Acquisition of Rational Points on Algebraic Curves

Pete L. Clark

February 2, 2006
§1: Introduction

Let k be a field of char. 0 (e.g. $\mathbb{C}, \mathbb{Q}, \mathbb{R}, \mathbb{Q}_{p}$).

Let $V_{/ k}$ be an algebraic variety: an object given by a finite system of polynomial equations with coefficients in k.
(Assume $V_{/ \bar{k}}$ nonsingular, projective, connected.)
Example: $k=\mathbb{Q}$,

$$
F_{N}: X^{N}+Y^{N}=Z^{N}
$$

the Fermat curve.

Basic problem in arithmetic geometry: Understand the set $V(k)$ of k-rational points - solutions to the system of equations.

Q: What does it mean to "understand" $V(k)$?
"Sample" theorem (Wiles 1995): If $N \geq 3$, all \mathbb{Q}-rational solutions (x, y, z) have $x y z=0$.

Certainly the answer depends on k :

- $k=\mathbb{C}, V(\mathbb{C})$ a compact complex manifold: topological invariants, Hodge numbers,
- $k=\mathbb{R}: V(\mathbb{R})$ a compact real manifold; top. invariants, especially H^{0}.
- $k=\mathbb{Q}$. (Or any number field.)
a) Is $V(\mathbb{Q})$ finite?
b) If finite, find all the rational points.
c) If infinite, understand
(i) How they are distributed on V.
(ii) How many there are of any bounded height: $\left.H\left(\frac{a}{b}\right)=\max (a, b)\right)$.
d) If V is an algebraic group, determine the group structure on $V(\mathbb{Q})$.

It would seem that no matter what k is, we can agree that if

$$
V(k)=\emptyset
$$

there is nothing to understand.

But I don't agree!

Claim: We need to understand not just $V(k)$ but also $V(l)$ for all finite field extensions l / k.

Equivalently: understand $V(\bar{k})$ as a set with $\mathfrak{g}_{k}=\operatorname{Aut}(\bar{k} / k)$-action.

Proposed problem: Go the other extreme; study the set $\mathcal{A}(V)$ of l / k such that $V(l) \neq \emptyset$.

Objection 1: If $V(k) \neq \emptyset$, the problem is trivial.

Response: Most algebraic varieties over (e.g.) \mathbb{Q} do not have \mathbb{Q}-rational points.

Objection 2: If $V(k)=\emptyset$, the problem is preposterously difficult:

For $k=\mathbb{Q}$, unknown whether there exists an algorithm to decide whether $V(\mathbb{Q})=\emptyset$. For equations over \mathbb{Z}, there is no algorithm ("No" to Hilbert 10). Varying k makes it hopeless.

Reponse: Agreed. Still, special cases make for interesting theorems and conjectures. Compare with:

Theorem: a) If $C_{\mathbb{Q}}$ has genus 0 or 1 , then there exists k / \mathbb{Q} such that $\# C(k)=\infty$.
b) (Faltings) If C has genus at least 2, then $\# C(k)<\infty$ for all k / \mathbb{Q}.

§2: Local versus global

Example: For any $g \geq 0$,

$$
Y^{2}=-\left(X^{2 g+2}+1\right)
$$

gives a genus g curve $C_{/ \mathbb{Q}}$ with $C(\mathbb{Q})=\emptyset$. Indeed, $C(\mathbb{R})=\emptyset$.
(Obvious principle: if $\mathbb{Q} \hookrightarrow L$ and $V(L)=\emptyset$, then $V(\mathbb{Q})=\emptyset$.)

Example: $2 X^{2}+3 Y^{2}=Z^{2}$ has no \mathbb{Q}-points. Indeed, it has no points over $\mathbb{Z} / 3 \mathbb{Z}$.

This is also a case of our "obvious principle".

$$
\begin{gathered}
\mathbb{Z}_{p}=\lim _{n \longleftarrow \infty} \mathbb{Z} / p^{n} \mathbb{Z} . \\
\mathbb{Q}_{p}=\mathbb{Z}_{p} \otimes \mathbb{Q} .
\end{gathered}
$$

Recall: If V is projective, \mathbb{Q}-valued points \mathbb{Z}-valued points; \mathbb{Q}_{p}-valued point $\Longleftrightarrow \mathbb{Z}_{p^{-}}$ valued point (clear denominators).
V has \mathbb{Q}_{p}-valued points $\forall p \Longleftrightarrow \forall N$ the system has solutions as a congruence modulo N.

Can compute a single N such that if V has points $\bmod N$ it has solutions over \mathbb{Q}_{p} for all p (Hensel's Lemma); and can deal with \mathbb{R} points algorithmically.

Therefore, for $V_{/ \mathbb{Q}}$, there's an algorithm to determine whether \exists points everywhere locally (i.e., over \mathbb{Q}_{p} and \mathbb{R}).

If $V(\mathbb{Q}) \neq \emptyset$ we say V has global points. Clearly global points \Longrightarrow everywhere local points.

Hasse Principle: hope that the converse holds.
§3: Curves $C_{/ k}$ of genus zero
Every genus zero curve is canonically a plane conic, i.e., the zero locus of a quadratic form $Q(X, Y, Z)$. Diagonalize and rescale: $C \cong C_{(a, b)}$,

$$
C_{(a, b)}: a X^{2}+b Y^{2}=Z^{2}
$$

C has points over certain quadratic extensions, but not necessarily over k.
$C(k) \neq \emptyset \Longleftrightarrow C \cong \mathbb{P}^{1}$.

Theorem (Hasse-Minkowski)

a) If $k=\mathbb{R}$ or \mathbb{Q}_{p}, there is a unique genus zero curve without rational points.
b) If $k=\mathbb{Q}$ and C, C^{\prime} are two conics, then $C \cong C^{\prime} \Longleftrightarrow \forall p \leq \infty, C_{\mathbb{Q}_{p}} \cong C_{/ \mathbb{Q}_{p}}^{\prime}$.
c) $\#\left\{p \leq \infty \mid C\left(\mathbb{Q}_{p}\right)=\emptyset\right\}=2 n$.

Thus: $\forall p \leq \infty, C\left(\mathbb{Q}_{p}\right) \neq \emptyset \Longrightarrow C(\mathbb{Q}) \neq \emptyset$.

One can use this theorem to determine the set $\mathcal{A}\left(C_{\mathbb{Q}}\right)$.

Hasse Principle holds for quadric hypersurfaces and all Severi-Brauer varieties (and other "sufficiently Fano" varieties).
§4: Curves of genus one: elliptic curves

Let $C_{/ k}$ be a curve of genus one.
Assume there exists $O \in C(k)$. Then $L(3[O])$ embeds C into \mathbb{P}^{2} as a Weierstrass cubic
$y^{2} z+a_{1} x y z+a_{3} y z^{2}=x^{3}+a_{2} x^{2} z+a_{4} x z^{2}+a_{6} z^{3} ;$
O becomes "the point at ∞ ": $\{z=0\} \cap C$.
$C(k)$ has natural group law with $e=[O]$:
P, Q, R colinear $\Longrightarrow[P]+[Q]+[R]=[O]$.

Theorem (Mordell-Weil) Let $(C, O)_{/ \mathbb{Q}}$ be an elliptic curve. Then $C(\mathbb{Q})$ is a finitely generated abelian group.

Rank and torsion are much studied. If we had an algorithm to determine whether a genus one curve $C_{/ \mathbb{Q}}$ has a rational point, would have an algorithm for computing the Mordell-Weil group.

Example (Selmer):

$$
C_{3,4,5}: 3 x^{3}+4 y^{3}+5 z^{3}=0
$$

has \mathbb{Q}_{p}-points for all $p \leq \infty$ but no \mathbb{Q}-rational points. (Goodbye Hasse Principle.)

Thus in genus one, the study of $\mathcal{A}\left(C_{\mathbb{Q}}\right)$ cannot be reduced to purely local considerations.
$\underline{\|}$ is waiting in the wings...

$\S 5 g=1$: Invariants

A genus 0 curve has points over a quadratic extension. For $g \geq 2$, there exists l / k with $[l: k] \leq 2 g-2$ such that $C(l) \neq \emptyset$.

Nothing like this holds for genus one curves (the canonical divisor is trivial).

Definition: For any variety $V_{/ k}$, the \mathbf{m}-invariant is the least degree of l / k such that $V(l) \neq \emptyset$.

Definition: For any variety $V_{/ k}$, the index is the gcd over all degrees $[l: k] \mid V(l) \neq \emptyset$.
$i(V)=$ least pos. degree of a 0-cycle on V.
$=(V=C)$ least pos. degree of a divisor.
m-inv $=$ least degree of effective zero-cycle.
m-invariant seems most basic: there are curves with index 1 but arbitrarily large m-invariant.

Key fact: For genus one curves, $i(C)=m(C)$.
(Cassels) $\forall n \in \mathbb{Z}^{+}, \exists$ a genus one curve $C_{/ \mathbb{Q}}$ with $n \leq m(C) \leq n^{2}$.

Q (Lang \& Tate, 1958): Are there genus one curves $C_{/ \mathbb{Q}}$ of every positive index?

Theorem 1 For any number field k and any $n \in \mathbb{Z}^{+}, \exists$ infinitely many genus one curves $C_{/ k}$ with index n.
§6: Solvable and abelian points
$\mathbb{Q}^{a b}:=$ maximal abelian extension of \mathbb{Q}.
$\mathbb{Q}^{\text {solve }}:=$ maximal solvable extension of \mathbb{Q}.
Abel, Galois: $\mathbb{Q}^{\text {solve }}$ is not algebraically closed.
A field k is pseudoalgebraically closed (PAC) if every geometrically irreducible variety over k - equivalently, every algebraic curve - has a k-rational point.

Conjecture: $\mathbb{Q}^{\text {solve }}$ is PAC.
Theorem (Ciperiani-Wiles): Every* genus one curve $C_{/ \mathbb{Q}}$ has a point over $\mathbb{Q}^{\text {solve }}$.

Theorem (Frey): $\mathbb{Q}^{a b}$ is not PAC.
Theorem 2 There exists a plane cubic $C_{/ \mathbb{Q}}$ with $C\left(\mathbb{Q}_{11}^{a b}\right)=\emptyset$.
§7: A conjectural anti-Hasse principle
People say: "In general, the Hasse principle does not hold for curves of genus $g \geq 1$."

Q: What does this mean?

A1: There exist counterexamples with $g \geq 1$.
Challenge: For each $g \geq 2$, find a curve $C_{/ \mathbb{Q}}$ violating the Hasse Principle. Find infinitely many. (Hyperelliptic curves?)

No ad hoc list of counterexamples will condemn a principle.

For every g, many genus g curves $C_{\mathbb{Q}}$ do not have points everywhere locally. Thus - in a rather legalistic way! - "many" curves satisfy the Hasse Principle.

A curve C over a number field k is a potential Hasse principle violation (PHPV) if there exists some number field l / k such that $C_{/ l}$ violates the Hasse principle.

Conjecture 1 (Anti-Hasse Principle) Let $C_{/ k}$ be a curve defined over a number field, of positive genus, and without k-rational points. Then there exists some finite field extension l / k such that $C_{/ l}$ is PHPV.

Very roughly, we believe that counterexamples to the Hasse Principle are plentiful on the moduli space of curves of genus g.
§8: Refinements and special cases

For $V_{/ \mathbb{Q}}$, the local m-invariant $m_{l o c}(V)$ is the Icm of $m\left(V_{/ \mathbb{Q}_{p}}\right), p \leq \infty$.

Lemma: \exists oly many k / \mathbb{Q} of degree $m_{\text {loc }}(V)$ such that $V_{/ k}$ has points everywhere locally.

Conjecture 2 (Refined anti-Hasse Principle) Under the hypotheses of Conjecture $1, \exists \infty / y$ many k / \mathbb{Q} of degree $m_{l o c}$ such that $C_{/ k}$ violates the Hasse principle.

Proposition: If $m(C)>m_{l o c}(C), C$ is PHPV.

Theorem 3 For any $E_{/ \mathbb{Q}}$, there exist $C_{/ \mathbb{Q}}$, with Jacobian E, such that C violates the Hasse principle over a quadratic field.

Remark: Actually have more results on curves of genus one (period-index problem, large $||\mid$), but let's move on to curves of higher genus.

§9: Applications to Shimura curves

Idea: find examples of anti-Hasse Principle "in nature."

Many of the most studied algebraic curves over \mathbb{Q} have "trivial" \mathbb{Q}-rational points, e.g. the Fermat curves F_{N} have (1:0:1) and classical modular curves $X_{0}(N), \ldots$ have cusps.

Shimura curves: Let D be a squarefree positive integer. There is a curve $X_{/ \mathbb{Q}}^{D}$, given over \mathbb{C} as the quotient of \mathcal{H} by a Fuchsian group constructed from the positive norm units of a maximal order in the quaternion algebra $B_{/ \mathbb{Q}}$ of discriminant D.

Shimura constructed a canonical \mathbb{Q}-rational model.
There is a moduli interpretation: roughly, X^{D} is a moduli space for abelian surfaces admitting B as an algebra of endomorphisms.

As in the classical case (which we can view as $D=1$), there are modular coverings $X_{0}^{D}(N)$, $X_{1}^{D}(N)$.

We'll assume: N squarefree and prime to D.
Theorem (Shimura): $X^{D}(\mathbb{R})=\emptyset$.
Some curves have genus zero, e.g. X^{6}, X^{10}, X^{22}; of course our conjecture does not apply to these. $g\left(X_{0}^{D}(N)\right)$ approaches ∞ with $\min (D, N)$.

Theorem 4 For all $D>546, \exists m$ such that $X_{/ \mathbb{Q}(\sqrt{m})}^{D}$ violates the Hasse Principle.

Theorem 5 There exists a constant C such that: if $D \cdot N>C$, there exist number fields $k=$ $k(D, N)$ and $l=l(D, N)$ such that $X_{0}^{D}(N)_{/ k}$ and $X_{1}^{D}(N)_{/ l}$ violate the Hasse principle.

Theorem 6 Maintain the notation of the previous theorem; assume $D \cdot N>C$.
a) We may choose k such that $[k: \mathbb{Q}] \mid 4$. b) The degree $[l: \mathbb{Q}]$ necessarily tends to ∞ with N (uniformly in D).

Remark: Jordan (~ 1985) showed $X^{39} / \mathbb{Q}(\sqrt{-23})$ violated the Hasse principle. SkorobogatovYafaev (2004) used descent theory to produce HPV's for $X_{0}^{D}(N)_{\mathbb{Q}(\sqrt{m})}$. Their method requires conditions on class numbers, so seems very hard to get oly many examples their way.

Some ingredients of the proof:

Definition: The gonality $d(C)$ of an algebraic curve C / k is the least degree of a k-morphism $C \rightarrow \mathbb{P}^{1}$.

Theorem 7 Let $C_{/ k}$ be an algebraic curve defined over a number field. Suppose:
a) $C(k)=\emptyset$.
b) $d(C)>2 m>2$ for a multiple m of $m_{l o c}(C)$. Then there exist ∞ ly many extensions l / k with $[l: k]=m$ such that $C_{/ l}$ violates the Hasse principle.

The proof uses work of G. Frey and, especially, G. Faltings' enormous theorem on subvarieties of abelian varieties.

Remark: For a general curve, $d(C) \approx g(C)$. More essential is $m_{l o c}(C) \ll g(C)$; it's not clear how common this condition is in general.

Theorem 8 (Ogg) The gonality of $X_{0}^{D}(N)_{\mathbb{Q}}$ approaches infinity with $\min (D, N)$.

Ogg proves the result by reducing modulo p (for suitable p) and counting points!

For the $X_{1}^{D}(N)$ case, I used a much stronger gonality theorem of Abramovich: for all Shimura curves $X, d_{\mathbb{C}}(X) \geq \frac{21}{200}(g(X)-1)$. This uses serious differential geometry.

> Theorem 9 a) $\forall D, m_{l o c}\left(X^{D}\right)=2$.
> b) $\forall D$ and $N, m_{l o c}\left(X_{0}^{D}(N)\right)$ is either 2 or 4 .

This, of course, exploits the geometry of Shimura curves; essentially new only at $p \mid N$.

The case of $X_{1}^{D}(N)$ follows from $X_{0}^{D}(N)$ essentially for free (because $X_{1}^{D}(N) \rightarrow X_{0}^{D}(N)$ is "not too ramified").

Remark: Note that we have made an end-run around the computation of $m\left(X_{0}^{D}(N)\right)$. Many fascinating questions about quadratic points on $X_{0}^{D}(N)$ remain.
(Sample conjecture: for $\min (D, N) \gg 0$, all quadratic points on $X_{0}^{D}(N)$ are CM points.)

Theorem 10 For all D, the curve $X^{D+}=X^{D} / w_{D}$ has points everywhere locally.

Conjecture 3 For $D \gg 0$, the $X^{D+}(\mathbb{Q})$ consists only of CM points.

The conjecture implies that for ∞ ly many D, $X_{/ \mathbb{Q}}^{D+}$ violates the Hasse principle.

Generalizations: (1) OK for Shimura curves over totally real fields. (2) Can also apply

Theorem 11 Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence of curves over \mathbb{Q} with $g\left(X_{n}\right)>1$. Suppose:
a) $X_{n}(\mathbb{Q})=\emptyset \forall n$.
b) X_{n} has semistable reduction. .
c) $\lim _{n \rightarrow \infty} \frac{d_{K}\left(X_{n}\right)}{\log g\left(X_{n}\right)}=\infty$.
d) $\exists A \in \mathbb{Z}^{+}$such that \forall places v and all n, the Galois action on the irreducible components of the special fiber $\left(X_{n}\right)_{/ k_{v}}$ of the minimal model trivializes over an extension of degree A.
Then $n \gg 0 \Longrightarrow X_{n}$ is PHPV.
Next up: Study the case of $y^{2}=P_{4}(x)$ (genus one, index 2).

Challenge problem:

$$
C=X^{14}:\left(x^{2}-13\right)^{2}+7^{3}+2 y^{2}=0
$$

Not hard to see that C / \sqrt{m} has points everywhere locally $\Longleftrightarrow m<0,(m, 7)=1$; this set has density $\frac{3}{7}$. Show: global points only occur with density 0 .

