
ON BASE SIZE SETS

PETE L. CLARK

Abstract. The base size is a well studied invariant of a faithful permutation representation of a
finite group G. In [LMS14], Laison, McNicholas and Seaders defined the base size set of G as the set

of all base sizes of faithful permutation representations of G. Here we extend their definition to any

group G and give a general discussion of this invariant. In particular we explain how to compute it
in terms of data of G itself...at least in principle. In practice we use our characterization to compute

the base size sets of all dihedral groups, extending a result from [LMS14].

Introduction

This paper is directly motivated by a recent work of Laison, McNicholas and Seaders [LMS14]. They
took the standard notion of the base size of a finite permutation group – see e.g. [BC11] and the
references therein – and expanded it into an invariant of an abstract finite group by recording the set
of base sizes of all faithful permutation representations of G. We extend this definition to arbitrary
groups G: in this setting the base size set B(G) is a set of cardinal numbers. This makes its computation
look impractical. Our main result, Theorem 3.1, addresses this by characterizing the base size set in
terms of G alone. Thus if for instance G is finite, the computation of B(G) is in principle reduced
to a finite computation. We carry this out in practice by computing B(G) for all dihedral groups,
which partially answers [LMS14, §1, Question 1]. We also compute B(G) for every finitely generated
commutative group, generalizing the computation of B(G) for finite commutative groups in [LMS14].
Finally we show that certain interesting classes of groups are obtained by imposing conditions on the
base size set, e.g. we characterize groups for which B(G) = {1} and groups for which 2 ∈ B(G).

1. Permutation representations

1.1. Basic definitions.

Let X be a set. We denote by SymX the set of all bijections f : X → X, endowed with the
structure of a group under composition of functions. A bijection ι : X1 → X2 induces an isomorphism
Sym ι : SymX1 → SymX2, namely

σ ∈ SymX1 7→ ι ◦ σ ◦ ι−1 ∈ SymX2.

So if X is finite of cardinality n, then choosing a bijection from X to {1, . . . , n} induces an isomorphism
from SymX to the usual symmetric group Sn.

A permutation representation of a group G is a homomorphism Φ : G → SymX for some set
X. This notation is a bit heavy: in practice, for x ∈ X, we will write gx for Φ(g)(x). A permutation
representation is faithful if Φ is injective. Thus a faithful permutation representation embeds G as a
subgroup of SymX.

Let Φ : G→ SymX be a permutation representation, and let Y ⊂ X. We say that Y is stabilized
by Φ (resp. pointwise fixed by Φ) if for all g ∈ G and y ∈ Y , we have gy ∈ Y (resp. gy = y). Let

Stab(Y ) := {g ∈ G | gY ⊂ Y },

Fix(Y ) := {g ∈ G | ∀y ∈ Y, gy = y}.

For Josh Laison.
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Evidently we have Fix(Y ) ⊂ Stab(Y ). When Y = {y} the two sets coincide: we write Stab(y) and call
it the point stabilizer. We observe that

Fix(Y ) =
⋂
y∈Y

Stab(y)

and that Φ is faithful iff Fix(X) = {e}. If Φ : G → SymX is a permutation representation, Y ⊂ X
and g ∈ G, then we have

(1) Fix(gY ) = g Fix(Y )g−1.

In particular, if for x, y ∈ X and g ∈ G we have gx = y then we have

(2) Stab y = g(Stabx)g−1.

Two permutation representations Φ1 : G→ SymX1 and Φ2 : G→ SymX2 are equivalent if there is
a bijection ι : X1 → X2 such that

Φ2 = (Sym ι) ◦ Φ1.

1.2. Some permutation representations.

1.2.1. The Cayley representation. For a group G, the (left) Cayley representation is

ΦC : G→ SymG, g 7→ Φ(g) : h 7→ gh.

It is simply transitive – that is, for all x, y ∈ X, there is a unique g ∈ G such that gx = y. It follows
that Stab(x) = {e} for all x ∈ X, so ΦC is faithful. Conversely, any simply transitive permutation
representation Φ : G→ SymX is equivalent to the Cayley representation: choose x0 ∈ X, and define
ι : X → G by mapping x ∈ X to the unique g ∈ G such that x = gx0. Then (Sym ι) ◦ Φ = ΦC .

1.2.2. Cayley-Schreier representations. Let H be a subgroup of a group G. Let G/H = {gH | g ∈ G}
be the set of left cosets of H in G. We define the (left) Cayley-Schreier representation

ΦCS : G→ SymG/H, g 7→ Φ(g) : xH 7→ gxH.

The Cayley-Schreier representation ΦCS is transitive: for all x, y ∈ X, there is at least one g ∈ G such
that gx = y. Conversely, if Φ : G → SymX is a transitive representation, then for any x0 ∈ X, Φ is
equivalent to the Cayley-Schreier representation associated to H = Stab(x0): namely, for x ∈ X, by
transitivity there is g0 ∈ G such that g0x0 = x, and we have

{g ∈ G | gx0 = x} = g0 Stab(x0).

This defines a bijection (“Orbit-Stabilizer Theorem”)

ι : X → G/Stab(x0), x 7→ g0 Stab(x0),

and we have

(Sym ι) ◦ Φ = ΦCS.

(Using right cosets instead one gets the right Cayley-Schreier representation, and when H = {e} the
right Cayley representation. One sees – e.g. by the above characterization – that the right Cayley-
Schreier representation is equivalent to the left Cayley-Schreier representation, so it gives nothing new.)

For a subgroup H ⊂ G, (2) gives that the kernel of ΦCS : G→ SymG/H is⋂
g∈G/H

Stab(gH) =
⋂

g∈G/H

g Stab(H)g−1 =
⋂

g∈G/H

gHg−1 =
⋂
g∈G

gHg−1.

For a subgroup H of a group G, we call
⋂
g∈G gHg

−1 the normal core of H and denote it by Core(H):
it is the largest subgroup of H that is normal in G. Thus the Cayley-Schreier representation associated
to H is faithful iff H is corefree: Core(H) = {e}. If H is itself normal, then H = Core(H), and in
this case the Cayley-Schreier representation is only faithful if H = {e}.
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Example 1.1. Consider the standard action of Sn on {1, . . . , n} corresponding to the identity map
Sn → Sym{1, . . . , n}. It is transitive and faithful. Let H = Stab(n); then H consists of all bijections
of {1, . . . , n− 1} so can be identified with Sn−1. By faithfulness, Sn−1 is a corefree subgroup of Sn.

More generally: for any set X, let G = SymX and let Φ : G→ SymX be the identity map. Clearly
Φ is faithful and transitive, so it is equivalent to the Cayley-Schreier representation associated to a
corefree subgroup H. Choose x0 ∈ X and put H = Stab(x0) = Sym(X \ {x0}). Then indeed we have⋂

g∈G
gHg−1 =

⋂
g∈G

Stab(gx0) =
⋂
g∈G

Sym(X \ {gx0}) = Sym∅ = {e}.

1.2.3. Coproduct of permutation representations. Let {Φi : G → SymXi}i∈I be an indexed family of
permutation representations of the same group G. Let X =

∐
i∈iXi (disjoint union). Then there is

a natural permutation representation Φ : G → SymX: for all g ∈ G, Φ(g) stabilizes Xi and acts on
it via Φi. We call this the coproduct (a.k.a. direct sum, disjoint union) of the representations
(G,Φi). It is faithful iff Φi is faithful for at least one i ∈ I.

For a permutation representation Φ : G→ SymX, we introduce an equivalence relation on X: x ∼ y
iff there is g ∈ G such that gx = y. The equivalence class of x is written Gx and called the or-
bit of x under G. Each orbit Gx is stabilized by G and thus gives apermutation representation
ΦGx : G → SymGx. Let O be the set of all G-orbits on X. Thus X =

∐
Gx∈O Gx and Φ is the

coproduct of the representations ΦGx. Moreover each ΦGx is transitive, so as above is equivalent to
a Cayley-Schreier representation. (Once again, this is the Orbit-Stabilizer Theorem.) Thus we have
shown the following structural result for permutation representations.

Theorem 1.2. Every permutation representation is equivalent to a coproduct of Cayley-Schreier rep-
resentations.

2. Bases and base sizes

2.1. The base size.

Let Φ : G → SymX be a permutation representation, and let Y be a subset of X. We say that
Y is a base for the permutation representation (G,Φ) if Fix(Y ) = {e}: the only element of G that
fixes every element of Y is e. If Y1 is a base and Y2 ⊃ Y1, then Y2 is also a base. Bases exist iff X is a
base iff Φ is faithful. Henceforth we consider only faithful permutation representations.

A base Y is irredundant if no proper subset is also a base. A base Y is minimal if there is no
base Z with #Z < #Y . If there is a base there is a minimal base, just because any nonempty set
of cardinal numbers has a least element. Clearly every finite base contains an irredundant base and
a minimal finite base is irredundant.1 This cannot generally hold for infinite bases: if Y is a proper,
infinite base, then adding to Y a finite number of elements of X yields a redundant base of the same
cardinality as Y , hence still minimal.

Here is one motivation for studying bases: let Φ : G→ SymX be a permutation representation, and
let Y ⊂ X be a base. Then, for all σ1, σ2 ∈ G, if σ1|Y = σ2|Y , then for all y ∈ Y we have σ−12 σ1(y) = y
and thus σ2 = σ1. Thus the effect of G on X can be completely understood in terms of where it
sends the elements of Y . If Y is moreover G-stable, then the entire permutation representation can be
studied in terms of its effect on Y : more precisely, we get a factorization

Φ : G ↪→ SymY ↪→ SymX.

The base size b(G,Φ) of a faithful permutation representation (G,Φ) is the cardinality of a minimal
base.

1Later we will see an example of a permutation representation Φ : Z → SymX with X countably infinite and such

that a subset of X is a base iff it is infinite, and thus there are no irredundant bases.
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Example 2.1 (Cayley representation of G). Let G be a nontrivial group, and let ΦG : G→ SymG be
the Cayley representation. Since every point stabilizer is trivial, every nonempty subset Y of G is a
base, and thus b(G,ΦG) = 1.

Example 2.2 (Standard representation of SymX). Let X be a nonempty set, let G = SymX, and
let Φ : G → SymX be the identity map. For all Y ⊂ X, we have Fix(Y ) = Sym(X \ Y ), so a subset
of X is a base iff #(X \ Y ) ≤ 1. Thus the base size is #X − 1.

Example 2.3 (Standard representation of GL(V )). Let k be a field and V a k-vector space. Let GL(V )
be the group of invertible k-linear endomorphisms of V . The natural inclusion Φ : GL(V ) → SymV
is a faithful permutation representation. For a subset Y of V , we have Fix(Y ) = Fix(span(Y )). A
k-subspace W ⊂ V is a base iff W = V . To avoid trivial cases we assume that W ( V and dimV ≥ 2.

If dimV/W ≥ 2 then one can choose a basis b′ for W , extend it to a basis b for V , and there is
a nontrivial permutation of b pointwise fixing b′, and this extends uniquely to an element of GL(V )
pointwise fixing W but not V . If dimV/W = 1, let b be a basis for V such that b \ {b1} is a basis for
W , and let b2 ∈ b \ {b1}. Then there is a unique g ∈ GL(V ) such that g fixes every element of b \ {b1}
and g(b1) = b1 + b2. Thus g ∈ Fix(W ) \ {e}.

We deduce: the bases of V are the spanning subsets of V and the irredundant bases are the k-bases
of V .2 All irredundant bases have cardinality dimV and are conjugate under GL(V ). When dimV is
finite, a base is irredundant iff it is minimal. When dimV is infinite, we may start with any k-basis
and take the union with any nonempty subset of size at most dimV to get a redundant, minimal base.

Each example shows: every cardinal number is the base size of a faithful permutation representation.

2.2. Upper bounds on the base size.

Theorem 2.4. Let Φ : G→ SymX be a faithful permutation representation. Then:

(3) b(G,Φ) ≤ #G− 1.

Proof. Since Φ is faithful, each nonidentity element g ∈ G moves some element xg ∈ X. So if
Y = {xg | g ∈ G \ {e}}, then B(Y ) = {e}. Thus b(G,Φ) ≤ #G− 1. �

Example 2.5. Let G = (Z,+). Let {an}∞n=1 be a strictly increasing sequence of positive integers.
Let X =

∐∞
n=1 Z/anZ and let Φ : G → SymX be the natural permutation representation, i.e., the

coproduct of the Cayley-Schreier representations associated to the subgroups Hn = anZ of Z. For a
subset Y ⊂ X, let I be the set of n ∈ Z+ such that Y meets Z/anZ. Then

Fix(Y ) =
⋂
n∈I

anZ.

If I = {n1, . . . , nr} is finite, then Fix(Y ) = lcm(a1, . . . , anr )Z ) (0), so Y is not a base. On the other
hand, if Y is infinite, then Fix(Y ) consists of all integers divisible by infinitely many positive integers,
so Fix(Y ) = (0) and Y is a base. Thus:
• We have b(G,Φ) = ℵ0 = #G = #G− 1, so we have equality in (3).
• Every infinite set admits a proper infinite subset, so there is no irredundant base.

Actually, the “minus one” in (3) is a bit silly: when G is infinite, then #G = #G − 1, whereas if
G is finite, (3) can be significantly improved. In this case, every minimal base Y = {y1, . . . , yb} is
irredundant. Put

H0 := G; ∀i ∈ [1, b], Hi :=

i⋂
j=1

Stab(yj).

We get a descending chain of subgroups

(4) G = H0 ⊃ H1 ⊃ . . . ⊃ Hb = {e.}

2Presumably the terminology “base” is related to this.
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In fact we have Hi ) Hi+1 for all i ∈ [0, b − 1]: equality would imply that Y \ {yi+1} is also a base,
contradicting irredundance. This shows that b = #Y is bounded above by the subgroup length
`(G): the length of the longest descending chain of subgroups of G.

Now consider a descending chain

G = H0 ) H1 ) . . . ) Hr = {e}

of subgroups of a finite group G, and for 0 ≤ i ≤ r − 1, put Ii = [Hi : Hi+1]. Since Hi+1 is proper in
Hi, we have Ii ≥ 2 for all i and thus #G ≥ 2r, and it follows that

`(G) ≤ log2(#G).

For a positive integer n, we denote by Ω(n) the number of prime divisors with multiplicity. Thus if
n = pa11 · · · parr for primes p1 < . . . < pr and a1, . . . , ar ∈ Z+ we have Ω(n) = a1 + . . .+ ar. For a finite
group G we put

ω(G) := ω(#G), Ω(G) := Ω(#G).

Since #G =
∏r
i=1 Ii and each Ii > 1, we must have r ≤ Ω(#G), with equality iff each Ii is a prime

number. Thus we have shown the following result.

Theorem 2.6. For a faithful permutation representation of a finite group, we have:

(5) b(G,Φ) ≤ `(G) ≤ Ω(#G) ≤ blog2(#G)c.

Example 2.7. Let p1, . . . , pr be prime numbers, and let G =
∏r
i=1 Z/piZ. By (5), we have

b(G,Φ) ≤ Ω(#G) = Ω(p1 · · · pr) = r

for any faithful permutation representation of G. We will now construct such a Φ such that b(G,Φ) = r.
For 1 ≤ i ≤ r, let Hi = {(x1, . . . , xr) ∈ G | xi = 0}, and let Φ be the coproduct of the Cayley-Schreier
representations attached to the subgroups Hi, so X =

∐r
i=1G/Hi. Each Hi is normal in G, so the

point stabilizer of any element of G/Hi is Hi. We have
⋂r
i=1Hi = {0} and also that if J ( [1, r],

then
⋂
i∈J Hi 6= (0). Thus Y ⊂ X is a base iff it meets each G/Hi, so b(G,Φ) = r. If moreover each

pi = 2, then all the inequalities in (5) are equalities.

Example 2.8. Let p be a prime number, a ∈ Z+, and G = Z/paZ. In this case (5) gives b(G,Φ) ≤ a
for any faithful permutation representation Φ of G, but we can do better. A permutation representation
of G is equivalent to a coproduct of copies of the natural representation of G on Z/pbZ for some
0 ≤ b ≤ a. If b ≤ a − 1 then pa−1 + paZ lies in all the point stabilizers. Thus since Φ is faithful it
contains a copy of the Cayley representation, so there is x ∈ X with Stab(x) = {e} and b(G,Φ) = 1.

The argument of the above example can be generalized.

Lemma 2.9. Let Φ : G → SymX be a faithful permutation representation. For all x ∈ X, we have
b(G,Φ) ≤ b(Stab(x),Φ) + 1.

Proof. If Y is a base for Stab(x), then Y ∪ {x} is a base for G. �

Lemma 2.10. (Prime Power Trick) Let G be a finite group with an element of prime power order
pa. Then for any faithful permutation representation Φ of G we have b(G,Φ) ≤ Ω(#G)− a+ 1.

Proof. Let g ∈ G have order pa. Since Φ is faithful, σ = Φ(pa) has order pa, so there is x ∈ X

such that the orbit of σ on x has size pa: otherwise σp
a−1

= e. The Orbit-Stabilizer Theorem gives
# Stab(x) | #Gpa . Using (5) and Lemma 2.9, we get

b(G,Φ) ≤ b(Stab(x),Φ) + 1 ≤ Ω(# Stab(x)) + 1 ≤ Ω(#G)− a+ 1. �.
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3. The base size set

For cardinals κ1 ≤ κ2 we denote by [κ1, κ2] the set of all cardinals κ such that κ1 ≤ κ ≤ κ2.

For a group G, the base size set B(G) is the set of all base sizes of all faithful permutation rep-
resentations of G. Because of (3) we have

B(G) ⊂

{
[0,#G] if G is infinite

[0, `(G)] if G is finite
.

(So B(G) really is a set, even though the class of all faithful permutation representations of G is not!)

Remark 1. a) We have 0 ∈ B(G) ⇐⇒ G = {e} ⇐⇒ B(G) = {0}.
b) For any nontrivial group G, Example 2.1 gives 1 ∈ B(G).

3.1. A general description of B(G). A family F of subgroups of a group G is a normal family if
if it is closed under conjugation: for all H ∈ F and all x ∈ G, xHx−1 ∈ F . For a family F , the normal
family generated by F is

F := {gHg−1 | g ∈ G,H ∈ F}.
A subfamily G of F is just a subset of F . A family F of subgroups of a group G is faithful if⋂
H∈F H = {e}. If F is a faithful normal family of subgroups of a group G. A (not necessarily normal)

subfamily G of a faithful normal family is a minimal subfamily if it is a faithful subfamily of F and
among all faithful subfamilies of F it has minimal cardinality.

Now we have the following key result.

Theorem 3.1. Let G be a group.
a) A family F of subgroups of G is the family of point stabilizers of some permutation representation
of G iff F is a normal family. A family F of subgroups of G is the family of point stabilizers of a
faithful permutation representation of G iff F is normal and faithful.
b) The base size set B(G) is the set of cardinalities of minimal subfamilies of faithful normal families
of subgroups of G.

Proof. a) By (2), {Stab(x) | x ∈ X} is a normal family in G. If F is a normal family in G, then let

XF =
∐
H∈F

G/H

and let ΦF : G → SymXF be the associated permutation representation. Then the family of point
stabilizers of ΦF is F , and F is faithful iff ΦF is.
b) Let Φ : G→ SymX be a faithful permutation representation of G, and let F = {Stab(x) | x ∈ X}
be the corresponding normal family of point stabilizers. Every base Y for Φ contains a base Y ′ ⊂ Y
with pairwise distinct point stabilizers, so b(G,Φ) is the minimal cardinality of a subset G ⊂ F such
that

⋂
H∈G H = {e}. �

Thus we have explained how to “compute” the base size set of a group purely in terms of the group
itself. This is certainly not a deep result. One may wonder whether it is of any actual use – perhaps
it is merely a rephrasing of the problem. Our position is that it is a useful rephrasing of the problem,
and we aim to justify this in the remainder of the paper. In particular we will use Theorem 3.1 to
compute the base size sets of all dihedral groups, answering part of [LMS14, § 5, Question 1].

3.2. A containment result.

Theorem 3.2. Let G be a group and H a subgroup of G. Suppose that for all subgroups J of H, we
have

{hJh−1 | h ∈ H} = {gJg−1 | g ∈ G}.
In particular, this holds if every subgroup of H is normal in G. Then

B(H) ⊆ B(G).
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Proof. Every element κ of B(H) is the size of a minimal subfamily G of a faithful normal family F of
subgroups of H. By hypothesis, F is a faithful normal family of subgroups of G of which G is again a
minimal subfamily, so κ ∈ B(G). �

3.3. Products.

Here is a notationally cumbersome but useful reformulation of Example 2.7.

Theorem 3.3. (Product Theorem) Let κ ≥ 1 be a cardinal, and for each i ∈ κ, let Gi be a nontrivial
group. Let G =

∏
i∈κGi be the direct product, and let

g =
⊕
i∈κ

Gi := {(gi) ∈ G | gi = e for all but finitely many i ∈ κ}

be the direct sum.
a) We have B(G) ⊇ [1, κ].
b) We have B(g) ⊇ [1, κ].

Proof. We will work with the direct product G. To work with the direct sum g, simply replace instances
of
∏

by
⊕

. Let α ∈ [1, κ]. For each i ∈ α, put

Hi :=
∏

0≤j<i

Gj × {e} ×
∏

i<j≤α

Gj ×
∏

α<j<κ

{e}.

Then each Hi is normal in G, so F = {Hi}i∈α is a normal family in G. Moreover F is faithful but no
proper subfamily is faithful, so by Theorem 3.1 we have α ∈ B(G). �

3.4. Base size sets of commutative groups. In this section we will make use of the structure
theory of finitely generated commutative groups. We will recall all necessary definitions and results;
for proofs, see e.g. [L, §III.7].

Let G be a finite commutative group. Then G is isomorphic to a direct product of cyclic groups
of prime power order: there is a positive integer r, prime numbers p1, . . . , pr (not necessarily distinct)
and positive integers a1, . . . , ar such that

G ∼=
r∏
i=1

Z/paii Z.

(Although the isomorphism is not unique, the positive integers r, p1, . . . , pr, a1, . . . , ar are uniquely
determined by G.) We call each summand Z/paii Z an elementary divisor and put η(G) = r, the
“number of elementary divisors of G.”

Theorem 3.4 (Laison-McNicholas-Seaders [LMS14]). Let G be a finite commutative group. Then
B(G) = [1, η(G)].

Proof. Step 1: The Product Theorem (Theorem 3.3) applies to give B(G) ⊇ [1, η(G)].
Step 2: We show that B(G) ⊂ [1, η(G)] by induction on η(G), the case η(G) = 1 being Example
2.8. Now let Φ : G → SymX be a faithful permutation representation, and let p be a prime dividing
#G, and let G[p] be the subgroup of all elements g such that pg = 0. (It is a subgroup since G is
commutative.) In order for the point stabilizers to intersect to (0), there must be some x ∈ X such
that Stab(x) 6⊃ G[p]. In a finite commutative group H, the number of elementary divisors of H that
are p-groups is logp #H[p]. Thus, since Stab(x) does not contain all of G[p], we must have

η(Stab(x)) ≤ η(G[p])− 1 ≤ η(G)− 1.

By induction, we have b(Stab(x),Φ) ≤ η(G)− 1, and then Lemma 2.9 gives b(G,Φ) ≤ η(G). �

Theorem 3.5. Let G be infinite, finitely generated and commutative, so

G ∼= Za ⊕
r⊕
i=1

Z/paii
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with a ≥ 1. We have
B(G) = [1, a+ r] ∪ {ℵ0}.

Proof. Step 1: Since G is countably infinite, by (3) we have B(G) ⊂ [1,ℵ0].
Step 2: Theorem 3.3) gives [1, a+ r] ⊂ B(G), while Example 2.5 and Theorem 3.2 give ℵ0 ∈ B(G).
Step 3: It remains to show that if k ∈ Z+∩B(G), then k ≤ a+ r. We show this by induction on a: the
base for our induction will be a = 0, and this case is Theorem 3.4. Now let Y = {y1, . . . , yk} be a finite
base for a permutation representation (G,Φ). Let H be a subgroup of G. There are b, b1, . . . , br ∈ Z
with 0 ≤ b ≤ a, 0 ≤ bi ≤ ai for all i such that H ∼= Zb ⊕

⊕r
i=1 Z/p

bi
i . Moreover H has finite index in

G iff b = a. For i ∈ [1, k], let Hi = Stab(yi). It cannot be that each Hi has finite index in G, since

then {0} =
⋂k
i=1Hi has finite index in the infinite group G. So for at least one i we have bi ≤ a− 1,

and then by induction
b(G,Φ) ≤ b(Hi,Φ) + 1 ≤ a+ r. �

Theorem 3.6. Let κ be an infinite cardinal, and let G be a free commutative group of rank κ: that
is, G ∼=

⊕
i∈κ Z. Then

B(G) = [1, κ].

Proof. Theorem 3.3 gives B(G) ⊇ [1, κ]. Since #G = κ, we have B(G) ⊆ [1, κ] by (3). �

3.5. Base sizes one and two.

We call a subgroup M of a group G surtrivial if: M is nontrivial, there is no nontrivial subgroup N
contained in M , and for all nontrivial subgroups H of G we have H ⊃M . Equivalently, a subgroup is
surtrivial if it is generated by an element τ 6= e such that every nontrivial subgroup of G contains τ .
Note that τ necessarily has prime order. A group can have at most one surtrivial subgroup.

Theorem 3.7. Let G be a group.
a) The following are equivalent:
(i) We have B(G) = {1}.
(ii) G admits a surtrivial subgroup.
b) The following are equivalent:
(i) We have 2 ∈ B(G).
(ii) There are nontrivial subgroups H1 and H2 such that H1 ∩H2 is trivial.

Proof. a) (i) =⇒ (ii): We go by contraposition. Let L be the lattice of all subgroups of G, and let L′
be the partially ordered subset of all nontrivial subgroups of G. A surtrivial subgroup is precisely a
bottom element of L′. So we assume that L′ has no bottom element. Suppose first that every chain in
L′ has a lower bound in L′. Then by Zorn’s Lemma L′ has a minimal element H, which is necessarily
cyclic of prime order. Being a minimum and not the bottom element means there is a nontrivial
subgroup K which does not contain H. Then H ∩K = {e}. The normal family generated by {H,K}
corresponds to a faithful representation with base size 2. Next suppose that some chain C in L′ has
no lower bound in L′. This means that the intersection over the elements of C is trivial. The normal
family generated by C corresponds to a faithful representation with base size at least 2.
(ii) =⇒ (i): Since every nontrivial subgroup contains M , the intersection over a family of nontrivial
subgroups contains M , so a faithful representation has a trivial point stabilizer and B(G) = {1}.
b) Because the conjugation does not change whether a subgroup is trivial, we have 2 ∈ B(G) iff there is
a normal family of nontrivial subgroups some two of which intersect trivially iff there are two nontrivial
subgroups that intersect trivially. �

Corollary 3.8. For a nontrivial finite group G, the following are equivalent:
(i) G is cyclic of prime power order or a generalized quaternion group Q2n for some n ≥ 3.3

(ii) We have B(G) = {1}.
(iii) We have 2 /∈ B(G).

3See [C1] for an elementary treatment of the generalized quaternion groups.
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Proof. (i) ⇐⇒ (ii): A finite group G admits a surtrivial subgroup iff G is cyclic of prime power order
or a generalized quaternion group Q2n for n ≥ 3 [R, 5.3.6].
(ii) =⇒ (iii): This is clear.
(iii) =⇒ (ii): A nontrivial finite group contains at least one minimal nontrivial subgroup (these
are precisely the subgroups of prime order). If there is exactly one such group, it is surtrivial and
B(G) = {1}; otherwise, the intersection of any two of them is trivial, so 2 ∈ B(G) by Theorem
3.7b). �

Example 3.9. Let p be a prime number, and let Cp∞ be the Prüfer p-group: the group of all roots
of unity in C of order a power of p. This group has for each i ∈ Z+ a unique subgroup Hi of size pi –
namely, the (pi)th roots of unity, and Cp∞ =

⋃
iHi. In fact, the Hi’s are the only proper, nontrivial

subgroups of Cp∞ , so H1 is a surtrivial subgroup of Cp∞ . Thus B(Cp∞) = {1}.

Example 3.10. For all n ≥ 3 there are injective group homomorphisms Q2n ↪→ Q2n+1 , and we can
define the infinite quaternion group as the direct limit

Q2∞ = lim−→Q2n .

This is an infinite 2-group with a unique element τ of order 2, and thus 〈τ〉 is a surtrivial subgroup.
Thus B(Q2∞) = {1}.

Let G be an infinite group admitting a surtrivial subgroup M = 〈τ | τp = 1〉. Then G is an infinite
p-group: if e 6= g ∈ G, since τ = gn for some nonzero integer n, we have gpn = e, so g has finite order.
The order of g must be a power of p: otherwise 〈g〉 has a subgroup which does not contain τ . If G
is moreover commutative, every nontrivial finitely generated subgroup of G is a finite commutative
p-group with a unique subgroup of order p, hence cyclic of prime power order. It follows easily that
G ∼= Cp∞ . If p = 2, Banakh showed [Ba10] that G is isomorphic to C2∞ or to Q2∞ . On the other hand,
for each prime p > 1075, Olshanskii constructed uncountably many nonisomorphic finitely generated
p-groups with surtrivial subgroups: “extended Tarski monsters.” Thus the precise classification of
finitely generated groups G with B(G) = {1} looks hopeless.

3.6. Dedekind groups.

Theorem 3.11 (Downward Closure). Let G be a group in which every subgroup is normal.
a) Suppose n ∈ Z+ ∩ B(G). Then [1, n] ⊂ B(G).
b) Thus if G is finite, then B(G) = [1, n] for some n ∈ Z+.

Proof. It is enough to show that if n ≥ 2 and n ∈ B(G), then also n− 1 ∈ B(G). Since n ∈ B(G) there
is a family F and subgroups H1, . . . ,Hn ∈ F with trivial intersection and such that no intersection
of fewer than n of the Hi’s is trivial. For 1 ≤ i ≤ n − 2, put Hi = Hi, and put Hn−1 = Hn−1 ∩Hn.

Clearly
⋂n−1
i=1 Hi = {e}. Let F be the normal family generated by {H1, . . . ,Hn−1}, so F is the set of

point stabilizers of a faithful representation Φ of G. Clearly b(G,Φ) ≤ n − 1. Since an intersection
of k elements of F is an intersection of either k or k + 1 elements of F , no intersection of fewer than
n− 1 elements of F can be trivial, so b(G,Φ) = n− 1. �

A Dedekind group is a group in which all subgroups are normal. Of course this includes all com-
mutative groups. The smallest noncommutative Dedekind group is Q8. Finite Dedekind groups were
classified by Dedekind [De97], and infinite Dedekind groups were classified by Baer [Ba33]. The answer
is remarkably simple.

Theorem 3.12. For a noncommutative group G, the following are equivalent:
(i) G is Dedekind.
(ii) There is a torsion commutative group T with no element of order 4 such that G ∼= Q8 ⊕ T .

We will use Theorem 3.12 to compute the base size set of any finite noncommutative Dedekind group.

Theorem 3.13. Let G = Q8

⊕n
i=1 Z/p

ai
i Z for prime powers pa11 , . . . , p

an
n with no paii divisible by 4.

Then B(G) = [1, n+ 1].
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Proof. Step 0: Since G is Dedekind, all its Sylow p-subgroups are normal, and thus G is the direct
product of its Sylow p-subgroups. It follows that if d | #G is such that gcd(d, #Gd ) = 1 then there is a
unique subgroup of G of order d: namely, the product of all the Sylow p-subgroups for primes p | d.
Step 1: Theorem 3.3 gives B(G) ⊃ [1, n + 1]. Now let Φ : G → SymX be any faithful permutation
representation of G. We need to show that B(G,Φ) ≤ n+ 1.
Step 2: First we assume that G is a 2-group, and thus G = Q8

⊕n
i=1 Z/2Z. Then the elements

G[2] of order dividing 2 form a subgroup of G. (As mentioned above, this holds for all commutative
groups. It does not hold for all noncommutative groups, but it holds in Q8 and thus also in G.) Let
#G[2] = 2a+1, and among the elements of any minimal (hence irredundant, since G is finite) base for
Φ we must have at least one x such that H := Stab(x) 6⊃ G[2]. Then H is a Dedekind 2-group with
#H[2] = 2a with a < n+ 1. By induction we have B(H) = [1, a] ⊂ [1, n], and then by Lemma 2.9 we
have B(G) ⊂ [1, n+ 1], completing the proof in this case.
Step 3: Suppose G is not a 2-group, so pn > 2. Lemma 2.10 gives x ∈ X such that [G : Stab(x)] = pann .

Because G is nilpotent this implies that H := Stab(x) ∼= Q8

⊕n−1
i=1 Z/paii Z. By induction we have

B(H,Φ) ≤ n and thus B(G,Φ) ≤ n+ 1. �

3.7. Dihedral groups. For n ∈ Z+, we define the dihedral group

Dn = 〈a, b | an = b2 = e, bab−1 = a−1〉.

The sets B(Dn) are studied in [LMS14]. The cases n = 1, 2 are rather degenerate: we get C2 and
C2×C2, respectively. If n ≥ 3, then a 6= a−1 so the group is not abelian. The cyclic group Cn = 〈a〉 is
a subgroup of Dn; all elements of the complement have order 2. Thus there is no surtrivial subgroup,
so 2 ∈ B(Dn).

For n ∈ Z+, let ω(n) be the number of distinct prime divisors of n. Laison, McNicholas and Seaders
show that B(Dn) = [1, ω(n) + 1] in the following cases:
• When n = 1, 2. (The group Dn is then commutative, and Theorem 3.4 applies.)
• When n = pk is a prime power [LMS14, Prop. 5].
• When n = 2pk, p an odd prime power [LMS14, Prop. 6].
• When n = pq is a product of two odd primes [LMS14, Cor. 12].

We aim to show it here in general. For this we will need an explicit description of the subgroup
lattice of Dn (see e.g. [C2]). Each subgroup of Dn appears exactly once in the following list:
I. (Cyclic subgroups) For all d | n, Cd := 〈an/d〉 is cyclic of order d.
II. (Dihedral subgroups) For all d | n and 0 ≤ i ≤ d− 1, D(nd , i) := 〈ad, aib〉 is dihedral of order 2n

d .
Moreover, each Cd is normal in Dn. If n is odd, then two dihedral subgroups of the same order

are conjugate. If n is even, then any dihedral subgroup of order 2n
d is conjugate to exactly one of

D(nd , 0) = 〈ad, b〉 or D(nd , 1) = 〈ad, ab〉.

Theorem 3.14. For all n ∈ Z+, we have B(Dn) = [1, ω(n) + 1].

Proof. Step 1: Write n = pa11 · · · parr (so ω(n) = r) with p1 < . . . pr. We have an element of order parr
in Dn, so by Lemma 2.10, there is an x ∈ X with an orbit of size parr and thus H1 = Stab(x) has order
2pa11 · · · p

ar
r−1 and B(Dn,Φ) ≤ B(H1,Φ) + 1. Since every subgroup of a dihedral group is either cyclic

or dihedral, we can continue, getting H1 ⊃ H2 ⊃ . . . Hr−1 such that #Hr−1 = 2pa11 and

b(Dn,Φ) ≤ b(Hr−1,Φ) + r − 1.

And now Hr−1 has an element of order pa11 whether p1 = 2 or not, so we can continue to Hr of order
2. Then B(Hr,Φ) = B(C2,Φ) = 1, so

b(Dn,Φ) ≤ B(Hr,Φ) + r = r + 1.

Step 2: Consider Cn as a subgroup of Dn: indeed every subgroup of Cn is normal in Dn. So Theorem
3.7 applies to show that

B(Dn) ⊃ B(Cn) = [1, ω(n)].
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Step 3: For 1 ≤ i ≤ r, put Hi = D( n
p
ai
i

, 0), and put Hr+1 = Cn, and F = {H1, . . . ,Hr}. Let F be

the normal family generated by F . We have
⋂r
i=1Hi = D(1, 0) = 〈b〉, so

⋂
H∈F ⊂

⋂
H∈F = {e}, i.e.,

F is faithful. It is easy to see that no proper subfamily of F is faithful, but that is not enough: we
need to show that no r elements of F intersect to {e}. For this, we observe first that for 1 ≤ i ≤ r,
the intersection of any j ≥ 2 conjugates of Hi is C n

p
ai
i

. The next observation is that the intersection

of any two dihedral subgroups of Dn with coprime indices is again dihedral (and not cyclic). Indeed,
suppose the subgroups are D( nd1 , i1) and D( nd2 , i2) with gcd(d1, d2) = 1, and let x, y ∈ Z be such that
xd1 − yd2 = i2 − i1. Then

ai1+xd1b = ai2+yd2b ∈ D
(
n

d1
, i1

)
∩D

(
n

d2
, i2

)
.

It follows that F has no faithful subfamily of size less than r + 1: intersecting two dihedral elements
of F of the same index has the same effect as intersecting one of the elements with Hn+1 = Cn, so
without enlarging the size of a faithful subfamily we may assume that it contains Hn+1 and does not
contain any two conjugate subgroups. Thus it consists of Hn+1 and a family of dihedral subgroups
Hi1 , . . . ,His with indices d1, . . . , ds distinct prime power divisors of n, so

⋂s
j=1Hij has index at most

d1 · · · ds | n in a subgroup of order 2n and thus is nontrivial. �

Theorem 3.15. For the infinite dihedral group D∞ = 〈a, b | b2 = e, bab1 = a−1〉 we have B(D∞) =
{1, 2,∞}.

Proof. Let C∞ = 〈a〉. Then C∞ is infinite cyclic and hence index 2 in D∞. Every subgroup of C∞ is
normal in D∞, so by Theorem 3.2 we have

B(D∞) ⊃ B(C∞) = {1,ℵ0}.
Every element of D∞ \ C∞ has order 2 and there are two conjugacy classes of such subgroups. In
particular there is more than one subgroup of order 2, hence by Theorem 3.7 we have 2 ∈ B(D∞). By
(3) we have

B(D∞) ⊂ [1,#D∞] = [1,ℵ0].

Thus it remains to show that no 3 ≤ n ≤ ℵ0 lies in B(G). So let F be a faithful normal family in
D∞. As usual, if {e} ∈ F , then the size of a minimal subfamily is 1, so assume not. If F contains an
order 2 subgroup H, then there is g ∈ G such that H 6= gHg−1 ∈ F , so H ∩ gHg−1 = {e}, and the
size of a minimal subfamily is 2. So suppose that F conatins a subgroup H of order at least 3. Then
H ∩ C∞ is nontrivial, so in fact H has finite index in C∞ and thus also in D∞. Thus F consists of
finite index subgroups, so if F itself is finite, then

⋂
H∈F H has finite index in D∞ hence is nontrivial.

Thus #F ≥ ℵ0. �

3.8. A lattice-theoretic perspective.

For a Dedekind group G, Theorem 3.1 reduces the computation of B(G) to a question about the
lattice Sub(G) of subgroups of G. One can formulate the notion of a base size set in an arbitrary
complete lattice, as follows: Let (L,≤) be a complete lattice, with bottom element 0. A 0-family is a
subset F ⊂ L such that Inf F = 0, i.e., the only z ∈ L such that z ≤ x for all x ∈ F is z = 0. A base
for a 0-family is a subfamily that is also a 0-family. The base size of a 0-family F is the minimal
cardinality of a base of F , and the base size set B(L) is the set of all base sizes of 0-families in L.

Remark 2. a) In a finite chain, a 0-family contains 0, so the base size set is {1}.
b) Let L = {0, 1}n be the hypercube: i.e., Cartesian product of n copies of {0, 1}, with the product
ordering. (This is the lattice of subgroups of Z/(p1 · · · pnZ), pi 6= pj). We can then “see the bases,”
which can have size between 1 and n.
c) For a nonzero k-vector space V , let L(V ) be the lattice of k-subspaces of V . When k = Z/pZ, this
is the complete lattice associated to a direct sum of copies of Z/pZ. It is not hard to show that the base
size set of L(V ) is [1,dimV ].
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4. Questions

Question 1. Is it true that for all subgroups H ⊂ G we have B(H) ⊂ B(G)?

Question 2. a) Does B(G) have a maximum for every group G?
b) If G is infinite, B(G) need not be downward closed: e.g. B(Z) = {1,ℵ0}. Must B(G) be downward
closed if G is finite? Already we do not know whether 4 ∈ B(G) implies 3 ∈ B(G). It may be worth
searching by computer for a counterexample.

Question 3. Is it true that if G1 and G2 are groups, then

sup(B(G1 ×G2)) = supB(G1) + supB(G2)?

Question 4. What are the base size sets of the symmetric groups? It seems that almost nothing is
known. For instance, the standard representation of Sn shows that n − 1 ∈ B(Sn) for all n ∈ Z+.
For n = 5, the Petersen graph has automorphism group S5 and the faithful representation of S5 on its
vertex set has base size 3 [GL09, Prop. 17]. But in general it does not seem clear whether n−2 ∈ B(Sn).
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