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§1: Introduction

Let k be a field of char. 0 (e.g. C, Q, R, Qp).

Let V/k be an algebraic variety: an object given

by a finite system of polynomial equations with

coefficients in k.

(Assume V/k nonsingular, projective, connected.)

Example: k = Q,

FN : XN + Y N = ZN ,

the Fermat curve.

Basic problem in arithmetic geometry: Under-

stand the set V (k) of k-rational points – solu-

tions to the system of equations.

Q: What does it mean to “understand” V (k)?



“Sample” theorem (Wiles 1995): If N ≥ 3,

all Q-rational solutions (x, y, z) have xyz = 0.

Certainly the answer depends on k:

• k = C, V (C) a compact complex manifold:

topological invariants, Hodge numbers, . . ..

• k = R: V (R) a compact real manifold;

top. invariants, especially H0.

• k = Q. (Or any number field.)

a) Is V (Q) finite?

b) If finite, find all the rational points.

c) If infinite, understand

(i) How they are distributed on V .

(ii) How many there are of any bounded height:

H(a
b) = max(a, b)).

d) If V is an algebraic group, determine the

group structure on V (Q).



It would seem that no matter what k is, we

can agree that if

V (k) = ∅
there is nothing to understand.

But I don’t agree!

Claim: We need to understand not just V (k)

but also V (l) for all finite field extensions l/k.

Equivalently: understand V (k) as a set with

gk = Aut(k/k)-action.

Proposed problem: Go the other extreme;

study the set A(V ) of l/k such that V (l) 6= ∅.



Objection 1: If V (k) 6= ∅, the problem is trivial.

Response: Most algebraic varieties over (e.g.)

Q do not have Q-rational points.

Objection 2: If V (k) = ∅, the problem is pre-

posterously difficult:

For k = Q, unknown whether there exists an

algorithm to decide whether V (Q) = ∅. For

equations over Z, there is no algorithm (”No”

to Hilbert 10). Varying k makes it hopeless.

Reponse: Agreed. Still, special cases make for

interesting theorems and conjectures. Com-

pare with:

Theorem: a) If C/Q has genus 0 or 1, then

there exists k/Q such that #C(k) =∞.

b) (Faltings) If C has genus at least 2, then

#C(k) <∞ for all k/Q.



§2: Local versus global

Example: For any g ≥ 0,

Y 2 = −(X2g+2 + 1)

gives a genus g curve C/Q with C(Q) = ∅. In-

deed, C(R) = ∅.

(Obvious principle: if Q ↪→ L and V (L) = ∅,
then V (Q) = ∅.)

Example: 2X2 + 3Y 2 = Z2 has no Q-points.

Indeed, it has no points over Z/3Z.

This is also a case of our “obvious principle”.

Zp = lim
n←∞Z/pnZ.

Qp = Zp ⊗Q.



Recall: If V is projective, Q-valued points ⇐⇒
Z-valued points; Qp-valued point ⇐⇒ Zp-

valued point (clear denominators).

V has Qp-valued points ∀ p ⇐⇒ ∀ N the sys-

tem has solutions as a congruence modulo N .

Can compute a single N such that if V has

points mod N it has solutions over Qp for all

p (Hensel’s Lemma); and can deal with R-

points algorithmically.

Therefore, for V/Q, there’s an algorithm to de-

termine whether ∃ points everywhere locally

(i.e., over Qp and R).

If V (Q) 6= ∅ we say V has global points. Clearly

global points =⇒ everywhere local points.

Hasse Principle: hope that the converse holds.



§3: Curves C/k of genus zero

Every genus zero curve is canonically a plane

conic, i.e., the zero locus of a quadratic form

Q(X, Y, Z). Diagonalize and rescale: C ∼= C(a,b),

C(a,b) : aX2 + bY 2 = Z2.

C has points over certain quadratic extensions,

but not necessarily over k.

C(k) 6= ∅ ⇐⇒ C ∼= P1.

Theorem (Hasse-Minkowski)

a) If k = R or Qp, there is a unique genus zero

curve without rational points.

b) If k = Q and C, C ′ are two conics, then

C ∼= C′ ⇐⇒ ∀p ≤ ∞, C/Qp
∼= C′/Qp

.

c) #{p ≤ ∞ | C(Qp) = ∅} = 2n.

Thus: ∀p ≤ ∞, C(Qp) 6= ∅ =⇒ C(Q) 6= ∅.



One can use this theorem to determine the

set A(C/Q).

Hasse Principle holds for quadric hypersur-

faces and all Severi-Brauer varieties (and

other “sufficiently Fano” varieties).

§4: Curves of genus one: elliptic curves

Let C/k be a curve of genus one.

Assume there exists O ∈ C(k). Then L(3[O])

embeds C into P2 as a Weierstrass cubic

y2z+a1xyz+a3yz2 = x3+a2x2z+a4xz2+a6z3;

O becomes “the point at ∞”: {z = 0} ∩ C.

C(k) has natural group law with e = [O]:

P, Q, R colinear =⇒ [P ] + [Q] + [R] = [O].



Theorem (Mordell-Weil) Let (C, O)/Q be an

elliptic curve. Then C(Q) is a finitely gener-

ated abelian group.

Rank and torsion are much studied. If we had

an algorithm to determine whether a genus one

curve C/Q has a rational point, would have

an algorithm for computing the Mordell-Weil

group.

Example (Selmer):

C3,4,5 : 3x3 + 4y3 + 5z3 = 0

has Qp-points for all p ≤ ∞ but no Q-rational

points. (Goodbye Hasse Principle.)

Thus in genus one, the study of A(C/Q) can-

not be reduced to purely local considerations.

| | | is waiting in the wings...



§5 g = 1: Invariants

A genus 0 curve has points over a quadratic

extension. For g ≥ 2, there exists l/k with

[l : k] ≤ 2g − 2 such that C(l) 6= ∅.

Nothing like this holds for genus one curves

(the canonical divisor is trivial).

Definition: For any variety V/k, the m-invariant

is the least degree of l/k such that V (l) 6= ∅.

Definition: For any variety V/k, the index is

the gcd over all degrees [l : k] | V (l) 6= ∅.

i(V ) = least pos. degree of a 0-cycle on V .

= (V = C) least pos. degree of a divisor.

m-inv = least degree of effective zero-cycle.



m-invariant seems most basic: there are curves

with index 1 but arbitrarily large m-invariant.

Key fact: For genus one curves, i(C) = m(C).

(Cassels) ∀ n ∈ Z+, ∃ a genus one curve C/Q

with n ≤ m(C) ≤ n2.

Q (Lang & Tate, 1958): Are there genus one

curves C/Q of every positive index?

Theorem 1 For any number field k and any

n ∈ Z+, ∃ infinitely many genus one curves C/k

with index n.



§6: Solvable and abelian points

Qab := maximal abelian extension of Q.

Qsolv := maximal solvable extension of Q.

Abel, Galois: Qsolv is not algebraically closed.

A field k is pseudoalgebraically closed (PAC)

if every geometrically irreducible variety over k

– equivalently, every algebraic curve – has a

k-rational point.

Conjecture: Qsolv is PAC.

Theorem (Ciperiani-Wiles): Every∗ genus one

curve C/Q has a point over Qsolv.

Theorem (Frey): Qab is not PAC.

Theorem 2 There exists a plane cubic C/Q

with C(Qab
11) = ∅.



§7: A conjectural anti-Hasse principle

People say: “In general, the Hasse principle

does not hold for curves of genus g ≥ 1.”

Q: What does this mean?

A1: There exist counterexamples with g ≥ 1.

Challenge: For each g ≥ 2, find a curve C/Q

violating the Hasse Principle. Find infinitely

many. (Hyperelliptic curves?)

No ad hoc list of counterexamples will con-

demn a principle.

For every g, many genus g curves C/Q do not

have points everywhere locally. Thus – in a

rather legalistic way! – “many” curves satisfy

the Hasse Principle.



A curve C over a number field k is a poten-

tial Hasse principle violation (PHPV) if there

exists some number field l/k such that C/l vi-

olates the Hasse principle.

Conjecture 1 (Anti-Hasse Principle) Let C/k

be a curve defined over a number field, of

positive genus, and without k-rational points.

Then there exists some finite field extension

l/k such that C/l is PHPV.

Very roughly, we believe that counterexamples

to the Hasse Principle are plentiful on the mod-

uli space of curves of genus g.



§8: Refinements and special cases

For V/Q, the local m-invariant mloc(V ) is the

lcm of m(V/Qp
), p ≤ ∞.

Lemma: ∃ ∞ly many k/Q of degree mloc(V )

such that V/k has points everywhere locally.

Conjecture 2 (Refined anti-Hasse Principle)

Under the hypotheses of Conjecture 1, ∃ ∞ly

many k/Q of degree mloc such that C/k violates

the Hasse principle.

Proposition: If m(C) > mloc(C), C is PHPV.

Theorem 3 For any E/Q, there exist C/Q, with

Jacobian E, such that C violates the Hasse

principle over a quadratic field.



Remark: Actually have more results on curves

of genus one (period-index problem, large | | |),
but let’s move on to curves of higher genus.

§9: Applications to Shimura curves

Idea: find examples of anti-Hasse Principle “in

nature.”

Many of the most studied algebraic curves over

Q have “trivial” Q-rational points, e.g. the

Fermat curves FN have (1 : 0 : 1) and classical

modular curves X0(N), . . . have cusps.

Shimura curves: Let D be a squarefree pos-

itive integer. There is a curve XD
/Q

, given over

C as the quotient of H by a Fuchsian group

constructed from the positive norm units of a

maximal order in the quaternion algebra B/Q

of discriminant D.



Shimura constructed a canonical Q-rational model.

There is a moduli interpretation: roughly, XD

is a moduli space for abelian surfaces admit-

ting B as an algebra of endomorphisms.

As in the classical case (which we can view as

D = 1), there are modular coverings XD
0 (N),

XD
1 (N).

We’ll assume: N squarefree and prime to D.

Theorem (Shimura): XD(R) = ∅.

Some curves have genus zero, e.g. X6, X10, X22;

of course our conjecture does not apply to

these. g(XD
0 (N)) approaches∞ with min(D, N).

Theorem 4 For all D > 546, ∃ m such that

XD
/Q(
√

m)
violates the Hasse Principle.



Theorem 5 There exists a constant C such

that: if D·N > C, there exist number fields k =

k(D, N) and l = l(D, N) such that XD
0 (N)/k

and XD
1 (N)/l violate the Hasse principle.

Theorem 6 Maintain the notation of the pre-

vious theorem; assume D ·N > C.

a) We may choose k such that [k : Q] | 4.
b) The degree [l : Q] necessarily tends to ∞
with N (uniformly in D).

Remark: Jordan (∼ 1985) showed X39/Q(
√
−23)

violated the Hasse principle. Skorobogatov-

Yafaev (2004) used descent theory to produce

HPV’s for XD
0 (N)/Q(

√
m). Their method re-

quires conditions on class numbers, so seems

very hard to get ∞ly many examples their way.



Some ingredients of the proof:

Definition: The gonality d(C) of an algebraic

curve C/k is the least degree of a k-morphism

C → P1.

Theorem 7 Let C/k be an algebraic curve de-

fined over a number field. Suppose:

a) C(k) = ∅.
b) d(C) > 2m > 2 for a multiple m of mloc(C).

Then there exist ∞ly many extensions l/k with

[l : k] = m such that C/l violates the Hasse

principle.

The proof uses work of G. Frey and, especially,

G. Faltings’ enormous theorem on subvari-

eties of abelian varieties.

Remark: For a general curve, d(C) ≈ g(C).

More essential is mloc(C)� g(C); it’s not clear

how common this condition is in general.



Theorem 8 (Ogg) The gonality of XD
0 (N)/Q

approaches infinity with min(D, N).

Ogg proves the result by reducing modulo p

(for suitable p) and counting points!

For the XD
1 (N) case, I used a much stronger

gonality theorem of Abramovich: for all Shimura

curves X, dC(X) ≥ 21
200(g(X) − 1). This uses

serious differential geometry.

Theorem 9 a) ∀ D, mloc(X
D) = 2.

b) ∀ D and N , mloc(X
D
0 (N)) is either 2 or 4.

This, of course, exploits the geometry of Shimura

curves; essentially new only at p | N .

The case of XD
1 (N) follows from XD

0 (N) es-

sentially for free (because XD
1 (N)→ XD

0 (N) is

“not too ramified”).



Remark: Note that we have made an end-run

around the computation of m(XD
0 (N)). Many

fascinating questions about quadratic points

on XD
0 (N) remain.

(Sample conjecture: for min(D, N) � 0, all

quadratic points on XD
0 (N) are CM points.)

Theorem 10 For all D, the curve XD+ = XD/wD

has points everywhere locally.

Conjecture 3 For D � 0, the XD+(Q) con-

sists only of CM points.

The conjecture implies that for ∞ly many D,

XD+
/Q

violates the Hasse principle.

Generalizations: (1) OK for Shimura curves

over totally real fields. (2) Can also apply



Theorem 11 Let {Xn}∞n=1 be a sequence of

curves over Q with g(Xn) > 1. Suppose:

a) Xn(Q) = ∅ ∀n.

b) Xn has semistable reduction. .

c) limn→∞ dK(Xn)
log g(Xn)

=∞.

d) ∃ A ∈ Z+ such that ∀ places v and all n, the

Galois action on the irreducible components of

the special fiber (Xn)/kv
of the minimal model

trivializes over an extension of degree A.

Then n� 0 =⇒ Xn is PHPV.

Next up: Study the case of y2 = P4(x) (genus

one, index 2).

Challenge problem:

C = X14 : (x2 − 13)2 + 73 + 2y2 = 0.

Not hard to see that C/
√

m has points every-

where locally ⇐⇒ m < 0, (m,7) = 1; this set

has density 3
7. Show: global points only occur

with density 0.


