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ABSTRACT.

1. INTRODUCTION

This note continues our study of the period-index problem in the Weil-Chatelet
group of an elliptic curve, begun in [6]. In this paper, we conjectured that for any
elliptic curve E/K defined over a number field and any prime number p, there exists
an infinite subgroup G of H!(K, E), every nonzero element of which has period p
and index p?. This conjecture was proved when E has full p-torsion defined over
K. In [7] we went on to pursue analogous questions in the Weil-Chéatelet group of
a higher-dimensional abelian variety.

In this note we give a closer analysis of what is geometrically the simplest case:
namely, A = E is an elliptic curve and p = 2. In this case, an element of H (K, E)|2]
corresponds to a genus one curve C'/K with Jacobian elliptic curve E and admit-
ting a degree two morphism ¢ : C' — V| where V is a conic (i.e., a smooth curve of
genus zero); we call such a curve C biconic. (Indeed the larger group H' (K, E[2])
parameterizes curves C equipped with such a map ¢.) The study of biconic curves
of genus one is closely related to some very classical issues, such as the geometry
curves of genus one given as the intersection of two quadric surfaces in P2 and the
invariant theory of binary quartics. ...

Conventions: In this paper we work over a perfect field k& whose characteristic
is different from 2 or 3. By a curve we always mean a smooth, projective geomet-
rically integral curve C'y.

2. STRONGLY POLARIZED CURVES AND MAPS TO PROJECTIVE SPACE

The index I(C) of a curve C;, is the least positive degree of a divisor D on k.
Equivalently, it is the ged of all degrees [I : k] of finite field extensions [/k such that
C has an [-rational point. In particular, if C' has a k-rational point, the index is 1.

Suppose C' has genus g. By Riemann-Roch, any divisor D of degree d > g is
linearly equivalent to an effective divisor. It follows that a curve of genus 0 or 1
has index one iff if has a k-rational point. This is false for higher genera: e.g.,
every curve over a finite field has index one, whereas it is easy to construct for each
g > 2 a hyperelliptic curve C/p,) (for any ¢ which is sufficiently large compared to
g) without F,-rational points.
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In this section we wish to highlight the interplay between index of C' — i.e., arith-
metic on C' — and the morphisms of morphisms from C into projective space — i.e.,
the extrinsic geometry of C.

By a polarized curve we mean a pair (C, D), where C/;, is a curve and D € Div(C)
is an effective divisor of positive degree. We say that two polarizations (C, D) and
(C,D') on a curve C are equivalent if the divisors D and D’ are linearly equiva-
lent. Alternately, we may view a polarization on C as an ample line bundle L on
C, and then (C, L) and (C, L') are equivalent precisely when L and L’ are isomor-
phic. On occasion it is convenient to refer to L as the polarizing bundle of (C, L).

A polarization determines a morphism
@p : C — PIP)7L,

Our definitions so far allow for the possibility that {(D) = 1, in which case pp is
just the map from C' to a one-point space. It turns out to be convenient for the
general theory to allow such polarizations, but of course they are not interesting in
and of themselves. So let us say that a polarization with I(D) = 1 is trivial, and
any other polarization is nontrivial. The point here is that from a trivial polariza-
tion we can build a nontrivial polarization: it follows from Riemann-Roch that if D
is any polarization on the genus one curve C, then nD is nontrivial for all n > g+1.

For any nontrivial polarization the image ¢p(C) is also a curve, which we de-
note by €', and ¢p : C — (' is a finite morphism. In fact, as we will recall shortly,
either C’ =2 C - i.e., vp is an embedding into projective space — or C — C’ has
degree 2 and C’ has genus 0. It is the latter case that we wish to study here.

Let g be the genus of C. For every value of g # 1, some integral multiple
of the canonical bundle K = ()¢ is a polarizing bundle, and thus we have
(pluri)canonical maps into projective space. Let us review:

Case I: ¢ = 0. Let D be any divisor associated to L = —K, the anticanonical
bundle. By Riemann-Roch, {(D) = 3. Moreover deg(L) = 2 > 2¢(C) 4 1, so that
L is very ample. Thus C' = C’ C P? is a plane conic curve. Under our assumption
that char(k) # 2, the conic can be diagonalized, so is representable in the form

Cop:aX?+bY? =7,

for some a,b € k*.

Remark: If C has a k-rational point P, then taking D = [P] the map ¢p : C — P!
is an isomorphism.

Proposition 1. Let Cy;, be a genus zero curve. The index of C is either 1 or 2.
Moreover, TFAE:

(i) The index of C is equal to 1.

(i) C has a k-rational point.

(iii) C =, P*.

(iv) The quaternion algebra {(a,b) is isomorphic to the matriz algebra Ms(k).
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Case II: g > 2. We may take as a polarizing bundle the canonical bundle K, so let
D be any canonical divisor. We have deg(D) = 2¢g—2, so I(C') | 2g—2. This bound
is best possible: e.g., for each g > 2, there exists a number field K = K(g) and a
genus g curve C, g with I(C) = 2g — 2 [8, Cor. 4]. By Riemann-Roch, I(D) = g.
We wish to consider three cases:

(a) The canonical bundle is very ample. Then ¢p : C % P9~! embeds C as a
degree g curve in P9~!. Evidently this is not possible if ¢ = 2. Conversely, for any
g > 3 there exists at least one curve €/, with very ample canonical divisor (cf.
Poonen). Moreover, the curve corresponding to the generic point on the moduli
space M, (uniquely defined since such a curve has no nontrivial automorphisms)
has very ample canonical divisor.

(b) Otherwise, the canonical bundle is ample but not very ample. In this case the
map C — C' = pp(C) has degree 2, C' has genus 0, and the emedding C’ «— P9~1
is a form of the Veronese embedding of degree g — 1. [[Explain in more detail how
to define the Veronese embedding for a conic without rational points.]] This case
further subdivides:

(bl) The curve C’ has a k-rational point, i.e., is isomorphic over k to P!. In
this case we say that C is hyperelliptic.

For a hyperelliptic curve, the map C' — P! has degree 2 and, by Riemann-Hurwitz,
2¢g + 2 branch points. It follows that the function field k(C) can be obtained by
taking the square root of a nonconstant rational function f(t) € k(t) = k(P!). Be-
cause k(t)(1/f(t) depends on f(¢) only modulo squares, we may assume that f(t)
is a polynomial which is a product of distinct irreducible factors. If k is not perfect,
then one could a priori have an inseparable irreducible factor. But then the base
change of C' to the splitting field of such a factor would be a curve of strictly smaller
genus, which implies that the curve C), was not smooth, and we have agreed to
exclude this case from consideration. Therefore any hyperelliptic curve of genus g
has an affine model

y2 = P29+2($)7

where Pyyy0 € k[x] is a separable polynomial of degree 2g + 2. Here if g > 1, then
the projective closure has a unique point at infinity, which is a singular point.

Remark: The point oo € P! is not a branch point, so its pullback to C' is a re-
duced divisor of degree 2. This divisor may correspond to two distinct k-rational
points [Pao, | + [Pso,], Or a single point Py, whose residue field is a quadratic exten-
sion of k. The first case obtains iff the highest order coefficient a = ag442 of P is
a square in k; otherwise, the residue field of the unique point lying over oo is k(y/a).

Remark: If 7 : C — P! is the degree 2 hyperelliptic map, let P € P'(k) be a
k-rational point. Then 7*(P) is a degree 2 divisor. We conclude that I(C) | 2, i.e.,

the index is either 1 or 2.

Certainly both values of I are possible. Indeed, let k be any formally real field
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(e.g. k=Q, k=R), and for any g > 0, define
C:y? = (2?2 4 1),

Then C has no rational points over any real closure of k, hence no rational points
over any extension of odd degree: I(C) = 2.

Problem 1. (Hyperelliptic index problem) Suppose we are given a genus g hyper-
elliptic curve C over a field k

C:y? = Pygya(x).
Determine whether I(C) =1 or I(C) = 2.

This turns out to be quite difficult: no general solution is known for (e.g.) k = Q.
(b2) We have C'(k) = @. In this case we say that C is properly biconic.

We propose to call a curve C' of genus g > 2 biconic if it is either hyperellip-
tic or properly biconic. Equivalently, a curve C/;, is biconic iff C 5 is hyperelliptic.

In this case, the function field k(C’) is, as above, the fraction field of k[z,y]/(aX?+
by® — 1) for suitable a,b € k*. Again we can generate k(C) over k(C’) by taking
the square root of a polynomial f(z,y). Since biconic curves are geometrically
hyperelliptic, the ramification locus of C' — C’ still consists of 2g + 2 geometric
points. On the other hand, the ramification locus is the locus in P? of

f(X,Y,Z) =0, aX? +bY? = Z%

Applying Bézout’s theorem we conclude that the degree of the homogenized poly-
nomial f(X,Y,Z) must be g+ 1. In summary, we get an explicit model for C' inside
P3; writing our homogeneous coordinates as [X : Y : Z : T, it is:

(1) f(X,Y,2)=T?29"", aX? +bY? = Z?

Proposition 2. Let C be a biconic curve of genus g > 2. If g is even, then C' = P!
and C' is (canonically) hyperelliptic.

Proof: Since C" is a degree g — 1 curve in P97! | if g is even, g — 1 is odd. Therefore
any hyperplane H in P9~! intersects C’ in an effective divisor of odd degree. Thus
the index of C’ is odd, and therefore it is 1, which implies that it has a k-rational
point, and hence is isomorphic to P'.

Conversely:

Proposition 3. Let g > 3 be an odd integer, and let (C') i, be a genus zero curve

without k-rational points. Then there exists a genus g curve C;, such that px (C) =
C'. In particular, C is biconic and not hyperelliptic.

Proof: By Riemann-Hurwitz, it suffices to find a morphism f : ¢! — P! of degree
2g + 2 such that the divisor f~1(0) consists of 2g + 2 distinct geometric points,
for then we can take k(C”)(y/f) as the function field for C. Let k'/k be a qua-
dratic extension over which C’ =2 P'. The hypotheses imply that k is infinite, so
let ¢ € K'(C') = E'(t) be a polynomial of degree g + 1 of the form Hf;l (t — ),

IThese terms are neologisms due to the author. We hope that the present work demonstrates
the usefulness of the distinction between hyperellipticity and biconicity in arithmetic geometry.
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and put f = q7 = [[70(t — z:) [TF] (F — 7), where 7; denotes the k'/k-Galois
conjugate of x; (which is distinct from x; since C’ has no k-rational points), and
similarly ¢ is the conjugate rational function.

Remark: For g > 3, the bicanonical bundle L = 2K has degree 49 — 4 > 2g + 1, so
is very ample and embeds C in P393, For g > 2, the tricanonical bundle L = 3K
has degree 6g — g > 2g + 1, so is very ample and embeds C in P?9~%. Although
these embeddings certainly have their uses — especially when studying the moduli
space of all curves of genus g — in terms of explicit equations they are much more
complicated than the hyperelliptic and biconic models. Moreover, the hyperelliptic
/ biconic model has a much closer relationship to the index of C. Indeed, we have
the following evident result:

Proposition 4. The index of a properly biconic curve is either 2 or 4.

Problem 2. (Biconic index problem)
Given a biconic curve Cy,, determine whether I(C') is 1, 2 or 4.

Case III: g = 1. In this case the canonical bundle is trivial, so no integral power
of it is ample. Thus this situation is quite different from the other cases: a polar-
ization on C involves a choice of additional structure; there is no such thing as a
“canonical” polarization.

So suppose we are given an effective k-rational divisor D of degree d > 2.

Case a) d > 3. Then by Riemann-Roch we the morhpism ¢p : C — P471 is a
degree d embedding. When d = 3, this means that C’ = C' is a plane cubic curve.
For d > 4, the image C’ is the intersection of @ quadric hypersurfaces [9, Prop.
5.3]. When d = 4, we get an intersection of two quadrics in P3, which we can
describe quite explicitly, as follows. Since h°(2D) = 8 and the space of quadratic
forms in the variables X,Y, Z, T is 10-dimensional, there exist two linearly inde-
pendent quadratic forms Q1(X,Y, Z,T), Q2(X,Y, Z,T) vanishing on C. Since the
locus @1 = Q2 = 0 is already a quartic curve, it follows that ¢p expresses the
genus one curve C as the intersection of the two quadric surfaces @1 = Q2 = 0.
For d > 5 the image curve C’ is not a complete intersection.

Case b): d = 2. Then by Riemann-Roch the morphism ¢p maps to P! and has
degree 2. The converse also holds: any degree two map 7 : C — P! is the morphism
associated to the complete linear system 7*(p), where p is any rational point on P!.
Moreover, by the same argument as in Case IIbi above, we can represent C' by the
affine equation
y* = Pu(x).

It therefore seems reasonable to extend our above terminology: by a hyperel-
liptic curve of genus one we mean a polarized genus one curve (C, D), where
deg D = 2. We also define a hyperelliptic involution on a curve of genus g > 1
to an involutory (i.e., order 2) automorphism ¢ of C such that C'//c =2 PL. The data
of a hyperelliptic involution is equivalent to that of a line bundle L of degree 2 with
h°(C,L) = 2.
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Note well the distinction between hyperellipticity in ¢ > 2 and hyperellipticity
in genus one: a curve of genus g > 2 admits at most one hyperelliptic involution,
which is constructed from the geometry of the canonical bundle. However, a curve
of genus one may admit multiple — indeed, continuously many — hyperelliptic invo-
lutions. Suppose for simplicity that k is algebraically closed, and choose O € C(k).
Then we may take O as the origin of a group law on C, and accordingly get an
involution tp : P — —P, which has O as a fixed point and also three other fixed
points, the 2-torsion points. But if now O’ is any k-rational point which is not one
of the four fixed points of 1o, we similarly get another hyperelliptic involution ¢o-
which is evidently distinct from ¢. Thus, since C(k) is infinite, we have infinitely
many hyperelliptic involutions on C.

Having defined hyperelliptic polarized curves of genus one, it is natural to won-
der about biconic polarized curves of genus one. The alert reader will notice that
this is impossible: no genus one curve C' admits a divisor D such that ¢p(C) = C’
is a curve of genus zero without rational points. Indeed, all possibilities have al-
ready been described.

However, we can still define a biconic curve of genus one as a genus one curve
C together with a degree 2 map down to a genus zero curve C’. Arguing as above,
such a morphism gives rise to an explicit model for C in P3, namely

(2) f(X,Y,2) =T?% aX?+bY? = Z?

where f has degree 2. This is a smooth model, and in fact it is a special case of
the model coming from a polarization of degree 4. This makes good sense, because
given m : C — (", there exists a degree 2 divisor on ¢’ and its preimage gives
a degree 4 divisor on C. Moreover, since there is, up to isomorphism, a unique
degree 2 line bundle L’ on C’, the isomorphism class of the pullback L = 7*L’
is well-determined. Therefore a biconic structure on C' induces a polarization of
degree 4.

There are two very natural questions:

1) Can one interpret the structure of a biconic morphism 7 : ¢ — C’ in terms
of line bundles on C?

2) Suppose that C' is a genus one curve endowed with a biconic structure, where
C’'(k) = 0. How can we tell whether C is hyperelliptic; equivalently, when it has a
divisor of degree 27

Some further elementary geometric reasoning will answer Q1), which at the same
time will reveal that Q2) is precisely the period-index problem for genus one
curves of period 2. We will then give a complete solution to the period-index prob-
lem in this case, which is the easiest case left unsolved by prior work of Clark,
Clark-Sharif and Sharif. As an application we will exhibit a field & for which there
exist two elliptic curves E1, F» over k such that: every torsor C under E; has period
equals index; there exists a torsor C' under Es with period 2 and index 4.
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2.1. Some instances of change of model.

If C) is an algebraic curve, then the set P(C) C PicC of polarizing line bun-
dles has some natural algebraic structure. First it is a semigroup under addition:
if L1 and Lo are polarizing bundles, so is L1 ® Lo. Indeed, choosing corresponding
effective divisors Dy and Ds, the polarizing condition is equivalent to the existence
of nonconstant rational functions f; with polar divisor divy, f; < D;. ...

Special case: Suppose O is a k-rational point on C. Then for any d > 2, Dy = d[O]
is an effective divisor of degree d. For d > g + 1, Dy is a polarization on C. The
“divisibility” of these polarizations has an impact on the arithmetic and geometry
of the model. Indeed, by choosing suitable projective coordinates [ X : ... : Xyp)],
the morphism ¢p, : C — PYP)=1 has the property that if we intersect with the
“hyperplane at infinity” X, p) = 0 and pull back to C, we recover the divisor
Dy = d[O].

When g = 1, d = 2, this means that co € P! is a ramification point for the
morphism 7 : C — P!. This leaves three ramification points on the affine line, and
thus we get the function field of C' by taking the square root of a cubic polynomial
P;(x), giving the affine model

y* = P3(z).

When g = 1, d = 3, this means that the point ¢p,(0) € €’ C P? is the
unique intersection point of the line at infinity Z = 0 with the cubic curve C:
it is a cubic flex point. This amounts to special conditions on the cubic defin-
ing equation F(X,Y,Z) = 0. Indeed, we use functoriality again and consider
L(2[Ds]) = L(6[0]). By Riemann-Roch, there exists a nonconstant rational func-
tion  on k(C') with polar divisor 2[O] and a nonconstant rational function y on k(C')
with polar divisor 3[0]. Since [(6[0]) = 6, the seven elements 1, z,y, 2%, ry, 23, y? of
the linear system |6[O]| must be linearly dependent, which leads to the Weierstrass
model
Y2Z 4+ a1 XYZ+asYZ? = X3+ auX?Z + as X Z° + a6 Z°.

(This can be explained a little better: the map into projective space can be taken
to be [z :y:1]...)

When g = 1, d = 4, we can take projective coordinates [X : Y : Z : T] such
that C' N (T = 0) is again the single point ¢(O), with multiplicity 4. As above, we
can choose (X,Y,Z) to be rational functions on C' having poles of order (1,2,3)
at O, and then it follows that there is some constant ¢ € k such that XZ = cY?2.
Thus one of the quadrics in the pencil is an isotropic conic. The projection
X:Y :Z:T € Cw~ [X:Y :Z endows C with a hyperelliptic structure,
corresponding to the degree 2 divisor 2[0].

Example: Norm maps.

2.2. Weakly polarized curves.



8 PETE L. CLARK

A degree d weak polarization on a curve C' we mean a pair (C, D), where D
is an effective divisor of positive degree on C' 5 whose linear equivalence class is

Galois invariant: for all o € Gal(k/k) we have o(D) ~ D.

Via the canonical injection PicC' — PicC /k We may regard any polarization as

a weak polarization. Obviously there is no distinction if £ = k. More generally, if
C has a k-rational point then any rational divisor class contains a rational divisor,
so all weak polarizations are polarizations. However, for curves without rational
points there is indeed a distinction to be made, which turns out to be highly relevant
for us:

Proposition 5. For a curve Cyy, of positive genus, a weak polarization D of degree

2 with (D) = 2 induces a biconic structure m : C — C', and conversely every
biconic structure comes from such a weak polarization, uniquely up to equivalence.

The implications of this result are much more interesting in genus one, for only
in genus one can a curve have multiple biconic structures, some of them properly
biconic and some of them (perhaps!) hyperelliptic.

2.3. Biconic curves of genus one.

Let E/K be an elliptic curve and n € H'(K, E)[2]. Then 7 corresponds to C,
a genus one curve together with the structure of a principal homogeneous space
over E. (Because 2 -7 = 0, if Aut(E/K) = £1 — as is generically the case — then
C' admits a unique principal homogeneous space structure.) Via the Kummer se-
quence, 1 admits at least one lift to a class ¢ € H(K, E[2]), whose elements can be
viewed as parameterizing Galois twisted forms of [2] : F — E,ie., mapsp:C — E
with geometric Galois group Z/2Z @® Z/27Z. The map ¢ determines a canonical K-
rational divisor class of degree 2 on C, as follows: choose P € C(K) such that
¢(P) = O, and consider D} := 2[P]. By identifying ¢ with [2] over K, we find that
independent of the choice of P, D is linearly equivalent to 2[O], so in particular
we have that for all ¢ € gg, o(D}) ~ Dj, so that Dy € Pic*(C)(K). Another
application of Galois descent (CITE!) associates to D, a morphism op, : C =V,
a twisted form of the embedding associated to a divisor of degree 2. Thus:

Proposition 6. Let E/K be an elliptic curve and n € H'(K,E)[2]. Then n
corresponds to a biconic genus one curve C, and the lifts € of n to H'(K, E[2])
correspond to biconic diagrams ¢ : C' — V.

Corollary 7. Let C/K be a genus one curve. The following are equivalent:
a) C admits a rational divisor class of degree two (i.e., C' has period two).
b) C admits a DCY-canonical model, i.e., a projective model of the form

aX?+bY? =272

% = f(X,Y,Z)
for some quadratic form f.
Proof: We saw above that a choice of rational divisor class of degree two on a genus
one curve C induces a biconic structure C — V. Earlier we saw that a biconic
curve of genus ¢g admits a projective model of the form (1), where the degree of f

is g +1 = 2. The converse is even more clear, as the map (X,Y,Z,T) — (X,Y, 2)
induces a degree two covering C' — V.
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2.4. The Galois set of quadratic cones. Suppose C/K is a genus one curve
embedded in P? by means of a degree four divisor. It makes sense to ask whether
there is a biconic morphism C' — V consistent with this embedding, a notion which
can be expressed in two ways. On the more algebraic side, we are asking if the
divisor Dy is in the image of [2] : Picz(C’)(K) — Pic4(C')(K)7 i.e., is 2D} for some
rational divisor class Dj. Geometrically, we are asking whether some element of
L(2D,) is a conical quadric surface.

The embedding C — P2 does not determine the quadrics @; and Q- uniquely,
but rather the entire pencil P(x) = 2Q; + Q2 of quadrics as x varies over P!/K
(we get Q1 by taking x = 00). It is a well-known geometric fact that every (nonde-
generate, in a sense that we are about to make precise) pencil of quadric surfaces
contains, over K, precisely four conical quadrics: these are the values of = for which
the discriminant f = disc(P(x)) of the quaternary quadratic form P(x) vanishes.
Thus we can define a hyperelliptic curve

C' 1y = f(2)

which is generically a quartic, but is a Weierstrass cubic precisely when @, is con-
ical (so that one of the roots of f(x) is * = 00). Over K the elliptic curve C’
is isomorphic to the elliptic curve C, but over an arbitrary base C’ is given by a
Ds-canonical model so is closer to having a rational point than C. In fact [McC]
give an explicit degree four map ¥’ : C — (', so that the process of finding the
map jp, : C — J(C) is reduced to the (easier) construction of the Jacobian of a
hyperelliptic quartic curve. Thus, when @1 is conical, the map ¥’ : C' — FE is the
two-covering corresponding (under the two interpretations of H'(K, E[2]) to the
map C' — V as above.

Assume henceforth that Q; = V is conical. The construction then gives a bi-
jection between the remaining quadratic cones Vo, Vi, V4 in the pencil and the
nontrivial 2-torsion points of E. Thus the Galois action on the set {Va, V3, V4}
can be nontrivial. In particular, a genus one curve can be represented as the inter-
section of two conical quadrics if and only if it has period 2 and E[2](K) # 0.

Example (Simultaneously diagonalizable quadrics): Whereas any single quadratic
form over F' can be diagonalized, it is very rare that two quadrics Q1 and Q)2 can
be simultaneously diagonalized. Indeed, if Q1(X,Y,Z,T) and Q2(X,Y,Z,T) are
both diagonal conics, f(z) = disc(xQ1 + Q2) has four linear factors, so we may take
Q1 and Q3 to be conical. Over K we may take all the nonzero coefficients to be 1,
and under the natural Ss-action on P? (permutation of variables) we may arrange
for @1 to omit any given variable (say X) and Q2 to omit any other variable (say

Y), so that over K we get the equations
(3) Y2422 4+T2=0, X2+ 22 4+T%=0

and it remains to compute the j-invariant of this elliptic curve. However, since
the defining conics lack rational points over any formally real field (so a fortiori
C(K) = 0 for such K), we might do better to choose a different K-rational model,
which hopefully motivates Cassels’ choice C :

(XY, Z,T)=X>-Y?+T%*=0,
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QX Y, Z,T)=Y*~-Z>+T* =0,
which has the rational point O = [1:1:1:0]. For this model, P(z) = disc(zQ1 +
Q2) = 2% — x, so C is the elliptic curve y?> = 2® — x, which has CM by Z[y/—1],
j-invariant 1728, and Mordell-Weil group E(Q) = Z/2Z & Z/27Z. Alternately, the
elliptic curve can be geometrically determined by noting that

U (X,Y,Z2,T)— (Z2,Y,X,V/—1T)
is an order four automorphism of C' which fixes O.

2.5. A question about splitting fields. Let C/K be a genus one curve without
K-rational points, and 7 a corresponding element in H*(K, E). A more ambitious
question than the period-index problem is to ask for a description of all splitting
fields L for 7, i.e., for the collection of extensions L/K such that C(L) # (). When
gk is complicated (e.g. K = Q) this seems like too much to ask, but it is inter-
esting to inquire about the existence of splitting fields with various properties: for
instance, may we always take a splitting field which is abelian, or solvable, or Galois
with degree equal to the index of n?

The example of [?, § 2.3] gives a negative answer to the first and third questions
when K = Q,: let £ > p be another prime number and E/Q, an elliptic curve
with good reduction and E(Q,)[¢] # 0 (as explained in loc. cit., such curves can
be found precisely when p +1 < ¢ < p+142,/p, so they exist in abundance) then
there exists a class 0 # n € H(Q,, E)[{]. By a result of Lang and Tate, n|;, = 0 if
and only if £ | e(L/K), but by the basic theory of local fields (especially, because
Qjp does not contain the £th roots of unity) no such L is abelian over K. Note that
this construction works only for odd primes ¢.

The situation is different when E/K has full n-torsion, where to split a class
n € HY(K,E)[n] it suffices to split any lift to ¢ € HY(K, E[n]) = (K*/K*")?,
and since the latter group parameterizes pairs of characters of order dividing n,
such an 7 obviously has an abelian splitting field. The following is a generalization
of this:

If we assume (only) that E[2](K) # 0, then C is the complete intersection of two
conical quadric surfaces, say Q1(X,Y,Z) = Q2(X,Y,T) = 0, and by prescribing
arbitrary values of X and Y in K* we get independent quadratic equations to solve
for Z and T'; thus, as in the case of full 2-torsion, n can be split over a biquadratic
extension.

Question 8. Does there exist a field K (not of characteristic two), an elliptic curve
E/K and a classn € H*(K, E)[2] which cannot be split over any abelian extension?

In fact, a rational divisor class of degree n becomes rational over a solvable exten-
sion (because every element of the Brauer group is split by a metabelian extension,
a consequence of the Merkurjev-Suslin theorem), so every curve C'/K of period n
has a solvable point if and only if every curve of index n has a solvable point. The
latter clearly holds over every field for all n < 4.

One rather suspects that there should exist a field K and a genus one curve of
index 5 with no rational points over any solvable extension, but to the best of my
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knowledge there are no examples of this. On the other hand, it has been suggested
to me (by B. Mazur) that every genus one curve over Q should acquire a rational
point over a solvable — indeed, metabelian — extension.

3. THE EXPLICIT FORM OF THE PERIOD-INDEX OBSTRUCTION

In this section, K is an arbitrary field of characteristic different from two, so any
elliptic curve E/K is given by an equation of the form

y? = (z—01)(z — )(z — 03) = f(2)

for some separable, monic cubic polynomial f(x) € K[z]. Let L := K[T]/(f(T))
denote the associated étale cubic algebra. L can be one of the following four types:

(i) L 2 K x K x K, the split case,

(ii) L =2 K x M, where M/K is a quadratic field extension, the semisplit case,
(iii) L is a field and L/K is a Galois extension, the cyclic case,

(iv) L is a field and L/K is non-normal, the generic case.

Remark: Although the polynomial f(z) is not uniquely determined by the elliptic
curve, the isomorphism class of the étale algebra L is, as follows either by a direct
computation using a change of variables between Weierstrass equations as in [17] or
by a characterization of L in terms of the Galois representation on the two-torsion
points.

3.1. A classical isomorphism. In order to make explicit the obstruction map
A : HYK,E[2]) — Br(K) we need an “explicit” description of H(K, E[2]).
When FE[2] has trivial gx-module structure, Kummer theory gives an isomorphism
HY (K, E[2]) = (K*/K*?)2. But we cannot write “=" because there are six differ-
ent isomorphisms, one for each ordered Z/2Z-basis of E[2](K). We now recall a sim-
ple formalism whose motivating idea is to preserve the S3 = GLo(Z/2Z)-symmetry
of the situation by proceeding in a way that avoids making such an arbitrary choice.

A kernel set is an ordered triple (A1, A2, A3) with A; € K (6;)*, satisfying the fol-
lowing two conditions:

o If 0; and 0; are conjugate over K, then so are A\; and ;.

[ ] /\1 )\2)\3 =1.

Recall that we defined a cubic algebra L = K[T]/(f(T)), so there is a norm
map N : L* — K*. The reader should now check that the group KS is nothing
but a convenient description of the kernel of the norm map. In particular, in the
split case, we have L & K x K x K, so KS = {(a,b,¢c) € K* | abc = 1}, so
that KS/KS? = K*/K*? x K*/K*? (but the former being a “better” descrip-
tion in that the isomorphism involves a preferred choice of two out of the three
coordinates). It is very well-known (e.g. [17]) that in the split case the embedding
t: BE(K)/2E(K) — KS/KS? is given as

((E,y) = (SU - 91,‘% — QQ,SU — 03)

(Here we must specify that the neutral element O = [0 : 1 : 0] maps to 1, and the
symmetry allows us to define the map even at a two-torsion point, e.g. the first
coordinate of ¢(61,0) is determined by the condition that the product be equal to

1, so is m) This motivates the following result:
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Theorem 9. There is a canonical isomorphism W : H (K, E[2]) = KS/KS?.

Remark: This is a much-used classical result, cited in [?, p. 240] and [?, p. 215].
As far as I can tell, what is essentially the theorem is first proved in [?, §3], but
instead of kernel sets (or, what is certainly the same thing, the kernel of the norm
map) there is a somewhat different (more general but, it seems now, less useful)
description in terms of “invariant sets.” Recently some far-reaching generalizations
of the theorem have appeared [?] [?], which will be mentioned briefly at the end of
this paper. For completeness, and because it is useful to have the isomorphism at
hand, we give a proof.

Proof: We begin by noting that a version of Hilbert 90 holds for the étale algebra L:
namely, let G/K be the group scheme whose functor of points is G(A) := (L®x A)*,
so that G is the Weil restriction of G,,/L via the finite étale base change L/K.
Thus by Shapiro’s Lemma we have HY(K,G) = HL(L,G,,/L) = 0> Writing
L:=L ®g K, we thus get a corresponding Kummer isomorphism

HY(K, po(L) = L ) L*2.

We define a Galois-module map w : E[2] — p2(L) by

w(9) = (62(9, 91), 62(9, 92), 62(9, 93)),
where ey is the Weil pairing, and we have made the natural isomorphism L =
K x K x K via P(T) € K[T] — (P(01), P(02),P(03)). Let W := H*(w). Now,
under the Kummer isomorphism, the norm map L*/L*? — K> /K*? corresponds
to

3
(1: 0 = (e1(0), e2(0), €3(0))) = (n = [ [ ei0)),
i=1

which then corresponds to an element of K* /K *? by usual Kummer theory. Thus
the identity ez(6,,01) - e2(6,,02) - e2(6,,03) = 1 implies that W(H (K, E[2])) is
contained in the kernel of the norm map.

We will show that the map is an isomorphism by explicitly constructing the
inverse map KS/KS? — H'(K, E[2]). Given a kernel set (A1, A2, A3), choose square
roots v; of \;; we must for each o find an element 6, such that for i = 1,2, 3,

o(vi)

= 62(90-, 01)

By the nondegeneracy of ey, any given equation es(T,6;) = +1 has precisely two
solutions T in E[2], and by checking cases one verifies immediately that the two
equations

0(1/1)

41

have, for all four possible choices of signs on the left hand sides, a unique solution
T € E[2]. That this unique value of T also solves the third equation is, as above,
a consequence of the relation A\j AaA3 = 1. We leave the reader to verify that these
two maps are mutually inverse.

= eaT0), T2 = (T, 0),

2There are of course any number of other proofs: e.g. by viewing H! (K, G) as parameterizing
suitable twisted forms, or indeed by a direct adaptation of any of the proofs of Hilbert 90.
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Example (semisplit case): When f(7T) has a rational root — say 63 — then the
elements of KS can be written down explicitly; they are just (A, \*, ﬁ), where
under the decomposition L & M x K, A is any element of M * and the * denotes the
nontrivial automorphism of M/K.? In other words, H' (K, E[2]) = M* /M *2. Con-
sider the subgroup G C H'(K, E[2]) given by square classes of M * represented by
elements of K*. To each g € GG there corresponds a diagram A : C' — V. We claim
that C has index two. Indeed, under the isomorphism of the theorem, G corresponds
to the image of the map H'(i) : H (K, Z/2Z) = H*(K, (63)) — H'(K, E[2]), where
i:(03) — E[2]. Thus every element of G is split by a quadratic extension, the one
determined by the element of K*/K*2. It follows from §1 that C' has a hyperel-
liptic model; this model is computed directly in terms of the Weierstrass equation
for F in [17, Example X.3.7]. These considerations lead us to the following result:

Proposition 10. Suppose K*/K*? is infinite and E(K)/2E(K) is finite. Then,
for every elliptic curve EJ/K with E[2](K) # 0, there exists an infinite subgroup
G' C HY(K, E)[2] such that every nonzero element has index two.

Proof: The first hypothesis ensures that the subgroup G is infinite and the second
hypothesis ensures that its image G’ € H(K, E)[2] is infinite. The result follows.
Note that this is the case n = 2 of [11, Theorem 7].

3.2. Cassels’ formula. Having a convenient description of H(K, E[2]) as param-
eterizing kernel sets A = (A1, A2, A\3) modulo squares, in order to make the period-
index obstruction map explicit we would like to have a formula for the corresponding
genus one curve in terms of A. This is provided by a formula of Cassels. We first
introduce some notation: for any i # j, let e;; = 0; — 0;, and let A = eazesiern.
For 1 < j <3, we introduce the new variables Y; = Xo + X10; + X20J2.

Now we have the following formula, which (except for the e;; notation), is taken
verbatim from XX:

Theorem 11. (Cassels) a) Under the bijection H' (K, E[2]) — KS/KS? of The-
orem X, the element Cyx — V corresponding to the kernel set (A1, A2, Ag) is

AHo(X1, X2, X3) = A (e23 MY + e31A2Y5 + e12A3Y5) =0,

Gl(X17X2, Xg) - ATQ = 91623A1Y12 + 92631)\2}/52 + 03612)\3}/; - AT2 = 0,
b) Under the same bijection, the map ¢ : E(K)/2E(K) — H(K, E[2]) is induced
by passage to the quotient from

(2,9) > (x — 01,2 — 0o, — 03).

Remark: We must emphasize that, since Theorems 4 and 6 can be found in the
papers of Cassels, it follows that the explicit form of the period-index obstruction
map for n = 2 is also in essence due to Cassels. It is only the explicit recognition
of this formula as giving the Brauer group obstruction to a rational divisor class
containing a rational divisor that is new. This is related to the fact that Theorem
6 is usually discussed in the context of 2-descent, where one is interested not in
the entire group H'(K, E[2]) but only the Selmer subgroup S? ¢ H!(K, E[2]) of
classes whose image in H!(K, E)[2] is everywhere locally trivial. But the genus

3By allowing M to be the split quadratic algebra K x K, we may include the split case in the
discussion as well.
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zero curve corresponding to a Selmer class has rational points everywhere locally,
hence represents the trivial element of Br(K') by Hasse’s theorem.

In the remainder of this section we work out the consequences of Cassels’ for-
mula for the period-index obstruction map. Most importantly, we work out the
Galois descent implicit in the change of variables X; — Y; and give, in the split
and semisplit cases, explicit formulas for A(A) as a Hilbert symbol.

3.3. Symmetrized Hilbert symbols and Galois descent. Recall that if a, b €
K*, the Hilbert symbol (a, b) is an element of Br(K)[2].* Recall that (a,b) can be
identified with the obstruction, in Br(K)[2], to the unique rational divisor divisor
class of degree one on the conic curve V, ; := aX?+bY? = Z? being represented by
a K-rational divisor. Thus as far as the Brauer group is concerned, Hilbert symbols
and conic curves are essentially interchangeable.

However, as above, the representation (a,b) of the conic V,; entails a loss of
symmetry. Descent arguments in particular will be facilitated if we work instead
with symmetrized Hilbert symbols: namely, for a,b,c € K>, we define (a,b, c) to
be the class of the conic curve aX? + Y2 + c¢Z? = 0; algebraically, we just have

(a,b,c) = (—ac, —bc).
Using this “desymmetrization” the following result is immediate:

Corollary 12. Let E/K be an elliptic curve with full 2-torsion. The period-index
obstruction map A : H (K, E[2]) — Br(K) is given as

(A1, A2, Az) = (eg1€21 1, €23€21 A2).

Remark and acknowledgement: This formula is a sharpening of [?, Theorem 6] in
the case n = 2; there it was only claimed that A(a,b) := (Cia, C3b) — (Cy,Cy) for
suitable elements O, Cy € K*/K*2. We now know that C; = e31ea1, Co = ea3ea;.
Note that (C1,C3) = (e31€21,€23€21) = (€31/€21, €23/e21) = 0 by the Steinberg re-
lation, since g3 + £ =1.

In a preliminary draft of [?] the obstruction map in the split case was claimed,
following [?], to be simply (A1, A2). The referee supplied a counterexample and also
was of the opinion that the formula of Corollary 7 as the correct one, noting as sup-
porting evidence that it vanished on the image of the E[2](K) under the Kummer
map. At the end of the paper, we give another explanation for the special form of
the characters C7 and Cs using Mumford’s theta groups.

The following remark could have been made in [6]:

Proposition 13. If Br(K)[2] # 0, then there exist genus one curves C/K without
K -rational points: indeed, for any elliptic curve E/K with full 2-torsion, we have
HY(K,E)[2] # 0.

Proof: By a well-known result of Merkurjev, if Br(K) # 0, there exist a,b € K*
such that (a,b) # 0 (equivalently, there exists an anisotropic conic over K). Let
E/K be any elliptic curve with full 2-torsion: since #K > 2. such curves certainly
exist. But by the explicit form of the period-index obstruction map, every conic

AFor every positive integer n such that p, C K there is a modulo n norm-residue symbol
(a,b)n; since in this paper n = 2 always, we omit the subscripted 2 — later we will want to use
subscripts to denote localization in the Brauer group of a global field.
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V', up to isomorphism, is covered by some principal homogeneous space C over E.
Since C' covers a curve without K-rational points, it certainly cannot itself have
any K-rational points.

Question: Is it true that if K is a field (say of characteristic zero) such that every
genus one curve over a finite extension of L/K has an L-rational point, then K has
cohomological dimension at most one? Because of the existence of elliptic curves
E,/K admitting full p-torsion over K (u,) for p =2, 3, 5 (e.g. [?]), one has at least
Br(L)[30] =0 for all L/K.

Now assume we are not in the split case, and let M be the splitting field of the
cubic polynomial f(T).

Proposition 14. Let A = (A1, M2, A3) € (K(61), K(62), K(03)) C M? be a kernel
set, and consider the curve

Cr=MX2+XY2+032%2=0,

a priori defined over M. Then Galois descent by permutation of variables provides
a distinguished K-model C of Cy.

b) Suppose A3 €K, so M = K(v/D) is a proper quadratic extension of K. Write
N(X) = A\ and T(X\) = A+ X, where X\ is the Galois conjugate of A\ € M. Then the
symmetrized Hilbert symbol corresponding to the curve AX? +AX2 + N(\) X2 is

which we may (correctly!) regard as trivial if Tr(A1) = 0.

Proof: The first step is to observe that there is an evident permutation of the
variables that leads to descent data on the curve from M to K. In detail: let G :=
Galy k. If we let G act on the variables (X, Y, Z) in the same way that it does on
the roots (61, 62, 03) (and hence also on (A1, A2, \3)) —say (X,Y, Z) — (X,,Ys, Zy)
— then by defining

(Y2 C'A - U(CA)» (x,y,z) e (O—(xtf—l)?U(ya_l%J(za_l))

we get a collection of isomorphisms which satisfy Weil’s descent condition ¢,o, =
o(pr) o ¢,, hence specify a canonical model for C over K.

The proof of part b) is a calculation, which is omitted at the moment (but come
back and do it!)

Remark: In the cyclic and generic cases one can, of course, get an expression for
A((A1, A2, A3)) by making the change of variables indicated in Cassels’ formula and
diagonalizing the resulting ternary quadratic form. However, there does not seem
to be any merit in doing this generically either from a computational perspective
(one will not, it seems, get a very nice formula) or from a theoretical perspective.
Indeed, as far as theory is concerned, we may always reduce to the semisplit case
by passing from K to K (1) — because this is a cubic extension, the restriction map
Br(K)[2] — Br(K(61))[2] is injective, and the K-model of the conic is uniquely
determined by its model over K (67).
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4. CASSELS’ CONDITION

Recall from Section 2.5 Cassels’ elliptic curve, given as the intersection of two si-
multaneously diagonalizable conical quadric surfaces, which had E(Q) =2 (Z/2Z)2.
In [2], Cassels explicitly writes down a family of simultaneously diagonalizable con-
ical quadrics C' each with Jacobian elliptic curve F (in fact, he shows that E is the
Jacobian by giving explicitly the principal homogeneous space structure). He then
remarks that if C is any curve in the family, then since the rational divisor classes
of degree 2 on C are acted upon simply transitively by Pic’(Q) = E(Q) = (Z/2Z)?,
there are exactly four rational divisor classes of degree two on C. These are the
classes corresponding to the four biconic structures provided by the four conical
quadrics in the pencil, so that a rational divisor class will be represented by a ra-
tional divisor if and only if the corresponding conic has a Q-rational point. Thus,
one needs only to find values of the paramters such that all four Hilbert symbols
are nontrivial, which Cassels remarks (but does not prove) can be done in infinitely
many ways, and he exhibits one.

Using the results of the preceding section, we can certainly write down an ex-
plicit formula for the four quaternion algebras corresponding to the four quadratic
cones of a biconic curve Cy € KS/KS? whenever E/K has full 2-torsion. In the
notation of the last section, the classes are:

(4) ca = (e21€23A2, €21€31A1)2.
ea(l) = Ca 4+ ((01,0)) = (M1, e32A2)2.
ca(2) = Ca 4+ 1((02,0)) = (A2, e31A1)2.
ca(3) = Ca + 1((63,0)) = (e12)2, €21A1)2.
Let us say that an elliptic curve satisfies Cassels’ condition (CC) if it has full 2-

torsion and the natural map E(K)[2] — E(K)/2E(K) is a surjection. Then the
following result is a repackaging/generalization of the argument of [2]:

Proposition 15. Let E/K be an elliptic curve satisfying (CC). Let A = (A1, A2, \3) €
HY(K, E[2]) be any biconic curve with Jacobian E. Then A has index two if and

only if one the four Hilbert symbols cp,ca(i)(1 < i < 3) is zero in the Brauer group
of K.

In the remainder of this section we will give some applications of this Proposition.

First, if E(K) is a finitely generated abelian group — e.g., if K is a finitely gener-
ated field! — then condition (CC) means E(K) is a torsion group with #E(K)[4] =
#E(K)[2] = 4. (Discuss in terms of the generalized Cassels’ condition.)

4.1. WC-groups over R. We will use Cassels’ condition to solve the WCE-problem
over R. We stress that the results are very well-known: the computation of
HY(R, E) is often given as an exercise in texts on elliptic curves (e.g. [17, Ex-
ercise 10.7]), and a complete solution can be found in [?, SSV.2]. Moreover, since
the index of any Galois cohomology class over R is at most two, and period and
index share the same prime divisors, it is clear a priori that the period-index prob-
lem has an affirmative solution over R. Nevertheless our direct calculation seems
enlightening, and serves as a simplest nontrivial prototype for a highly important
duality theorem.
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First note that every elliptic curve over R satisfies (C'C’). Indeed, E(R) is a com-
pact real-analytic curve, i.e., a disjoint union of finitely many copies of S'. S?! is
a divisible group, so E(R)/2E(R) = mo(E(R))/2m0(E(R)), where 7y denotes the
group of connected components in the usual topological sense (or, if you like, the
group of semialgebraic connected components). Just by contemplating the graph
of the equation y? = f(x) it becomes clear that there is one component if f(z)
has one real root (semisplit case) and two components if f(x) has three real roots
(split case). (See e.g. [?, p. 420] for the relevant picture.) In the split case,
we order the roots so that 6; < 65 < 03, and then the same picture shows that 64
and 65 lie in the non-identity component, whereas 603 lies in the identity component.

In the semisplit case, the étale algebra L = C x R, so H' (K, E[2]) = C*/C*? = 0
a fortiori HY(K,E)[2] = HY(K,E) = 0.

In the split case, Prop. XX tells us that H!(K, E) # 0. To confirm this, H! (K, E[2]) =
(R* /R*?)2 so has order four, so by the exactness of the Kummer sequence H' (K, E)[2]
has order two. This is a case where (CC) holds, so to compute the index of the
curve underlying the class (A1, \2) € H(K, E[2]), we look at the Hilbert symbols
ca = (A2, A1) and cp(1) = (—A2, A\1). We see that the two classes (£1,1) lie above
the trivial element of H!(K, F)[2] and the classes (1, —1) lie above an element of
H'(K, E)[2] which must be nontrivial, since it covers an anisotropic conic curve.

These considerations can be recast as follows: the Kummer sequence
0 — E(K)/2E(K) — H'(K,E)[2] — H'(K,E)[2] — 0

is a short exact sequence of Z/2Z-modules, so of course it splits, in general in many
different ways. However, when K = R, we showed that for each n € H'(K, E)[2],
there exists a unique lift to an element with trivial period-index obstruction: this
defines a canonical splitting, and then A induces a perfect pairing

A: HY(K,E)[2] x E(R)/2E(R) — Br(R)[2] = Z/2Z.

In turn, we can regard this as a Pontrjagin duality between E(R) (where for any
group G, G denotes its profinite completion) and H*(R, E).

The point is that this last statement is true for any locally compact field K, a
very important fact which might be called the Tate-Lichtenbaum-Milne duality
theorem.

4.2. Some WC-groups over R((¢)). In this section we will solve the WCE-
problem for certain elliptic curves over the field K = R((t)). In particular, we
find that the period-index problem for elliptic curves over K does not always have
an affirmative solution. This is perhaps a bit surprising, since over the quadratic ex-
tension field L = C((t)), WC-groups of elliptic curves are admirably well-behaved.
Indeed, the calculation of H!(L, E) was achieved 40 years ago by Ogg and Shafare-
vich (independently): it is (Q/Z)*, where a = 2 if E has good reduction, a = 1 if
F has multiplicative reduction and a = 0 when F has additive reduction. Since L
has vanishing Brauer group (CITE), O’Neil’s period-index obstruction map A van-
ishes identically, so period equals index for all classes in H'(L, E). Moreover, the
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structure of the field L is very simple: its algebraic closure is the field of Puiseux
series |J77, C((t'/™)) and G, = Z, with a topological generator o which carries
t1/1 s C,tY/. Tt follows that there is a solution to the “WCE problem” over
K: for each finite extension L, /L, we know H'(L,,F) and the restriction map
HY(L,E) — H'(L,, F) is just n times the natural inclusion (Q/Z)® — (Q/Z)%~.

In contrast, fields like K = R((t)) — i.e., of virtual cohomological dimension one —
have come to be studied much more recently, via work of Colliot-Théléne, Ducros
and (especially) Scheiderer. The computation of WC-groups of all abelian varieties
over K was achieved by [?], using not only the above (rather elementary, by 21st
century standards) results of Ogg and Shafarevich over L, but also much deeper
results of Scheiderer. Naturally enough, Ducros’ description of H!(K, E) depends
on the Néron special fibre of E: there are altogether 16 cases, including 5 in which
HY(K,E) = 0. Here we will handle the two cases of good reduction, for which
(CQC) is verified. Our argument applies verbatim to the case where the connected
component of the Néron special fibre is an anisotropic torus and the component
group is po. The other cases can be handled as well with the methods of this paper
(although in some cases one needs to translate by a torsion point of higher order).

Theorem 16. Let E/K be an elliptic curve with good reduction. Then all elements
of HY (K, E) have period equals index if and only if #FE[2](K) = 2.

Proof: Since E has good reduction, we may choose a defining equation of the form
y? = (z — 01)(x — O2)(x — 3) where 6y, 03, 03 lie in the valuation ring R[[t]] of
t. The field K is formally real and has precisely two orderings, one in which ¢
is infinitesimal and positive, and one in which ¢ is infinitesimal and negative; we
choose the former, and assume that the roots are ordered so that 6; < 62 < 3. (For
either choice, the reduction map is order-preserving.) By Hensel’s Lemma, f has
the same number of rational roots as does its reduction, so by the last subsection
we are either in the semisplit or the split case.

We will use the following results of Ducros: in the semisplit case H' (K, F) = Q/Z,
and in the split case H'(K, E) = Q/Z ® (Z/27)?. In either case, the Q/Z factor is
isomorphic under the restriction map to H'(L, E)E/K

The equality of period and index in the semisplit case follows immediately from
this: indeed, for any positive integer n we have a commutative diagram

HY(R(()), B)[n] — H'(C((t)), B)[n]

1 1
H'(R((t7))), E[n] — H'(C((t7)), E)[n]
where the two horizontal arrows are the restriction maps. As discussed above, the

right vertical arrow is the zero map, hence by commutativity so is the left vertical
map.

It remains to understand the (Z/2Z)? factor in the split case, but we start the
discussion anew in H'(K, E)[2] and this part of the proof does not use any of the

5This reverses the argument of Ogg and Shafarevich — they showed directly that H!(L, E)
behaves functorially as above, and deduced the affirmative answer to the period-index problem.
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cited results. First, we claim that E(K)/2E(K) is, again, equal to 1 in the semisplit
case and 2 in the split case. Indeed, we have an exact sequence

0— EO(K) — E(K) A E(R) — 0,

where R is the reduction map and E°(K) is the kernel of reduction, which is a
standard K-analytic group in the sense of [?]: that is, it is obtained by plugging
points of the maximal ideal tR[[¢]] into a formal group law over R. By the known
structure of standard groups, E°(K) is uniquely n-divisible for all positive integers
n. Tt follows immediately that F(K)/2E(K) = E(R)/2E(R). Just as in the pre-
vious subsection, in the split case, a representative for the nontrivial element of
E(K)/2E(K) is given by either of the torsion points (0,6;) or (0,62).

In order to compute H'(K, E[2]), observe that G is the profinite completion of
the infinite dihedral group Dy = (0,7 | 72 = 1,707 = 0~ 1). Here o is the above
automorphism of the Puiseux series field and 7 is the automorphism which acts as
complex conjugation on each of the coefficients of a Puiseux series. It follows that
G =~ (Z)27)? = K* /K*?, with representatives for the four square classes being
{1,—1,¢,—t}. So in the split case we have H!(K, E[2]) & X (Gk)? = (Z/2Z)*, so
HY(K,E)[2] & (Z/2Z)3. In the nonsplit case, base change to L splits the reduc-
tion of f, hence f itself, so that the cubic algebra A = K ® L and H(K, E[2]) =
LX/L*2 = 7,/27, and H'(K, E)[2] = Z/2Z.

From now on we look only at the split case. Note that the duality of the pre-
vious section no longer holds: E(K)/2E(K) has fewer elements than H'(K, F)[2].
Also Br(K) = Br(R) @ X(R) = (Z/27)? (cite), with all four classes being given by
quaternion algebras. Indeed, (=1, —1)2, (¢,t)2, (—t, —t)2 represent three nontrivial
classes, which are distinct since K (v/t) splits only the second class and K (y/—1)
splits only the third class. (What we have shown is that period equals index in
Br(K) — in general, the quaternion algebras generate Br(K)[2] but need not form a
subgroup.) Thus, of the eight elements of H'(K, E[2]) at least four must have non-
trivial obstruction, since the image of A(H' (K, E[2]) is always the set of all Brauer
group elements represented by quaternion algebras. But it is still conceivable that
modification of each of these four classes by the nontrivial element of E(K)/2E(K)
gives a class with trivial obstruction.

However, we now apply Proposition XX to show that this is not the case. In-
deed, the two symbols that we need to look at are cx = (—ea1e32)a, €a1€31A1)2
and cp (1) = (A1, e32M2)2. By making the change of variables A, = e3o\a, we may
look instead at (—ea1 A}, ea1e31A1)2 and (A1, \;). Now e and es; are both posi-
tive, so they are either in the same squareclass, or their squareclasses differ by ¢.
In the first case, we get the symbols (A1, Ay) and (—ea1 A5, A1). If ea; = ez = 1,
take (A1, A) = (—1,t) and both symbols are nontrivial. If eyy = e3; = t, take
(A, ML) = (¢, —1). If eg; = 1 and ez = t, take (A, Ay) = (—=1,1), and if ey = ¢,
es1 = 1, take (A1, \}) = (—t, —1). This completes the proof of the theorem.

Remark: A similar case-by-case analysis reveals that there is always only one ele-
ment C of period two and index four. Moreover, there is always exactly one element
Cs of HY(K, E)[2] which, despite being nontrivial, does not cover any anisotropic
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conic; combining with the element C3 € Q/Z, we get a Z/2Z-basis for H!(K, E)[2].
(In fact, a moment’s thought reveals that such elements will always exist when E
is split and #E(K)/2E(K) < #K*/K*?, since in this case not all of the elements
(1,\2) € HY(K, E[2]) can represent the trivial class.) To solve the WCE-problem
completely (in the good reduction case), we must specify which quadratic exten-
sions split these classes. By definition of index four, no quadratic extension splits
C;. [?, Lemme, p. 316] shows that K(v/t) and K(y/—t) split only C3; by construc-
tion, C3 is not split by K(y/—1); and finally, since Cy has index two, it must be

split by K(v/—1).
5. THE PROOF OF THE MAIN THEOREM

In this section, K is either a number field or one-variable function field over a
finite field whose characteristic is different from 2,

E/K :y* = f(z) = (z = 61)(z — 62)(x — 03)
is an elliptic curve, and A is the cubic algebra K[z|/(f).

We want to prove the existence of infinite subgroups G1, G2 C H(K, E)[2] such
that each element of GG; has index 2 and each nonzero element of G; has index 4.
The existence of Gy in the split case A = K @ K @ K was handled in [?], whereas
the existence of Gy in this case (viewed as a special case of the semisplit case) is
Proposition 5, which is itself a special case of a result of Lang and Tate. It remains
to show the existence of G; in the semisplit case and the existence of both sub-
groups in the cyclic and generic cases. We proceed by a separate analysis of each
of the remaining cases.

5.1. The semisplit case. We take 3 to be rational and write A = L @ K. Recall
that in this case L*/L*? =~ KS/KS? = H'(K, E[2]), so that the symmetric Hilbert
symbol of the element corresponding to A € L* is (A1, A2, N(A1)) as an element of
the Brauer group of L. Here we are using the notation A\; = A, Ay = A1, N()\;) =
A1z, where the overbar denotes the nontrivial Galois automorphism of L/K.

Note well that the explicit Galois descent of Section X.X is not needed here:
what we shall be showing is that certain symmetric Hilbert symbols which are in
fact defined over K are nonvanishing upon restriction to the Brauer group of L; a
fortiori they are nonvanishing in Br(K)!

The content of the theorem in this case resides essentially in the following lemma,
which we will state and prove first, and then use it to deduce the existence of G.

Lemma 17. Let H C KS/KS? = L*/L*? be a finite subgroup. Then there exists
an infinite subgroup G C KS/KS? with the property that for every h € H and
every 1 # g € G, (h1g1, haga)a is nonzero in Br(L).

Proof: We build the subgroup G' = |J,, G, inductively as the union of a sequence
of subgroups of order 2". The basic idea is to present a fairly robust procedure
for producing infinite subsets of elements g satisfying the condition of the lemma.
We take G to be the subgroup generated by one such element, and then enlarge
H to Hs, the subgroup generated by H and by the first element g, then use the
procedure to give ourselves a second element g;. The point of this is that it is then
automatic that go is Fa-linearly independent from the subgroup generated by g¢q
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and that g; + g2 is also an element satisfying the desired nontriviality upon modi-
fication by elements of H = H;. Then we add the third element g3, and so on.

Let II1,TI5 be a Galois-conjugate pair of elements of L such that (IIy), (IIy)
are prime ideals of L; these principal ideals lie over the principal prime ideal
(II1115) = (7)) of K. We take g1 = wuiIly, where uy € L™ is to be determined.
The Hilbert symbol in question is then

(h191, haga)a = (h1, ho)o(h1, ualla)o(he, il yo-(u1, ug)e (U1, a)a (us, I )2 (Ily, ILs) 0.

By a suitable choice of 7w and u;, we will arrange for this quantity to be nontrivial
even in Br,(L)[2], which we define to be the projection of the global Brauer group
onto Br(Ly,) ® Br(Lm,). We will only consider principal prime ideals (7) of K
which split in L, whose residue characteristic is odd, such that (for all h = hq in H)
hihs is a unit in K, and for which h; is a square in Ly, (hence also hs is a square
in Ly,). A moment’s thought gives that each of these conditions either excludes
finitely many primes or can be enforced by requring 7 to split in a sufficiently large
finite extension of K. Hence by Cebotarev such primes 7 have positive density, and
there are infinitely many.

These choices imply that the first three Hilbert symbols appearing in the right-
hand side of the above equation vanish, so we are left to evaluate
(u1,a)o(usg, My Yo (11, o). Now if (11, II5)s is nonzero in Br,(L), we may take
u; = uy = 1 to get the desired nontriviality. If on the other hand this symbol is
trivial (obviously it will be trivial at II; iff it is trivial at II5), then we are looking
at the expression (uy,Is)s(us, II;)s, which is nontrivial in Br, (L) iff (u,Ils)s is
nontrivial in Br(Ly,). But by the well-known explicit computation of the Hilbert
symbol at a non-dyadic place, we just want u; to be a quadratic nonresidue modulo
II5, which — since for any completion of a global field M at a place v, the natural
map M>* — M) /M}? is surjective — we may certainly take it to be. Thus we have,
for each of an infinite set of primes 7w of K, found an element g = g, of L such that
(91h1,92h2)2 # 0 € Br(L) for all h = h; € H. Enumerating such a sequence of
primes 7y, To, . . . and applying the inductive argument at the beginning then proves
the lemma.

Remark: The element u is a “fudge factor” which keeps us from having to explicitly
evaluate the symbol (ITy,II5)5. Presumably the set of primes 7 of K satisfying the
above conditions and such that this symbol is nontrivial has positive density, but
showing this seems to be more trouble than it’s worth.

Now to prove the theorem, recall the fundamental fact that E(K)/2E(K) is fi-
nite. Let H C KS/KS? be any finite subgroup containing H, eazea;, and ezjes;.
(As we shall briefly remind the reader at the end of this section, for “effectivity” it
would be best to assume that H contains not just F(K)/2E(K) but the complete
preimage of III(K, F)[2], i.e., the 2-Selmer group.) Then for each 1 # g € G and
h € H, A(gh) # 0, so that nontrivial elements of G have index four. This completes
the proof of the theorem in the semisplit case.

5.2. The cyclic case. Here A = L is a Galois cubic extension of K. In this section
N always stands for the norm from L to K. This time for an element \ € L, we
write A1 = A, A2, A3 for the g;,/x-conjugates of \. Again we are content to consider
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elements of H'(K, E[2]) = KS/KS? only upon restriction to L. Since we now have
that [L : K] is odd, restriction to L is injective from Br(K)[2] — Br(L)[2]; thus
nothing is lost in considering the class of a kernel set (A1, Az, A3) in Br(L).

The condition on A that it be “the A\;” of a kernel set is now that N(\) € K*2.
Notice that, for an arbitrary field K, it is not so clear how to find kernel sets, or
even how many there are. Thus the following construction depends more strongly
on the fact that K is a global field than the semi/split cases.

Namely, consider generators m of principal prime ideals of K which split (neces-
sarily completely) in L: 7 = II1II5IT3. Then elements of the form Ay = 111, give
rise to kernel sets, since N(\;) = 72. Again such primes have positive density, so at
least we know that H!(K, E[2]) is infinite. We prove now exactly the same lemma
as in the quasisplit case.

Lemma 18. Let H C KS/KS? = HY(K, E[2]) be a finite subgroup. Then there
exists an infinite subgroup G C KS/KS? with the property that for every h € H
and every 1 # g € G, (—h1h3g193, —hah3g293)2 is nonzero in Br(L).

Proof: As we are working over L, we may view H as a subgroup of L*/L*? (the
restriction map is injective). By replacing H by the larger subgroup generated by
pairs of elements of the form +h;,1 < j < 3, we are reduced to finding elements
(91, 92,93) € KS/KS? such that for all h,h’ € H, (hg1g3,h g2g3)2. Taking g =
u 1115 for some u; € K.S/KS? which is a local unit at IT;, and restricting only to
primes 7w of odd characteristic and at which each N(h), N(h') is a local unit at 7
and a square in K*, the Hilbert symbol (husIlsIls, h'uiII;1113) can be decomposed
in the “semi-localized Brauer group” Br,(L) = @?:1 Br(Ly,) as:

(hg1, B g2)o = (uz, 1 113)9 (uy, IoTl5)o (11, 115, To115) 5.

Let e = (II; 113, IIo113),. Since the product (us, Py Ps)(uy, PaPs) localized at Il
is (u1, P2)11,, it is enough to choose u; € KS/KS? such that (up,Il)m, = —e.
Suppose ¢ is a principal prime ideal of K which splits into @1Q2Q3 in L and
such that (Q1,Il2), = 1 and (@1, P1)r;, = —e. Then also (Q2, Po)i, = —¢, so
<Q1Q2;H2>H2 = —¢

It is not hard to see that the conditions imposed on ¢ are incompatible only if
L(y/TI3) is contained in the Hilbert class field of L. This eliminates only finitely
many primes 7, so we are left with a set of primes of positive density for which
such an element u; = Q1Q)2 exists to make all the Hilbert symbols nontrivial. The
remainder of the proof of the lemma is the same as above.

5.3. The generic case.

THIS SECTION STILL NEEDS TO BE WRITTEN!
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