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Abstract. Let F be a number field, and let F cyc be obtained by adjoining

to F all the roots of unity. We show that as E ranges over all elliptic curves

defined over F cyc with complex multiplication, the torsion subgroups E(F cyc)
are finite and uniformly bounded in size.

–

1. Introduction

1.1. Notation and terminology. For a field F , we write F for a separable alge-
braic closure and gF for Aut(F/F ). We identify étale group schemes G/F with their

associated gF -modules G(F ). For a commutative group A we denote the torsion
subgroup by A[tors].

Here, a number field is a subfield of F of C with [F : Q] finite. For a field F of
characteristic 0, we put F cyc :=

⋃
n≥1 F (ζn), the field obtained by adjoining to F

all the roots of unity. Let F ab be the maximal abelian extension of F . We have
Qcyc = Qab – the Kronecker-Weber Theorem.

A complex number j is a singular modulus if there is an elliptic curve E/C with
j(E) = j and complex multiplication (CM); otherwise we say j is a nonsingular
modulus. If j ∈ C is a singular modulus, then j ∈ Q.

1.2. Results. Here is our main result.

Theorem 1.1. Let F ⊂ C be a number field. There is a positive integer B = B(F )
such that: for all elliptic curves E/F cyc with complex multiplication, we have

#E(F cyc)[tors] ≤ B.

Theorem 1.1 follows immediately from the following more precise results.

Theorem 1.2. For any number field F ⊂ C, the field F cyc contains only finitely
many singular moduli.

Theorem 1.3. Let F ⊂ C be a number field, let K be an imaginary quadratic
field, let O be an order in K, let OK be the ring of integers of K and let h2(OK) =
#(PicOK)[2] be the 2-part of the class number of K.
a) For any O-CM elliptic curve E/F cyc , there is an OK-CM elliptic curve E′/F cyc

such that
#E(F cyc)[tors] ≤ #E′(F cyc)[tors].

b) Let E/F cyc be an OK-CM elliptic curve. Then:
(i) If E(F cyc) has a point of order `, then ` ramifies in K or

` ≤ 12h2(OK)[F : Q] + 1.
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(ii) If ` does not ramify in K and E(F cyc) has a point of order `a, then

ϕ(`a) ≤ 12h2(OK)[F : Q].

(iii) If ` ramifies in K and E(F cyc) has a point of order `a, then

ϕ(`a−1) ≤ 12h2(OK)[F : Q].

c) Assume the Generalized Riemann Hypothesis. Then:
(i) There is a CM elliptic curve E/Qab with a Qab-rational point of prime order `
iff ` ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 89, 163}.
(ii) There are 101 imaginary quadratic orders O such that there is an elliptic curve
E/Qab with EndE ∼= O. The fraction fields of these orders yield 65 different imag-

inary quadratic fields. For each such imaginary quadratic field K, we determine1

the positive integer T (K) that is the least common multiple of #E(Qab)[tors] as E
ranges over all K-CM elliptic curves defined over Qab.

Our definition of T (K) is natural but also somewhat self-serving: to compute T (K)
it suffices to calculate (maximal) `-primary torsion subgroups of OK-CM elliptic
curves E/Qab , and that is what we do.

We also have the following result in the non-CM case.

Theorem 1.4. Let j ∈ Q be a nonsingular modulus, and let F be a number field
containing j. Then there is a positive integer T = T (F, j) such that for every
elliptic curve E/F ab with j(E) = j, we have #E(F ab)[tors] ≤ T .

Theorem 1.4 should be compared to Theorem 1.3: in the CM case, fixing the j-
invariant is (up to Galois conjugacy, which is harmless) the same as fixing the
endomorphism ring, so after Theorem 1.2 the matter of the CM case is to deal with
a fixed j-invariant. It is interesting that Theorem 1.4, though less quantitatively
precise than Theorem 1.3, is stronger in that we work over F ab rather than just
F cyc: these coincide when F = Q but in general F ab/F cyc has infinite degree. On
the other hand, there is certainly no analogue of Theorem 1.2 in the non-CM case!

This also raises the prospect of a strengthened version of Theorem 1.1 to F ab in
place of F cyc. We take this up in §6, extending Theorem 1.1 from F cyc to F ab for
“most” number fields F .

1.3. Acknowledgments. We thank John Voight for the question that inspired
this note and Abbey Bourdon and James H. Stankewicz for helpful comments.

2. Comments on related work

2.1. Najman. The second named author first proved Theorem 1.1 in the case
F = Q, prompted by a conversation with John Voight in 2015. Voight suggested
to give special consideration to torsion points of CM elliptic curves over cyclotomic
fields. In this regard, he was motivated by the following result of Najman, which
gives one of very few known non-CM sporadic points on modular curves.

Theorem 2.1 (Najman [Na16]). There is exactly one pair (E,F ) where E/Q is an
elliptic curve, F/Q is a cubic number field, and E(F ) has a point of order 21:

E/Q : y2 + xy + y = x3 − x2 − 5x+ 5, F = Q(ζ9 + ζ−1
9 ).

1Please see the table at the end of the document.
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Najman also found [Na16, §6] an abelian sextic number field F and an elliptic curve
E/F such that E(F ) has a point of order 37. In each case, the corresponding closed
point P on X1(N) – i.e., the degree 3 point on X1(21) and the degree 6 point on
X1(37) – is sporadic in the sense that there are only finitely many closed points
of degree at most the degree of P . Let us also call a closed point P on a nice curve
X/Q of low degree if its degree is less than the least degree of a nonconstant

Q-morphism f : X → P1. Sporadic points have low degree, but the converse does
not always hold.

It seems interesting to ask whether there are further low degree non-cuspidal points
on X1(N) with abelian field of moduli.

2.2. Ribet and Zarhin. Since F cyc has infinite degree over Q, for a CM elliptic
curve E/F cyc it is not even obvious that E(F cyc)[tors] is finite. However this result
and more was already known.

Theorem 2.2 (Ribet [KL81]). Let A/F be an abelian variety over a number field.
Then A(F cyc)[tors] is finite.

In an earlier draft we used Theorem 2.2 to prove the boundedness of torsion on CM
elliptic curves over Qab. Our current proof does not make use of Theorem 2.2, but
our proof of Theorem 1.4 makes use of the following related result.

Theorem 2.3 (Zarhin [Za87]). Let A/F be an abelian variety over a number field.

Then A is isogenous over F to
∏n
i=1Ai with each Ai an F -simple abelian variety.

Then A(F ab)[tors] is finite iff no Ai is of CM-type: more precisely, for all 1 ≤ i ≤ n,
the ring EndF Ai is not an order in a number field of degree 2 dimAi.

2.3. Chou. Work of the first named author [Ch17] studies the groups E(Qab)[tors]
as E ranges over all elliptic curves defined over Q. For this family Chou obtains a
complete, finite classification of the torsion subgroups.

The largest torsion subgroup that appears in Chou’s classification is Z/163Z.
This group arises from an elliptic curve E/Q with CM by the imaginary quadratic
order O of discriminant −163: Let p be the prime ideal of the O of norm 163; then
E → E/E[p] is a Q-rational cyclic 163-isogeny. The isogeny character trivializes
over an abelian extension of Q, yielding a point of order 163 over Qab. We will see
in Proposition 4.2a) that for any imaginary quadratic field K such that the Hilbert
class field K(1) is abelian over Q and any prime ` that ramifies in K, there is an
OK-CM elliptic curve E/Qab with a Qab-rational point of order `.

The largest value of #E(Qab)[`∞] for any CM elliptic curve E/Qab and any prime
number ` is 163, again coming from an elliptic curve E/Q with CM by the order
of discriminant −163. This seems somewhat coincidental, since there are values of
#E(Qab)[`∞] that are only attained for elliptic curves E with j(E) /∈ Q, e.g. 89.
While T (Q(

√
−163)) = 163, there are imaginary quadratic fields K with K(1)/Q

abelian such that T (K) > 163: the largest such value is

T (Q(
√
−3)) = 529200.

We leave to a later work an analysis of the extent to which different `-primary
torsion subgroups can be simultaneously realized over Qab. But we do not know
of any CM elliptic curve E/Qab such that #E(Qab)[tors] is divisible by two distinct

odd primes, and we find it plausible that the largest value of #E(Qab)[tors] is 163.
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3. The Proofs

3.1. The Basic Strategy.

Let {(Ai)/Fi
}i∈I be a family of abelian varieties of uniformly bounded dimension

defined over a family of fields {Fi}i∈I . Then supi∈I #Ai(Fi)[tors] < ∞ iff both of
the following hold:

(B1) The set of primes ` dividing some #Ai(Fi)[tors] is finite;
(B2) For all primes `, there is a ∈ Z+ such that no Ai(Fi) has a point of order `a.

3.2. Ring class fields. Let O be an order in an imaginary quadratic field K, of
conductor f ∈ Z+ and discriminant ∆ ∈ Z−. Let H∆ ∈ Q[t] be the Hilbert class
polynomial of ∆: it is the squarefree polynomial whose roots are the j-invariants
of O-CM elliptic curves, and it is irreducible over K. We put

Q(f) := Q[t]/(H∆), K(f) := K[t]/(H∆).

The field K(f) is the ring class field of O; when f = 1 this is the Hilbert
class field of K. The extension K(f)/K is abelian with Aut(K(f)/K) canonically
isomorphic to the class group PicO of O. The extension K(f)/Q is Galois, and
complex conjugation c gives a splitting of the short exact sequence

1→ Aut(K(f)/K)→ Aut(K(f)/Q)→ Aut(K/Q)→ 1,

so
Aut(K(f)/Q) ∼= PicO o Z/2Z,

where the action of the nontrivial element c of Z/2Z on PicO is by x 7→ x−1. Put

h(O) := # PicO, h2(O) := #(PicO)[2], h(O) :=
h(O)

h2(O)
.

The quantity h2(O) is completely known: see e.g. [Cx, Prop. 3.11]. In partic-
ular, if r is the number of odd prime divisors of D, then h2(O) = 2r+ε(O) for
ε(O) ∈ {0, 1, 2}. It is a deep result of Heilbronn [He34] that for any M ∈ Z+, there
are only finitely many imaginary quadratic fields K such that h(OK) ≤M .

Let O and O′ be two orders in the same imaginary quadratic field K, of con-
ductors f and f′. Then we have O′ ⊂ O ⇐⇒ f | f′. Let us assume that
these conditions hold. Then we have K(f) ⊂ K(f′), and the corresponding sur-
jection PicO′ → PicO is the natural pushforward I 7→ IO of fractional ideals.
For any surjection A → B of commutative groups, there is an induced surjec-
tion A/A[2] → B/B[2], hence h(O) | h(O′). (Since PicO′ → PicO is a surjec-
tion, so is PicO′/(2 PicO′) → PicO/(2 PicO), and since PicO is finite we have
h2(O) = # PicO/(2 PicO), which shows that also h2(O) | h2(O′).) Moreover:

(1)
h(O(af))

h(O(f))
=

a

[O(f)× : O(af)×]

∏
p|a

(
1−

(
∆

p

)
1

p

)
∈ Z+.

Put wK := O×K , so wK = 6 if K = Q(
√
−3), wK = 4 if K = Q(

√
−1) and wK = 2

otherwise. Thus we get

(2)
h(O(f))

h(OK)
≥ ϕ(f)

wK
≥ ϕ(f)

6
� f

log log f
,
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the last inequality by a result of Mertens [HW, Thm. 429]. In particular, for each
fixed K, there are only finitely many orders in K of bounded class number. Thus
Heilbronn’s result implies the following one.

Lemma 3.1. For every M ∈ Z+, there are only finitely many imaginary quadratic
orders O such that h(O) ≤M .

Again we fix an imaginary quadratic order O of conductor f and discriminant ∆.
We define the genus field

G(f) := K(f) ∩Qab,

i.e., the maximal subextension ofK(f) that is abelian over Q. The group Aut(G(f)/Q)
is the abelianization of Aut(K(f)/Q). It follows that

Aut(G(f)/Q) ∼= (PicO)[2]× Z/2Z

and thus

[K(f) : G(f)] = h(O), [G(f) : Q] = 2h2(O).

Since Qab and K(f) are linearly disjoint over G(f), we have

[K(f)Qab : Qab] = [K(f) : K(f) ∩Qab] = h(O).

From this we deduce the following key result.

Lemma 3.2. For an imaginary quadratic order O and a number field F , we have

[K(f)F cyc : F cyc] ≥ [K(f)Qab : Qab]

[F : Q]
=

h(O)

[F : Q]
.

Proof. Since [F cyc : Qab] = [FQab : Qab] ≤ [F : Q], we have

[K(f)F cyc : F cyc] =
[K(f)F cyc : Qab]

[F cyc : Qab]
=

[K(f)F cyc : K(f)Qab][K(f)Qab : Qab]

[F cyc : Qab]

≥ [K(f)Qab : Qab]

[F : Q]
=

h(O)

[F : Q]
. �

3.3. Proof of Theorem 1.2. Let F be a number field. In order to establish
that only finitely many singular moduli lie in F cyc it is no loss of generality to
assume that F/Q is Galois. This is not crucial, but it simplifies matters: under
that assumption, for each imaginary quadratic order O, either we have j(E) ∈ F
for every O-CM elliptic curve E/C or for no O-CM elliptic curve. So let O be
an imaginary quadratic order, with conductor f, such that j(C/O) ∈ F cyc. Since
F cyc ⊃ Qab ⊃ K, this implies that K(f) ⊂ F cyc, and now Lemma 3.2 gives

h(O) ≤ [F : Q].

By Lemma 3.1 there are only finitely many such orders O, and since each O gives
rise to PicO singular moduli, only finitely many singular moduli lie in F cyc.
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3.4. Proof of Theorem 1.3a). Let O be an order of conductor f in the imag-
inary quadratic field K, and let OK be the maximal order. Let F be a field of
characteristic 0, and let E/F be an O-CM elliptic curve. Then (e.g. [Kw99, §2],
[BP17, Prop. 2.2] or [BC2, §2.5]) there is an OK-CM elliptic curve (E′)/F and an
F -rational cyclic f-isogeny ι : E → E′. The existence of ι and the dual isogeny
ι∨ : E′ → E shows

#E(F )[tors] | f#E′(F )[tors] | f2#E(F )[tors].

This bound is sufficient to prove Theorem 1.1, since Theorem 1.2 reduces us to the
case of fixed O, which we can then replace by OK at a cost of introducing a factor
of f. However, one can do better: in the above setup if F is moreover a number
field containing the CM field K, then by [BC, Thm. 1.7] we have

#E(F )[tors] | #E′(F )[tors].

From this it follows that for every O-CM elliptic curve E/F cyc there is an OK-CM
elliptic curve (E′)/F cyc with

#E(F cyc)[tors] | #E′(F cyc)[tors].

3.5. Torsion points and ray class containments. We begin by recalling the
following classical result.

Theorem 3.3. (First Main Theorem of Complex Multiplication) Let E/C be an

OK-CM elliptic curve, and let I be a nonzero ideal of OK . Let h : E → P1 be a
Weber function. Then:

K(1)(h(E[I])) = KI .

Proof. See e.g. [Si94, Thm. II.5.6]. �

In light of Theorem 3.3 it is useful to know the degree [KI : K(1)], which is a
standard result (see [Ch, Cor. 3.2.4] and [BC, Lemma 2.10]):

Lemma 3.4. Let I be a nonzero ideal of K, and let KI be the I-ray class field.
We put U(K) := O×K , UI(K) := {x ∈ U(K) | x− 1 ∈ I} and

ϕK(I) := #(OK/I)× = |I|
∏
p|I

(
1− 1

|p|

)
.

a) We have

[KI : K(1)] =
ϕK(I)

[U(K) : UI(K)]
.

b) If K 6= Q(
√
−1),Q(

√
−3), then

[KI : K(1)] =

{
ϕK(I) I | (2)
ϕK(I)

2 I - (2)
.

c) If K = Q(
√
−1), then

[KI : K(1)] =


ϕK(I) I | (1 + i)
ϕK(I)

2 I - (1 + i) and I | (2)
ϕK(I)

4 I - (2)

.
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d) If K = Q(
√
−3), then

[KI : K(1)] =


1 I = (1)
ϕK(I)

2 I 6= (1) and I | (ζ3 − 1)
ϕK(I)

3 I = (2)
ϕK(I)

6 otherwise

.

Let N ≥ 2. Applying Theorem 3.3 with I = (N), we get that if for an OK-CM
elliptic curve E/F cyc we have (Z/NZ)2 ↪→ E(F cyc), then F cyc ⊃ K(N) ⊃ K(N).
As we’ve seen, for each fixed F this containment can hold for only finitely many
integers N . However, this only bounds the possibilities for full N -torsion. In order
to check Conditions (B1) and (B2) we need the following refinement.

Proposition 3.5. Let K be an imaginary field, ` a prime number, and a ∈ Z+.
Let F ⊂ C be a field containing K and a primitive `ath root of unity. Let E/F be
an OK-CM elliptic curve with an F -rational point of order `a.
a) If ` - ∆K , then F contains the ray class field K(`a).
b) If ` | ∆K , let p be the unique prime of OK lying over (`). Then F contains the

ray class field Kp2a−1

.

Proof. Let P ∈ E(F ) be a point of order `a. Since F contains the CM field K, the
endomorphisms are F -rationally defined, so P also contains the OK-module 〈〈P 〉〉
generated by P . Such OK-submodules are classified in [BC, §7.3]. In particular,
each is of the form E[I] for an ideal I of OK [BC, Thm. 2.6].
Split Case: Suppose that `OK = p1p2 with p1 6= p2. Then (cf. [BC, §7.3]) 〈〈P 〉〉 =

E[pi1p
j
2] with 0 ≤ i, j ≤ a and max(i, j) = a. Since for ideals I, J of OK we

have E[I] ⊂ E[J ] ⇐⇒ I ⊃ J , we get that E(F ) contains either E[pa1 ] or E[pa2 ];
interchanging p1 and p2 if necessary, we may assume

E(F ) ⊃ E[pa1 ].

Moreover we have an internal OK-module decomposition

E[`a] = E[pa1 ]⊕ E[pa2 ],

whereas as Z-modules we have

E[pa1 ] ∼=Z E[pa2 ] ∼=Z Z/`aZ.

So for i = 1, 2 let Pi be a generator for E[pai ] (here a Z-module generator is also
an OK-module generator). Then P1, P2 is a Z/`aZ-basis for E[`a], and since
P1 ∈ E(F ) and 〈P2〉 is gF -stable, the image of the Galois representation ρ`a :

gF → GL2(Z/`aZ) on E consists of matrices of the form

[
1 0
0 d

]
. But moreover

det ρ`a = χ`a is the modulo `a cyclotomic character, which is trivial, since F
contains a primitive `ath root of unity. Thus ρ`a is trivial, so

F ⊃ K(E[`a]) ⊃ K(h(E[`a])) = K(`a).

Inert Case: Suppose that `OK is a prime ideal. Then (cf. [BC, §7.3]) 〈〈P 〉〉 = E[`a],
so as above we get F ⊃ K(`a).
Ramified Case: suppose that `OK = p2. Then (cf. [BC, §7.3]) 〈〈P 〉〉 is either
E[p2a−1] or E[p2a] = E[`a]. Either way we get

F ⊃ K(E[p2a−1]) ⊃ K(h(E[p2a−1])) = Kp2a−1

. �
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3.6. Proof of Theorem 1.3b). Let F be a number field, and let EF cyc be an
OK-CM elliptic curve. Let ` be a prime number and let a ∈ Z+. Suppose that
E(F cyc) contains a point of order `a. Then since F cyc ⊃ Qab ⊃ K, the hypotheses
of Proposition 3.5 apply.

Step 1: Put a =

{
a

(
∆K

`

)
6= 0

a− 1
(

∆K

`

)
= 0

, and let O be the imaginary quadratic or-

der of conductor `a. We claim that F ⊃ K(`a). Indeed, if ` does not ramify in K,
then using Proposition 3.5 we get

F ⊃ K(`a) ⊃ K(`a) = K(`a).

If ` ramifies in K then using Proposition 3.5 we get

F ⊃ Kp2a−1

⊃ Kp2a−2

= K(`a−1) ⊃ K(`a−1) = K(`a).

Step 2: Applying Lemma 3.2 we get

h(O)

h2(O)
= h(O) ≤ [F : Q].

By [Cx, Prop. 3.11] we have

h2(O) ≤ 2h2(OK),

so
h(O) ≤ 2h2(OK)[F : Q].

By (2) we have h(O) ≥ ϕ(`a)
6 , and thus

ϕ(`a) ≤ 12h2(OK)[F : Q].

4. The Case F = Q

4.1. When K(1)/Q is abelian. We now concentrate on the case F = Q, in which
we are considering torsion points on CM elliptic curves over Qab. Since Qab is
Galois over Q, for an imaginary quadratic order O there is an O-CM elliptic curve
defined over Qab iff j(C/O) ∈ Qab iff h(O) = 1. By the above reults there are only
finitely many such O. Unfortunately Heilbronn’s work is fundamentally ineffective.
However, in [Vo07], Voight lists 101 imaginary quadratic orders O with h(O) = 1
and shows that this list is complete conditionally on the Generalized Riemann Hy-
pothesis. We list these orders, sorted by imaginary quadratic field K and then by
conductor:

∆K = −3, f ∈ {1, 2, 3, 4, 5, 7, 8}
∆K = −4, f ∈ {1, 2, 3, 4, 5}
∆K = −7, f ∈ {1, 2, 4, 8}
∆K = −8 = −23, f ∈ {1, 2, 3, 6}
∆K = −11, f ∈ {1, 3}
∆K = −15 = −3 · 5, f ∈ {1, 2, 4, 8}
∆K = −19, f ∈ {1}
∆K = −20 = −22 · 5, f ∈ {1, 3}
∆K = −24 = −23 · 3, f ∈ {1, 2}
∆K = −35 = −5 · 7, f ∈ {1, 3}
∆K = −40 = −23 · 5, f ∈ {1, 2}
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∆K = −43, f ∈ {1}
∆K = −51 = −3 · 17, f ∈ {1}
∆K = −52 = −22 · 13, f ∈ {1}
∆K = −67, f ∈ {1}
∆K = −84 = −22 · 3 · 7, f ∈ {1}
∆K = −88 = −23 · 11, f ∈ {1, 2}
∆K = −91 = −7 · 13, f ∈ {1}
∆K = −115 = −5 · 23, f ∈ {1}
∆K = −120 = −23 · 3 · 5, f ∈ {1, 2}
∆K = −123 = −3 · 41, f ∈ {1}
∆K = −132 = −22 · 3 · 11, f ∈ {1}
∆K = −148 = −22 · 37, f ∈ {1}
∆K = −163, f ∈ {1}
∆K = −168 = −23 · 3 · 7, f ∈ {1, 2}
∆K = −187 = −11 · 17, f ∈ {1}
∆K = −195 = −3 · 5 · 13, f ∈ {1}
∆K = −228 = −22 · 3 · 19, f ∈ {1}
∆K = −232 = −23 · 29, f ∈ {1, 2}
∆K = −235 = −5 · 47, f ∈ {1}
∆K = −267 = −3 · 89, f ∈ {1}
∆K = −280 = −23 · 5 · 7, f ∈ {1, 2}
∆K = −312 = −23 · 3 · 13, f ∈ {1, 2}
∆K = −340 = −22 · 5 · 17, f ∈ {1}
∆K = −372 = −22 · 3 · 31, f ∈ {1}
∆K = −403 = −13 · 31, f ∈ {1}
∆K = −408 = −23 · 3 · 17, f ∈ {1, 2}
∆K = −420 = −23 · 3 · 5 · 7, f ∈ {1}
∆K = −427 = −7 · 61, f ∈ {1}
∆K = −435 = −3 · 5 · 29, f ∈ {1}
∆K = −483 = −3 · 7 · 23, f ∈ {1}
∆K = −520 = −23 · 5 · 13, f ∈ {1, 2}
∆K = −532 = −22 · 7 · 19, f ∈ {1}
∆K = −555 = −3 · 5 · 37, f ∈ {1}
∆K = −595 = −5 · 7 · 17, f ∈ {1}
∆K = −627 = −3 · 11 · 19, f ∈ {1}
∆K = −660 = −22 · 3 · 5 · 11, f ∈ {1}
∆K = −708 = −23 · 3 · 59, f ∈ {1}
∆K = −715 = −5 · 11 · 13, f ∈ {1}
∆K = −760 = −23 · 5 · 19, f ∈ {1, 2}
∆K = −795 = −3 · 5 · 53, f ∈ {1}
∆K = −840 = −23 · 3 · 5 · 7, f ∈ {1, 2}
∆K = −1012 = −22 · 11 · 23, f ∈ {1}
∆K = −1092 = −22 · 3 · 7 · 13, f ∈ {1}
∆K = −1155 = −3 · 5 · 7 · 11, f ∈ {1}
∆K = −1320 = −23 · 3 · 5 · 11, f ∈ {1, 2}
∆K = −1380 = −22 · 3 · 5 · 23, f ∈ {1}
∆K = −1428 = −22 · 3 · 7 · 17, f ∈ {1}
∆K = −1435 = −5 · 7 · 41, f ∈ {1}
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∆K = −1540 = −22 · 5 · 7 · 11, f ∈ {1}
∆K = −1848 = 23 · 3 · 7 · 11, f ∈ {1, 2}
∆K = −1995 = −3 · 5 · 7 · 19, f ∈ {1}
∆K = −3003 = 3 · 7 · 11 · 13, f ∈ {1}
∆K = −3315 = −3 · 5 · 13 · 17, f ∈ {1}
∆K = −5460 = −22 · 3 · 5 · 7 · 13, f ∈ {1}

For the rest of the section, K is an imaginary quadratic field with h(OK) = 1.
We also assume GRH, so that K is one of the 65 fields listed above.

4.2. Split primes. Let ` be a prime that splits in K, and let a ∈ Z+. Suppose
there is an OK-CM elliptic curve E/Qab such that E(Qab) contains a point of order
`a. As in the proof of Proposition 3.5, there is some labelling p1, p2 of the primes of
OK lying over ` such that Qab ⊃ Kpa

1 . Since Qab/Q is abelian, every subextension
F must be Galois over Q. Complex conjugation carries Kpa

1 to Kpa
2 , so if Kpa

1

is Galois over Q then Kpa
1 = Kpa

2 which then forces Kpa
1 = K(1) = Kpa

2 . Using
Lemma 3.4 we see that this occurs precisely in the following cases:
• ∆K < −4:
(i) `a = 2, 4 and ∆K ≡ ±1 (mod 8), or
(ii) `a = 3 and ∆K ≡ 1 (mod 3).
• ∆K = −4, `a = 5.
• ∆K = −3, `a = 7.

Proposition 4.1. Let K be an imaginary quadratic field in which the prime 2
splits, and let p, p be the prime ideals lying over 2. Let ζ4 be a primitive 4th root
of unity.
a) For all a ∈ Z+, we have Kpa

(ζ2a) = K(2a).
b) We have K(4) = K(1)(ζ4).

Proof. a) CertainlyKpa

(ζ2a) ⊂ K(2a). Moreover, there is an elliptic curve E defined
over F := Kpa

(ζ2a) such that E[pa] = E[pa](F ). If F = Kpa

(ζ2a) then by Theorem
3.3 every OK-CM elliptic curve E/F has K(h(E[pa])) ⊂ F , and then some twist Eχ

has K(Eχ[pa]) ⊂ F . The proof of Proposition 3.5 then shows that K(Eχ[2a]) ⊂ F ,
and applying Theorem 3.3 again we get K(2a) ⊂ F .

b) By Lemma 3.4 we have Kp2

= K(1), so this follows from part a). �

Combining Proposition 4.1 with Theorem 3.3, we find: when K(1)/Q is abelian and
2 splits in K, there is an OK-CM elliptic curve E/Qab with Z/4Z×Z/4Z ↪→ E(Qab).

4.3. Inert primes. Let ` be a prime that splits in K, and let a ∈ Z+. By Propo-
sition 3.5, if an OK-CM elliptic curve E/Qab has a Qab-rational point of order `a

then the ray class field K(`a) is abelian over Q and thus so is the ring class field
K(`a). This means that `a appears in the list of conductors in the corresponding
entry in Table 1. In all cases we have `a ≤ 8, so ` ∈ {2, 3, 5, 7}.

It turns out that that for ∆ < −4 there is no prime ` that is inert in K such that
K(`)/Q is abelian. The cases ∆K ∈ {−3,−4} are handled by direct computation
in §4.4 below.

4.4. Ramified Primes.
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Proposition 4.2. Let K be an imaginary quadratic field, let ` be a prime that
ramifies in K, and let p` be the unique prime of OK lying over `.
a) We have

(3) Kp` = K(1)(ζ`).

b) Let A ∈ Z+. If the ring class field K(`A) is not abelian over Q, then for any

OK-CM elliptic curve E/Qab we have E(Qab)[`∞] ⊂ E[p2A−1
` ].

c) If ` = 2 then we have

Kp3
2 = K(2) = K(2).

Proof. a) If either ` = 2 or ∆K ∈ {−3,−4}, then we have Kp` = K(1) = K(ζ`). So
we may assume ` > 2 and ∆K < −4. Now we have

K(1)(ζ`) ⊂ K(`),

and

[K(`) : Kp` ] = `.

We claim that K(1)(ζ`) ⊂ Kp` . For if not, then we have K(1)(ζ`) = K(`), but

[K(`) : K(1)] =
`2 − `

2
> `− 1 ≥ [K(1)(ζ`) : K(1)],

a contradiction. Therefore to show (3) it is enough to show that

[K(1)(ζ`) : K(1)] ≥ [Kp` : K(1)] =
`− 1

2
.

Since K(1) ∩ Qab is a multi-quadratic field and Q(ζp) contains a unique quadratic

field, we have [K(1) ∩Q(ζ`) : Q] ≤ 2, and thus [K(1)(ζ`) : K(1)] ≥ `−1
2 .

b) The group E(Qab)[`∞] is also finite OK-submodule of E(C) of `-power order,
and all such submodules are of the form E[pa` ] for some a ∈ Z+, so they are linearly

ordered under inclusion. Thus if E(Qab)[`∞] is not contained in E[p2A−1
` ] then it

contains E[p2A
` ] = E[`A], but then by Theorem 3.3 we have Qab ⊃ K(`A) ⊃ K(`A),

a contradiction.
c) Since K(1) ⊂ K(2) ⊂ K(2) ⊂ Kp3

2 , it suffices to show that

[K(2) : K(1)] = [Kp3
2 : K(1)].

It follows from (1) and Lemma 3.4 that both degrees above are 1 if ∆K = −4 and
both degrees above are 2 if ∆K < −4. �

For an imaginary quadratic field K such that K(1)/Q is abelian and a prime ` that
ramifies in K, Proposition 4.2 has the following consequences:

• Since Kp` = K(1)(ζ`) is abelian over Q, by Theorem 3.3 there is an OK-CM
elliptic curve E/Qab with a Qab-rational point of order `.
• If K(2)/Q is not abelian then for any OK-CM elliptic curve E/Qab we have

#E(Qab)[`∞] | `.
• IfK(2)/Q is abelian, then there is anOK-CM elliptic curve E/Qab with E(Qab)[`∞] =

E[p3
2] ∼= Z/2Z× Z/4Z.

• If K(4)/Q is not abelian, then for any OK-CM elliptic curve E/Qab we have

#E(Qab)[`∞] | `3.
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4.5. Computing T (K). We now determine all the possibilities for E(Qab)[`∞] for
an OK-CM elliptic curve E/Qab and a prime number `. It turns out that when
∆K < −4, from the list of 101 ring class fields that are abelian over Q and the
work of the previous sections, for each K such that K(1)/Q is abelian, we need no
further calculations to determine the complete set of prime power ideals I of OK
such that KI/Q is abelian.

When ∆K = −3 then 2 is inert in K and K(8)/Q is abelian, so we compute that
K(2) and K(4) are abelian over Q but K(8) is not.

When ∆K = −4 then 2 ramifies in K and K(4)/Q is abelian, so we compute that

K(4)/Q is abelian but Kp5
2/Q is not. Also 3 is inert in K and K(3)/Q is abelian,

so we compute that K(3)/Q is abelian.

4.6. What remains to be done. Above we computed, for each imaginary qua-
dratic field K such that the Hilbert class field K(1) is abelian over Q, the maximal
`-primary torsion subgroups of OK-CM elliptic curves E/Qab . To extend these re-
sults to give a complete classification, one must address the following issues.

First: when E is OK-CM, we must investigate the extent to which different `-
pimary torsion structures can jointly occur over Qab. Let `1 and `2 be distinct
primes, and for i = 1, 2 let Ii be an `i-primary OK-ideal. Then by Lemma 3.4, the
compositum KI1KI2 of the ray class fields has index wK := #O×K ∈ {2, 4, 6} in
the composite ray class field KI1I2 . Otherwise put, if KI1 ,KI2 ⊂ Qab, then there
is an OK-CM elliptic curve E/Qab for which E[I1] ⊂ E(Qab) and h(E[I2]) ⊂ Qab

(here h : E → E/Aut(E)
∼→ P1 is a Weber function; when ∆ < −4 we can take

h((x, y)) = x), but in order to rationalize E[I2] we need to extract a wKth root,
and this will usually (in some sense!) not give an abelian extension of Q.

In principle this can be resolved by computing all “composite” ray class fields
KI1I2 (and, if necessary, KI1···Ir ) and checking whether they are abelian over Q.
In practice, in many cases the degrees of these ray class fields are too large for
MAGMA to compute them and/or to check whether they are abelian over Q. It
would be preferable to have a more conceptual understanding of abelianness over
Q of ray class fields of imaginary quadratic fields.

Second: we must deal with the cases in which for some f > 1 the ring class field
K(f) is abelian over Q and thus we have elliptic curves E/Qab with CM by the
non-maximal order O in K of conductor f. In this case the finite O-submodules M
of E(C) have a more complicated structure: cf. [BC, Remark 2.7]. In particular,
in some cases we do not know as explicit a description of the abelian extension
K(h(M))/K as in the OK-CM case. As mentioned above, there is a canonical
Q(f)-rational isogeny ι : E → E′ with EndE′ ∼= OK , and the induced maps

ι : E(Qab)[tors]→ E′(Qab)[tors],

ι∨ : E′(Qab)[tors]→ E(Qab)[tors]

have kernel cyclic of order dividing f. Thus there is a tightly bounded discrepancy
between the two torsion subgroups, so in theory a brute force computation would
suffice, but in practice we are looking for a more principled approach.

Let us consider the following case: 8 | ∆K and f = 2. Let O be the order in K
with conductor 2. Thus K(2) is abelian over Q but K(4) is not, so by [BC, Thm.
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1.1] there is no O-CM elliptic curve E/Qab with E[2] ⊂ Qab. So for all ` > 2, the
maximal `-primary torsion on an O-CM elliptic curve E/Qab is the same as for an
OK-CM elliptic curve, while for ` = 2 the maximal such 2-primary torsion is either
Z/4Z or Z/8Z. By [Kw99, Cor. 4.2] some (equivalently, since ∆K < −4, every)
O-CM elliptic curve has a Q(f)-rational cyclic 8-isogeny. The isogeny character

χ8 : gQ(f) → (Z/8Z)× ∼= Z/2Z× Z/2Z

is well-defined up to a quadratic twist, so the reduced isogeny characer

χ8 : gQ(f) → (Z/8Z)×/{±1} ∼= Z/2Z

is canonical; it cuts out a quadratic extension Q(f)(
√
d)/Q(f) over which some qua-

dratic twist has a rational point of order 8. Therefore if the extension Q(f)(
√
d)/Q

is abelian, then we get a point of order 8 on an O-CM elliptic curve E/Qab . It
seems likely that the converse is also true. In general, explicitly computing re-
duced isogeny characters of CM elliptic curves is an interesting problem; notice
that Proposition 4.2a) can be viewed as a result of this type.

Remark 4.3. Let N ≥ 3. For any number field F , let E/F be an elliptic curve

admitting an F -rational cyclic N -isogeny. Let χN : gF → (Z/NZ)× be the asso-
ciated isogeny character. As above, composing with the quotient map (Z/NZ)× →
(Z/NZ)×/{±1} gives a reduced isogeny character

χN : gF → (Z/NZ)×/{±1}.

The spliting field of χN is an abelian extension L/F of degree dividing ϕ(N)
2 , and

there is a quadratic twist ED of E/M that admits an M -rational point of order M .
Najman’s non-CM sporadic points on X1(27) and X1(37) with abelian field of

moduli arise in this way starting from elliptic curves E/Q with rational 21 and 37-
isogenies. In these cases the reduced isogeny character is not surjective, and thus

the points on X1(N) have degree properly dividing ϕ(N)
2 .

5. Proof of Theorem 1.4

5.1. Condition (B1). Suppose j is a nonsingular modulus. Let F be a number
field containing j, and let E/F be an elliptic curve with j(E) = j. By Serre’s
Open Image Theorem [S72, Thm. 3], there is L = L(E,F ) such that for all primes
` ≥ max(L, 5), the mod ` Galois representation

ρ` : gF → GL2(Z/`Z)

is surjective. We will show that for all such `, for any elliptic curve E′/F ab with

j(E′) = j, we have E′(F ab)[`] = 0. Indeed, suppose not: then E′ is a quadratic
twist of E by some t ∈ (F ab)×, so E has a point of order ` rational over F ab(

√
t).

Consider the following tower of fields:

F ⊂ F ab ⊂ F ab(
√
t) ⊂ F ab(

√
t, E[`]).

At each step in the tower we have a solvable extension; this is immediate for all
steps except the last. For that: since we have a point of order ` defined over
F ab(

√
t), the image of the mod ` Galois representation on E when restricted to

this field lies in {
(

1 b
0 d

)
| b ∈ Z/`Z, d ∈ (Z/`Z)×}, which is a solvable group.

Thus F ab(
√
t, E[`])/F is solvable, hence its subextension F (E[`])/F is solvable.
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But the latter extension is Galois with group GL2(Z/`Z) with ` ≥ 5, which has the
nonabelian simple group PSL2(Z/`Z) as a Jordan-Hölder factor: contradiction.

5.2. Condition (B2).

Lemma 5.1. Let F be a field. Let N > 2 be indivisible by the characteristic of F .
a) Let E/F be an elliptic curve and suppose that E(F ) has a point of order N .
Then at most one nontrivial quadratic twist Et/F of E has a point of order N .

b) Let A/F be an abelian variety, and suppose that E(F ) has a point of order N .
Then at most finitely many quadratic twists At/F have points of order N .

Proof. a) Without loss of generality we may assume that either N is an odd prime
or N = 4. Either way, let P1 be a point of order N in E(F ). Let t ∈ F× \ F×2

be such that there is P2 ∈ Et(F ) of order N . Let εt : gF → {±1} be the character
on the corresponding to the quadratic extension F (

√
t)/F . The mod N Galois

representations on E and Et are related as follows:

ρN,E = ρN,Et ⊗ εt.
Since P2 is fixed under the action of ρN,Et , ρN stabilizes the subgroup 〈P2〉 and
acts on it via the isogeny character εt, which is nontrivial since N > 2.
• Suppose N = ` is an odd prime. Then 〈P1, P2〉 = E[`](F ) and it follows that

upon restriction to F (
√
t) the mod N Galois representation is trivial. This rules

out a second quadratic twist t′ – i.e., such that t′, t
′

t /∈ F×2 – such that Et
′
(F )

has a point of order N , because that would lead to a nontrivial quadratic isogeny
character εt′ 6= εt, which then cannot trivialize upon restriction to F (

√
t).

• Suppose N = 4. Let T = E[4](F ) and by choosing a basis P1, Q, identify
T with (Z/4Z)2. If 〈P1, P2〉 = T , we argue as above. However, it may be that
〈P1, P2〉 ( T : this happens when 〈P1〉 and 〈P2〉 lie in the same fiber of the map
P1(Z/4Z) → P1(Z/2Z). But all fibers of this map have 2 elements, so if there is

t′ such that t′, t
′

t /∈ F×2 such that At
′

has an F -rational point P3 of order 4, then
either 〈P1, P2〉 = T or 〈P1, P3〉 = T . Thus, by taking P3 in place of P2 if necessary,
we may argue as above.
b) Replacing “one nontrivial twist” with “finitely many twists,” the above argument
easily adapts to the case of abelian varieties. �

We immediately deduce the following result.

Proposition 5.2. Let F be a field, and let A/F be an abelian variety. Let ` be a
prime number which is indivisible by the characteristic of F . Suppose At(F )[`∞] is
finite for all quadratic twists At/F of A, including the “trivial twist” At = A. Then

sup
t∈F×/F×2

#At(F )[`∞] <∞.

Let E/F be an elliptic curve over a number field. Suppose j(E) 6= 0, 1728, so that
every twist of E is a quadratic twist. Then combining Proposition 5.2 with Theorem
2.2a) we get that for each prime `, there is a ∈ Z+ such that for any elliptic curve
E′/F cyc with j(E′) = j(E), we have E′(F cyc)[`∞] = E′(F cyc)[`a] is a finite group.

Similarly, if j(E) is a nonsingular modulus then using Theorem 2.2b) instead we
get that for each prime `, there is a ∈ Z+ such that for any elliptic curve E′/F ab

with j(E′) = j(E), we have E′(F ab)[`∞] = E′(F ab)[`a] is a finite group. The same
holds when j(E) is a singular modulus and F does not contain the CM field.
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5.3. A variant. The following is a variant of Lemma 5.1 that can also be used
to deduce Condition (B2). It is stronger in that it applies to all twists (so can be
applied when j ∈ {0, 1728}, though these cases are already covered by the results
of the previous section) but weaker in that the bound obtained on the number of
twists that can have a point of order N depends on N .

Proposition 5.3. Let F be a field of characteristic 0, and let N ≥ 4. For any
j ∈ F , there are only finitely many F -isomorphism classes of elliptic curves E/F
with j(E) = j such that E(F ) has a point of order N .

Proof. This follows from the fact that Y1(N)/F is a fine moduli scheme for N ≥ 4.
Namely, j induces a closed point on Y (1). The fiber of Y1(N) → Y (1) over j
contains only finitely many points, which correspond to all F -rational isomorphism
classes of pairs (Ei, Pi). with Pi ∈ Ei(F ) of order N . Any elliptic curve over F with
j(E) = j and an F -point of order N must be one of these finitely many Ei’s. �

6. Open Questions

We begin by asking for an abelian variety version of Theorem 1.4.

Question 6.1. Let F be a number field, and let A/F be an abelian variety. Let
T (A) be the class of all abelian varieties A′/F such that A′

/F
∼= A/F .

a) Do we have supA′∈T (A) #A′(F cyc)[tors] <∞?

b) Suppose A has no F -simple isogeny factor B of F -rational CM type, i.e., such
that EndF (B) is an order in a number field of degree 2 dimB. Do we then have
supA′∈T (A) #A′(F ab)[tors] <∞?

The proof given for the one-dimensional case does not adapt immediately since
when dimA = g ≥ 2 it is no longer true that a rational point of order ` forces
the modulo ` Galois representation ρ` : gF → GL2g(Z/`Z) to have solvable image.
However, we believe a less crude group-theoretic analysis would carry over the ar-
gument under the assumption that for all sufficiently large primes `, the image of ρ`
is isomorphic to GSp2g(Z/`Z). This is the most stringent reasonable interpretation
of “no complex multiplication” whereas the hypothesis in Zarhin’s theorem is the
most lax. There are intermediate cases, even when g = 1.

Indeed: in the setting of Theorem 1.4, suppose instead that j ∈ Q is a singular mod-
ulus, with corresponding CM field K. Then the conclusion of Theorem 1.4 is false if
F is a number field containing an imaginary quadratic field K: for every imaginary
quadratic order O we have K(f) ⊂ Kab so there is an O-CM elliptic curve E/Kab .

Moereover for any O-CM elliptic curve we have K(1)(h(E[tors]) = Kab, and via an
easy twisting argument it follows that for all N ∈ Z+ there is an O-CM elliptic
curve E/Kab with E[N ] ⊂ E(Kab).2 This motivates:

Question 6.2. Let F be a number field that does not contain any imaginary qua-
dratic field. Is there a positive integer B = B(F ) such that: for all elliptic curves
E/F ab with complex multiplication, we have

#E(F ab)[tors] ≤ B?

2In this case Theorem 2.3 implies (only) that E(K(f)ab)[tors] is infinite. A more careful analysis
of twists shows that there is an O-CM elliptic curve E/Kab with E(Kab)[tors] infinite.



16 MICHAEL CHOU, PETE L. CLARK, AND MARKO MILOSEVIC

Consider the following condition on a number field F :

(F) The field F ab contains only finitely many singular moduli.

Theorem 6.3. a) Let n ≥ 4, and let F be an Sn-number field – i.e., [F : Q] =
n, and if M is the Galois closure of F/Q then Aut(M/Q) ∼= Sn. Then F
satisfies Condition (F).

b) If F satisfies Condition (F), then Question 6.2 has an affirmative answer.

Proof. a) It will suffice to show that for every ring class field K(f), the fields K(f)
and F are linearly disjoint over Q: for if so, Aut(FK(f)/F ) = Aut(K(f)/Q), so by
§3.2 there are only finitely many orders O such that Aut(FK(f)/F ) is abelian, and
Condition (F) follows. Since K(f)/Q is Galois, failure of linear disjointness means
that F ∩K(f) ) Q, and since an Sn-number field has no nontrivial proper subfields,
this gives F ⊂ K(f). Since again K(f)/Q is Galois, if M is the Galois closure of
F/Q, we have M ⊂ K(f) and thus that Sn is a quotient of Aut(K(f)/Q). So Sn
has a commutative subgroup of index at most 2, which holds iff n ≤ 3.
b) If F satisfies Condition (F), only finitely many singular moduli lie in F ab, so it
suffices to work with a fixed imaginary quadratic order. By §3.4 we are reduced to
the maximal order OK . Proposition 3.5 and the containments K(`a) ⊃ K(`a) and –

when `OK = p2 – Kp2a−1 ⊃ K then give the boundedness of torsion over F ab. �

Proposition 6.3a) shows that Condition (F) holds for “most” number fields. Clearly
it does not hold when F contains an imaginary quadratic field! The proof of The-
orem 6.3a) shows that being linearly disjoint over Q from all ring class fields of
imaginary quadratic fields is sufficient for Condition (F). Real quadratic fields do
not satisfy this sufficient condition but may yet satisfy Condition (F). It seems
conceivable that a number field satisfies Condition (F) iff it does not contain an
imaginary quadratic field; if true, this would give a complete answer to Question 6.2.

Finally we ask for a common generalization of Theorem 1.1 and the work of [Ch17].

Question 6.4. As E/Qab ranges over all elliptic curves, is sup #E(Qab)[tors] <∞?

For a fixed number F , if one assumes that there is L = L(F ) ∈ Z+ such that for all
primes ` > L and all non-CM elliptic curves E/F , the modulo ` Galois representa-
tion ρ` : gF → GL2(Z/`Z) is surjective (“Serre’s uniformity over F”) one can show
that there is a uniform bound on #E(Qab)[tors] as E/Qab ranges over all ellptic
curves with j-invariant in F . Notice though that when F = Q, the work [Ch17]
establishes this unconditionally. The argument makes use of the classification of
Q-points on the modular curves X0(N) and also on work of González-Jiménez and
Lozano-Robledo on abelian division fields of elliptic curves over Q [GJLR16]. If
the latter work could be generalized – in the form of a finiteness result rather than
a complete classification – then it should be possible to prove the above uniform
bound assuming only that there is L = L(F ) ∈ Z+ such that for all primes ` > L
no non-CM elliptic curve E/F has an F -rational cyclic `-isogeny.
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K Primary I E OK such that KI/Q is abelian T (K)

Q(
√
−3) (2), (4), p3, p23 = (3), (5), p7, p7, (7) 24 · 33 · 52 · 72 = 529200

Q(
√
−4) p2, p22 = (2), p32, p42 = (4), (3), p5, p5, (5) 24 · 32 · 52 = 3600

Q(
√
−7) p2, p2, p22, p22, (2), (4), p7 24 · 7 = 112

Q(
√
−8) p2, p22 = (2), p32, p3, p3, (3) 23 · 32 = 72

Q(
√
−11) p3, p3, (3), p11 32 · 11 = 99

Q(
√
−15) p2, p2, p22, p22, (2), (4), p3, p5 24 · 3 · 5 = 240

Q(
√
−19) p19 19

Q(
√
−20) p3, p3, (3), p2 2 · 32 = 18

Q(
√
−24) p2, p22 = (2), p32, p3 23 · 3 = 24

Q(
√
−35) p3, p3, (3), p5, p7 32 · 5 · 7 = 315

Q(
√
−40) p2, p22 = (2), p32, p5 23 · 5 = 40

Q(
√
−43) p43 43

Q(
√
−51) p3, p17 3 · 17 = 51

Q(
√
−52) p2, p13 2 · 13 = 26

Q(
√
−67) p67 67

Q(
√
−84) p2, p3, p7 2 · 3 · 7 = 42

Q(
√
−88) p2, p22 = (2), p32, p11 23 · 11 = 88

Q(
√
−91) p7, p13 7 · 13 = 91

Q(
√
−115) p5, p23 5 · 23 = 115

Q(
√
−120) p2, p22 = (2), p32, p3, p5 23 · 3 · 5 = 120

Q(
√
−123) p3, p41 3 · 41 = 123

Q(
√
−132) p2, p3, p11 2 · 3 · 11 = 66

Q(
√
−148) p2, p37 2 · 37 = 74

Q(
√
−163) p163 163

Q(
√
−168) p2, p22 = (2), p32, p3, p7 23 · 3 · 7 = 168

Q(
√
−187) p11, p17 11 · 17 = 187

Q(
√
−195) p3, p5, p13 3 · 5 · 13 = 195

Q(
√
−228) p2, p3, p19 2 · 3 · 19 = 114

Q(
√
−232) p2, p22 = (2), p32, p29 23 · 29 = 232

Q(
√
−235) p5, p47 5 · 47 = 235

Q(
√
−267) p3, p89 3 · 89 = 267

Q(
√
−280) p2, p22 = (2), p32, p5, p7 23 · 5 · 7 = 280

Q(
√
−312) p2, p22 = (2), p32, p3, p13 23 · 3 · 13 = 312

Q(
√
−340) p2, p5, p17 2 · 5 · 17 = 170

Q(
√
−372) p2, p3, p31 2 · 3 · 31 = 186

Q(
√
−403) p13, p31 13 · 31 = 403

Q(
√
−408) p2, p22 = (2), p32, p3, p17 23 · 3 · 17 = 408

Q(
√
−420) p2, p3, p5, p7 2 · 3 · 5 · 7 = 210

Q(
√
−427) p7, p61 7 · 61 = 427

Q(
√
−435) p3, p5, p29 3 · 5 · 29 = 435

Q(
√
−483) p3, p7, p− 23 3 · 7 · 23 = 483

Q(
√
−520) p2, p22 = (2), p32, p5, p13 23 · 5 · 13 = 520

Q(
√
−532) p2, p7, p19 2 · 7 · 19 = 266

Q(
√
−555) p3, p5, p37 3 · 5 · 37 = 555

Q(
√
−595) p5, p7, p17 5 · 7 · 17 = 595

Q(
√
−627) p3, p11, p19 3 · 11 · 19 = 627

Q(
√
−660) p2, p3, p5, p11 2 · 3 · 5 · 11 = 330

Q(
√
−708) p2, p3, p59 2 · 3 · 59 = 354

Q(
√
−715) p5, p11, p13 5 · 11 · 13 = 715

Q(
√
−760) p2, p22 = (2), p32, p5, p19 23 · 5 · 19 = 760

Q(
√
−795) p3, p5, p53 3 · 5 · 53 = 795

Q(
√
−840) p2, p22, p5, p7 23 · 3 · 5 · 7 = 840

Q(
√
−1012) p2, p11, p23 2 · 11 · 23 = 506

Q(
√
−1092) p2, p3, p7, p13 2 ∗ 3 ∗ 7 ∗ 13 = 546

Q(
√
−1155) p3, p5, p7, p11 3 · 5 · 7 · 11 = 1155

Q(
√
−1320) p2, p22 = (2), p32, p5, p11 23 · 3 · 11 = 1320

Q(
√
−1380) p2, p3, p5, p23 2 · 3 · 5 · 23 = 690

Q(
√
−1428) p2, p3, p7, p17 2 · 3 · 7 · 17 = 714

Q(
√
−1435) p5, p7, p41 5 · 7 · 41 = 1435

Q(
√
−1540) p2, p5, p7, p1 2 · 5 · 7 · 11 = 770

Q(
√
−1848) p2, p22, p32, p3, p7, p11 23 · 3 · 7 · 11 = 1848

Q(
√
−1995 p3, p5, p7, p19 3 · 5 · 7 · 19 = 1995

Q(
√
−3003) p3, p7, p11, p13 3 · 7 · 11 · 13 = 3003

Q(
√
−3315) p3, p5, p13, p17 3 · 5 · 13 · 17 = 3315

Q(
√
−5460) p2, p3, p5, p7, p13 2 · 3 · 5 · 7 · 13 = 2730


