 is a supersingular j-invariant iff −1 is not square
mod N iff N is not 1 (mod 4). Done!

4. Further study of C(N, p): 3 questions and an answer

It is interesting to try to study the curves C(N, p) more systematically:

Problem.

a) Determine, as explicitly as possible, the set of places ` ≤ ∞ for which the curve
C(N, p)(Q`) = ∅.
b) What can be said about C(N, p)(Q) when the genus is at least two?

As both Jordan Ellenberg and I think that this would make a great thesis problem,
maybe I should elaborate a bit (in the notes, if not actually in the talk). The case
of genus zero is completely understood: i.e., C(N, p) corresponds to some quater-
nion algebra over Q: to see which one, see [Ser]. So assume the genus is positive.
The Deligne-Rapoport model approach will give an answer at all primes dividing
N . One can see that (for all N) C(N, p) has smooth reduction at the primes `
not dividing Np; since smooth curves of genus one over finite fields always have
rational points, this means that there are Q`-rational points in the genus one case.
The most mysterious case is that of Qp, where I don’t know what the special fiber
of the minimal model looks like (one can see it is not in general semistable). But a
nice result of Gonzalez, described in more detail below, addresses this. So the case
of genus one is essentially solved.

At the end of [Cl1] I asked three specific questions about local and global points on
C(N, p):

1) Is there a necessary and sufficient condition for C(N, p)(Qp) = ∅ similarly simple
to the one for C(N, p)(QN ) (i.e., a congruence condition)?

I suspect the answer is yes, and that the explanation will come from combining
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Theorem 5 with Gonzalez’ theorem, which is intriguing because his proof could
not be more different: using η function identities (!!), Gonzalez constructs a finite
map to an explicit conic curve, whose corresponding quaternion algebra is 〈Na, p∗〉,
where the integer a depends on N (mod 24). At least when N is prime, his result
gives precisely the implication ⇐= of Theorem 5, so a natural first guess is that
when N is prime, C(N, p)(Qp) = ∅ ⇐⇒ C(N, p)(QN ) = ∅.

2) Is there ever a deficient prime ` not dividing Np?

One should be able to answer this question – at least in any given case – by applying
a (suitably wN -twisted) version of the Eichler-Selberg trace formula. Reasoning by
analogy to very similar issues on Shimura curves, I very strongly suspect that the
answer is yes. It would be nice to apply the sort of averaging arguments at which
the analytic number theorists are so proficient in order to get some idea “how often”
this occurs.

3) Is it possible for C(N, p) to have points everywhere locally but not globally?

Note that such behavior cannot occur in genus zero, and it did not turn up in
any of our genus one examples (but the cases N = 14 and N = 21 still deserve
atttention). I had expected this to be the hardest of the three questions to answer,
but last week I was able to show:

Theorem 6. For each squarefree N > 131 – except N = 163, the set of primes
p ≡ 1 (mod 4) for which C(N, p) has points everywhere locally but not globally has
positive density.

Indeed the proof I found for this result, suitably abstracted, gave Theorem 1. To
deduce Theorem 6 from Theorem 1 – with ι = wN – we need only remark that
X+

0 (N) has genus at least 2 when N > 131, so (iii) follows from Faltings’ finite-
ness theorem. (i) and (ii) have already been checked; note that (iv) holds because
X0(N) always has Q-rational cusps.

Maybe I should end by saying that whereas we were able to give almost the com-
plete story of known realizations of PSL2(Fp) over Q, the past few years have seen
an explosion in the realization of PSL2(Fpr ) over Q, for congruence conditions on
p depending upon r, by methods related to modular forms. See Wiese’s recent
preprint [Wie] and the references therein to work of Dieulefait and others. I wish
I had a better understanding of the relation of Serre’s conjecture to the inverse
Galois problem for PSL2(Fq) (and PGL2(Fq)): e.g., might it be possible to deduce
the nonexistence of certain Galois groups from the nonexistence of certain kinds of
modular forms?

5. Recommended reading

The construction of the semistable model X0(N)Z is one of many important topics
to be found in

[DR] P. Deligne and M. Rapoport, Schémas de modules des courbes elliptiques,
Springer Lecture Notes in Mathematics 349, 1973.



RATIONAL POINTS ON ATKIN-LEHNER TWISTS OF MODULAR CURVES 11

If one is primarily interested in a description of the model and a discussion of
the finer points about regularity at the supersingular points needed to construct
the regular model, I strongly recommend the appendix, by Mazur and Rapoport, to

[EI] B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. I.H.E.S.
47 (1977).

The main part of this paper develops the theory needed to classify the Q-rational
points on X1(N). (These results were later extended by Kamienny, Abramovich
and Merel.) The harder case of X0(N) is handled in

[RI] B. Mazur, Rational isogenies of prime degree, Inventiones math. 44 (1978),
129-162.

Classifying rational isogenies on number fields of higher degree, or even quadratic
fields – has proven to be very much harder. Indeed, the problem of rational points
on X+

0 (N) is a special case of this. So the results of mine described here can be
viewed as a contribution to this problem, representing about ε2 percent of a solu-
tion, where ε is a positive infinitesimal.

Here is an excellent survey of known and conjectural methods for finding ratio-
nal points on curves:

[Poo] B. Poonen, Computing rational points on curves, 149-172, Number Theory
for the Millennium III, A.K. Peters, 2002.

It seems that (not necessarily quadratic) Q-curves were considered explicitly by
Ribet – he showed that they can be characterized among complex elliptic curves by
being covered by some Riemann surface X1(N)/C.18 There are therefore important
connections to modular forms that I have not had enough time (or really, expertise)
to discuss. To learn more about Q-curves, start with the survey article

[Ell] J. Ellenberg, Q-curves and Galois representations, in Modular Curves and
Abelian Varieties, 2004.

and follow up on the references therein. (You will find that the material presented
here partially answers some of Jordan’s questions.) Or take a trip to Barcelona –
Q-curves are especially popular among Spanish mathematicians.

On the other hand, most of the fundamental ideas involved in quadratic Q-curves
are to be found in two much earlier papers of Kuang-yen Shih:

[Sh1] K.-y. Shih, On the construction of Galois extensions of function fields and
number fields, Math. Ann. 207 (1974), 99-120.

18The horrible terminology is due to B. Gross, who apparently first used it in the context of
CM elliptic curves. Professor (and Dean) Gross’ contributions to number theory in general and
the arithmetic of elliptic curves in particular are such that he may be forgiven for this.
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[Sh2] K.-y. Shih, p-torsion points on certain elliptic curves, Comp. Math. 36
(1978), 113-129.

Shih’s work is distinctly underemphasized in most of the treatises on the inverse
Galois problem, the notable exception being

[Ser] Topics in Galois Theory, Research Notes in Mathematics 1, Jones and Bartlett,
1992,

which has a very nice treatment of this material (indeed, with the benefit of years of
hindsight and his well-known expository gifts, Serre manages to give a significantly
simpler presentation of the portion of Shih’s work with direct Galois-theoretic ap-
plications) and proposes the extension to elliptic curves described above.

Theorems 4 and 5 appear in my short paper

[Cl1] P.L. Clark, Galois groups via Atkin-Lehner twists, to appear in Proc. AMS.

The proof was discussed in full here, but the paper also contains some numeri-
cal examples and enunciates a conjecture about 3-ranks of imaginary quadratic
fields that would serve to make the result unconditional on BSD. The conjecture
is close enough to a theorem of Belabas and Fouvry that it might be within reach,
although not by me: it is a job for a serious analytic number theorist.

Theorems 1 and 6 appear in my preprint

[Cl2] P.L. Clark, An Anti-Hasse principle for prime twists,

of which a written version exists but has not yet been made publicly available
(I worry that the appearance of this paper on the arxiv at this time would annoy
some people to whom I have some outstanding mathematical commitments). Cer-
tainly you may email me for a copy.

Finally, the following preprint (to be found on the arxiv) and its references should
be consulted for connections to modular forms and Serre’s conjecture.

[Wie] G. Wiese, On projective lienar groups over finite fields as Galois groups over
the rational numbers.

E-mail address: plclark@gmail.com


