DVIR’S WORK ON THE FINITE FIELD KAKEYA PROBLEM

PETE L. CLARK

1. The Dvir-Alon-Tao Theorem

Let \(F \) be a field and \(n \in \mathbb{Z}^+ \). A subset \(S \subset F^n \) is a Kakeya set if for every line \(Fv \) in \(V \), \(S \) contains some translate \(\ell_{a,v} := a + Fv \). The general Kakeya problem is to show that Kakeya sets are in some sense(s) “large.” Here we shall be concerned only with the case of \(F = \mathbb{F}_q \) a finite field of cardinality \(q \). We can then interpret large simply in terms of the cardinality \(|S| \).

Perhaps because of the analogy to \(F = \mathbb{R} \) as a “limit as \(q \to \infty \),” all known work has focused on bounds for fixed \(n \) and large \(q \).

Let \(K(n, q) \) denote the minimum cardinality of a Kakeya set in \(\mathbb{F}_q^n \). Clearly \(K(n, q) \leq |\mathbb{F}_q^n| = q^n \); but what about lower bounds? In 1999 T. Wolff showed \([Wol99]\)

\[
K(2, q) \geq \frac{(q+1)q}{2}
\]

and for all \(n \in \mathbb{Z}^+ \),

\[
K(n, q) \gg_n q^{n/2+1}.
\]

Recently Z. Dvir showed \([Dvi08]\) that for all \(\epsilon > 0 \), \(|S| \gg_n q^{n/2-\epsilon} \). Remarkably, N. Alon and T. Tao were able to refine his argument to arrive at the following:

Theorem 1.1. (Dvir-Alon-Tao, 2008) For all \(n \) and \(q \) we have

\[
K(n, q) \geq \left(\frac{q+n-1}{n} \right).
\]

Proof. Suppose there is a Kakeya set \(S \subset \mathbb{F}_q^n \) with \(|S| < \left(\frac{q+n-1}{n} \right) \).

Recall that the dimension of the \(\mathbb{F}_q \)-vector space of polynomials of degree at most \(d \) in \(n \) variables is \(\binom{d+n}{n} \). On the other hand, the dimension of the space of all functions \(f : S \to \mathbb{F}_q \) is \(|S| \), so under our hypothesis on \#\(S \), there is a a (not necessarily homogeneous) nonzero polynomial \(g(t) \) of degree at most \(q-1 \) vanishing on \(S \). Write \(g(t) = \sum_{i=0}^{q-1} g_i(t) \), where each \(g_i \) is homogenous of degree \(i \).

By the Kakeya property, for any \(y \in \mathbb{F}_q^n \) there exists \(a \in \mathbb{F}_q^n \) such that \(P(a + ty) \) is a univariate polynomial of degree at most \(q-1 \) with at least \(q \) zeros, thus \(P(a+ty) = 0 \in \mathbb{F}_q[t] \). In particular the coefficient of \(t^{q-1} \) (i.e., the leading coefficient) in \(P(a+ty) = P_0(a+ty) + \ldots + P_{q-1}(a+ty) \) must be zero, but the coefficient of \(t^{q-2} \) is precisely \(P_{q-1}(y) \). Thus \(P_{q-1} \) vanishes on all of \(\mathbb{F}_q^n \). Since its total degree \(q-1 \), it is a reduced polynomial in the sense of \([ChWar]\) and therefore it must be the zero polynomial. Similarly we find that

1 A Kakeya set over an infinite field must be infinite, so the problem is fundamentally more sophisticated. The most studied case is \(F = \mathbb{R} \), where “large” refers to any of several different kinds of fractal dimension.
P_{q-1}, \ldots, P_1 are all identically zero, so P is constant. Since P vanishes at all points of the Kakeya set S, we conclude $P(t)$ is the zero polynomial, a contradiction! \hfill \square

Note that this precisely recovers Wolff’s bound when $n = 2$. In general it gives $K(n, q) \asymp n q^n$, which is remarkably tight. Still, one can always ask for more: for $n = 2$ and odd q, work of X. Faber [Fab07] and J. Cooper [Coo06] gives
\[
\frac{(q + 1)q}{2} + \frac{5q}{14} - \frac{1}{14} \leq K(2, q) \leq \frac{(q + 1)q}{2} + q - \frac{1}{2}.
\]
Apparently the upper bound is believed to be sharp.\footnote{I am not aware of any more precise information, established or conjectural, on $K(n, q)$ for $n > 2$ (but what do I know?).}

2. Travaux de Dvir

Zeev Dvir’s original proof, while still very simple and elegant, is (obviously!) more complicated than the proof of Theorem 1.1 above. On the other hand, I find the original proof to be more interesting, especially because it is “more geometric.” In this section we describe Dvir’s proof.

2.1. Preliminaries.

First, Dvir considers a slightly more general problem: roughly he considers subsets of \mathbb{F}_q^n which contain sufficiently many points on some translate of sufficiently many lines. More precisely: for $\delta, \gamma \in \mathbb{R}^+$, a subset $S \subset \mathbb{F}_q^n$ is a (δ, γ)-Kakeya set if there exists a subset $L \subset V$ of size at least δq^n such that for $v \in L$, there is a line ℓ in V in direction v such that $|\ell \cap S| \geq \gamma q^n$. Thus a Kakeya set is a $(1, 1)$-Kakeya set.

Theorem 2.1. (Dvir, 2008) Let $S \subset \mathbb{F}_q^n$ be a (δ, γ)-Kakeya set. Then
\[
|K| \geq \left(\frac{d + n - 1}{n - 1} \right),
\]
where
\[
d = \lfloor q \min\{\delta, \gamma\} \rfloor - 2.
\]
From this he deduces

Corollary 2.2. (Dvir) For $n \in \mathbb{Z}^+$ and $\epsilon > 0$, there exists $C_{n, \epsilon} \in \mathbb{R}^+$ such that
\[
K(n, q) \geq C_{n, \epsilon} q^{n-\epsilon}.
\]

At first glance, the deduction of Corollary 2.2 from Theorem 2.1 is surprising, since the most obvious application of Theorem 2.1 – i.e., taking $(\delta, \gamma) = (1, 1)$ – gives (only) $K(n, q) \gg n^{n-1}$. But Dvir cleverly takes advantage of the following “multiplicative” property of Kakeya sets over any field:

Lemma 2.3. Let V be a finite dimensional vector space over any field \mathbb{F} and let $S \subset V$ be a Kakeya set. For any $r \in \mathbb{Z}^+$, the Cartesian product $S^r = \{(s_1, \ldots, s_r) \mid s_i \in S\}$ is a Kakeya set in V^r.

Proof. Any line in V^r is of the form $\mathbb{F}(v_1, \ldots, v_r)$. By assumption, there exist $a_1, \ldots, a_r \in V$ such that $a_i + \mathbb{F} v_i \in S$. Then $(a_1, \ldots, a_r) + \mathbb{F}(v_1, \ldots, v_r) \in K^r$. \hfill \square

Thus, knowing only $K(n, q) \geq C_n q^{n-1}$, we may deduce Corollary 2.2: by Lemma 2.3, $K^r \subset V^r$ is a Kakeya set and thus $|K^r| \geq C_{r, n} q^{rn-1}$, so $|K| \geq C_{r, n} q^{rn-\frac{1}{2}}$.\footnote{I am not aware of any more precise information, established or conjectural, on $K(n, q)$ for $n > 2$ (but what do I know?).}
2.2. The Schwartz-Zippel Theorem.

Theorem 2.4. Let F be any field, and let $0 \neq f \in F[t_1, \ldots, t_n]$ be a nonzero polynomial of degree d. Let S be a finite subset of F. Then the probability that for randomly chosen elements $x_1, \ldots, x_n \in S$ we have $f(x_1, \ldots, x_n) = 0$ is at most $\frac{d}{|S|}$.

More precisely, put $Z_S(f) := \{(x_1, \ldots, x_n) \in S^n \mid f(x_1, \ldots, x_n) = 0\}$. Then

$$|Z_S(f)| \leq d|S|^{n-1}.$$

Proof. By induction on n. For $n = 1$, it simply says that a nonzero degree d univariate polynomial over a field cannot have more than d roots. Assume true for $n-1$ variables and write

$$f(t_1, \ldots , t_n) = \sum_{i=0}^d f_i(t_2, \ldots , t_n) t_1^i.$$

Since f is nonzero, so is some f_i; choose the largest such index i. We have $\deg(f_i) \leq d - i$. By our induction hypothesis, the probability that $P_i(x_1, \ldots, x_n) = 0$ is at most $\frac{d-i}{|S|}$. Now, if $P_i(x_1, \ldots, x_n) \neq 0$, then $P(t_1, x_2, \ldots, x_n)$ is univariate of degree i. The conditional probability that $P(x_1, \ldots, x_n) = 0$ given that $P_i(x_2, \ldots, x_n)$ is not zero is therefore at most $\frac{i}{|S|}$. Let us denote by A the event that $P(x_1, \ldots, x_n) = 0$ and by B the event that $P_i(x_2, \ldots, x_n) = 0$. We therefore have

$$\Pr(A) = \Pr(A \cap B) + \Pr(A \cap B^c)$$

$$= \Pr(A) \Pr(B|A) + \Pr(B^c) \Pr(A|B^c)$$

$$\leq \Pr(B) + \Pr(A|B^c) \leq \frac{d-i}{|S|} + \frac{i}{|S|} = \frac{d}{|S|}.$$

\hfill \Box

Theorem 2.5. (J.T. Schwartz [Sch90], R. Zippel [Zip89]) Let $0 \neq f \in F_q[t_1, \ldots, t_n]$ be a polynomial of degree at most d. Then the number of zeros of f is at most dq^{n-1}.

Proof. In Theorem 2.4 take $F = F_q$, $S = F$.

\hfill \Box

2.3. Proof of Theorem 2.1.

We suppose for a contradiction that $S \subset F_q^n =: V$ is a (δ, γ)-Kakeya set with

$$|S| < \left(\frac{d+n-1}{n-1}\right).$$

Then the total number of monomials in $F_q[x_1, \ldots, x_n]$ of degree d is larger than $|S|$, so the total number of homogeneous polynomials of degree d is larger than the total number of functions from $S^n \to F_q$. Therefore there exist distinct polynomials inducing the same function, and, taking their difference, a nonzero degree d homogeneous polynomial $g \in F_q[t_1, \ldots, t_n]$ vanishing identically on S. We wish to show that such a g must have too many zeros to satisfy the Schwartz-Zippel theorem.

Let $\tilde{S} \subset C$ be the union of all lines passing through the origin which meet S
in at least one point. In more geometric terms, if $c : V \setminus 0 \to PV$ is the usual projectivization map, then $$\tilde{S} = c^{-1}(c(S)).$$ Since g is homogeneous, we must also have that g vanishes at every point of \tilde{S}.

Let $\mathcal{L} \subset V$ be as in the definition of (δ, γ)-Kakeya set. Here is the key:

CLAIM g vanishes identically on \mathcal{L}.

SUFFICIENCY OF CLAIM Assuming the claim, g vanishes on at least δq^n points. This violates the Schwartz-Zippel bound if $\delta q^n > dq^n - 1$, hence if $d < \delta q^n$, which is indeed the case for the value $d := \lfloor q \min \{\delta, \gamma \} \rfloor = 2$ appearing in the statement of the theorem. So it suffices to prove the claim.

PROOF OF CLAIM Let $0 \neq v \in \mathcal{L}$, so there exists $a \in V$ such that $\ell_{a,v} = a + Fv$ meets S in at least γq points. Thus, since $d + 2 \leq \gamma \cdot q$, there exist $d + 2$ elements of x of F such that $a + xv \in S$. Obviously at most one of these is zero, so there exist $x_1, \ldots, x_{d+1} \in F^x$ such that for all i, $a + x_i v \in S$. Therefore

$$w_i := v + \frac{1}{a_i} a \in \tilde{S},$$

so $g(w_i) = 0$ for all $1 \leq i \leq d + 1$. Thus the degree d polynomial g has more than d zeros on the line $\ell_{v,a}$ and therefore is identically 0. In particular it vanishes on the point $v + 0a = v$, establishing the claim and completing the proof of Theorem 2.1.

Comments: The most clever feature of this argument is the use of projectivization to switch from the line $\ell_{a,v}$ to the “dual” line $\ell_{v,a}$. Comparing with the proof of Theorem 1.1 one sees this elegant use of homogeneous polynomials is exactly where the estimates become worse: that some nonzero homogeneous polynomial of degree at most d vanishes on S is a more stringent condition than without homogeneity. But the latter argument seems to give information about a projective Nullstellensatz for low degree hypersurfaces over finite fields.

REFERENCES