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§1: Introduction

Let k be a field of char. 0 (e.g. C, Q, R, Qp).

et V/k be an algebraic variety: an object given
by a finite system of polynomial equations with
coefficients in k.

(Assume V/E nonsingular, projective, connected.)

Example: k£ = Q,
Fy: XN 4+yvVN =2V
the Fermat curve.
Basic problem in arithmetic geometry: Under-

stand the set V (k) of k-rational points — solu-
tions to the system of equations.

Q: What does it mean to “understand” V(k)?



“Sample” theorem (Wiles 1995). If N > 3,
all Q-rational solutions (z,y, z) have xyz = 0.

Certainly the answer depends on k:

e k =C, V(C) a compact complex manifold:
topological invariants, Hodge numbers, ....

e k=R: V(R) a compact real manifold;

top. invariants, especially HVY.

e k=0Q. (Or any number field.)

a) Is V(Q) finite?

b) If finite, find all the rational points.
c) If infinite, understand

(i) How they are distributed on V.
(ii) How many there are of any bounded height:
H(%) = max(a,b)).

d) If V is an algebraic group, determine the
group structure on V(Q).



It would seem that no matter what &k is, we
can agree that if

V(k) =10

there is nothing to understand.
But I don’'t agree!

Claim: We need to understand not just V (k)
but also V(1) for all finite field extensions [/k.

Equivalently: understand V (k) as a set with
gr = Aut(k/k)-action.

Proposed problem: Go the other extreme;
study the set A(V') of I/k such that V(1) # 0.



Objection 1: If V(k) # 0, the problem is trivial.

Response: Most algebraic varieties over (e.g.)
Q do not have Q-rational points.

Objection 2: If V(k) = 0, the problem is pre-
posterously difficult:

For £k = Q, unknown whether there exists an
algorithm to decide whether V(Q) = 0. For
equations over Z, there is no algorithm (" No"
to Hilbert 10). Varying k£ makes it hopeless.

Reponse: Agreed. Still, special cases make for
interesting theorems and conjectures. Com-
pare with:

Theorem: a) If C/Q has genus O or 1, then
there exists k/Q such that #C(k) = oc.

b) (Faltings) If C has genus at least 2, then
#C (k) < oo for all k/Q.



§2: Local versus global

Example: For any g > O,

Y2 = (X292 +1)
gives a genus g curve C)g with C(Q) = 0. In-
deed, C(R) = 0.

(Obvious principle: if Q — L and V(L) = 0,
then V(Q) =0.)

Example: 2X2 4+ 3Y2 = Z2 has no Q-points.
Indeed, it has no points over Z/3Z.

This is also a case of our “obvious principle’.

Zp = lim Z/p"Z.

n—oo

Qp=7Zp® Q.



Recall: If V is projective, Q-valued points «<—
Z-valued points; Qp-valued point <= Zp-
valued point (clear denominators).

V' has Qp-valued points V p <= V N the sys-
tem has solutions as a congruence modulo N.

Can compute a single N such that if V has
points mod N it has solutions over Q, for all
p (Hensel’'s Lemma); and can deal with R-
points algorithmically.

T herefore, for V/Q, there’'s an algorithm to de-
termine whether 3 points everywhere locally

(i.e., over Qp and R).

If V(Q) = 0 we say V has global points. Clearly
global points — everywhere local points.

Hasse Principle: hope that the converse holds.



§3. Curves ('), of genus zero

Every genus zero curve is canonically a plane
conic, i.e., the zero locus of a quadratic form
Q(X,Y, Z). Diagonalize and rescale: C'= C, ),

Clap) i aX?+bY* = Z°.

C' has points over certain quadratic extensions,
but not necessarily over k.

C(k) #0 <— C =Pl

Theorem (Hasse-Minkowski)

a)If k=R or Qp, there is a unique genus zero
curve without rational points.

b) If £k = Q and C, C' are two conics, then
C=2C < Vp< >0, C/q, = C;Qp.

c) #{p < 00 | C(Qp) = 0} = 2n.

Thus: Vp < oo, C(Qp) #0 = C(Q) # 0.



One can use this theorem to determine the
set A(C/@).

Hasse Principle holds for quadric hypersur-
faces and all Severi-Brauer varieties (and
other “sufficiently Fano” varieties).

§4:. Curves of genus one: elliptic curves
Let C'), be a curve of genus one.

Assume there exists O € C(k). Then L(3[0])
embeds C into P2 as a Weierstrass cubic

yzz—l—alwyz—l—agyZQ = :c3—|—a2:c22—|—a4:c22—|—a6z3;
O becomes “the point at c0”: {z =0} n C.
C(k) has natural group law with e = [O]:

P,Q, R colinear = [P] 4+ [Q] 4+ [R] = [O].



Theorem (Mordell-Weil) Let (C, O)/Q be an
elliptic curve. Then C(Q) is a finitely gener-
ated abelian group.

Rank and torsion are much studied. If we had
an algorithm to determine whether a genus one
curve C/Q has a rational point, would have
an algorithm for computing the Mordell-Weil
group.

Example (Selmer):

03,475 : 3:133 + 4y3 + 523 =0

has Qp-points for all p < oo but no Q-rational
points. (Goodbye Hasse Principle.)

Thus in genus one, the study of A(C/@) can-
not be reduced to purely local considerations.

| | | is waiting in the wings...



§5 g = 1. Invariants

A genus O curve has points over a quadratic
extension. For g > 2, there exists [/k with
[l : k] <2g— 2 such that C(1) # 0.

Nothing like this holds for genus one curves
(the canonical divisor is trivial).

Definition: For any variety V/k, the m-invariant
is the least degree of [/k such that V(1) # 0.

Definition: For any variety V/k, the Iindex is
the gcd over all degrees [[: k] | V(1) # 0.

(V) = least pos. degree of a O-cycle on V.
= (V = (C) least pos. degree of a divisor.

m-inv = |least degree of effective zero-cycle.



m~invariant seems most basic: there are curves
with index 1 but arbitrarily large m-invariant.

Key fact: For genus one curves, i(C) = m(C).

(Cassels) V n € Z1, 3 a genus one curve Cro
with n < m(C) < n2.

Q (Lang & Tate, 1958): Are there genus one
curves C/Q of every positive index?

Theorem 1 For any number field k and any
n € Z71, 3 infinitely many genus one curves C
with index n.



§6. Solvable and abelian points

Q2b := maximal abelian extension of Q.

Qsolv := maximal solvable extension of Q.
Abel, Galois: QSOZU IS not algebraically closed.
A field k is pseudoalgebraically closed (PAC)
if every geometrically irreducible variety over k
— equivalently, every algebraic curve — has a
k-rational point.

Conjecture: Q% js PAC.

Theorem (Ciperiani-Wiles): Every* genus one
curve Cg has a point over Qsolv,

Theorem (Frey): Q% is not PAC.

Theorem 2 There exists a plane cubic C/Q
with C(Q%%) = 0.



§7. A conjectural anti-Hasse principle

People say: “In general, the Hasse principle
does not hold for curves of genus g > 1.”

Q: What does this mean?
Al: There exist counterexamples with g > 1.

Challenge: For each g > 2, find a curve C/Q
violating the Hasse Principle. Find infinitely
many. (Hyperelliptic curves?)

No ad hoc list of counterexamples will con-
demn a principle.

For every g, many genus g curves C/Q do not
have points everywhere locally. Thus — in a
rather legalistic way! — “many” curves satisfy
the Hasse Principle.



A curve C over a number field k is a poten-
tial Hasse principle violation (PHPV) if there
exists some number field [/k such that C'); vi-
olates the Hasse principle.

Conjecture 1 (Anti-Hasse Principle) Let oy
be a curve defined over a number field, of
positive genus, and without k-rational points.
Then there exists some finite field extension
l/k such that C) is PHPV.

Very roughly, we believe that counterexamples
to the Hasse Principle are plentiful on the mod-
uli space of curves of genus g.



§8:. Refinements and special cases

For V,p, the local m-invariant my,.(V') is the
lcm of m(V/Qp), p < oo.

Lemma: 3 ooly many k/Q of degree my,.(V)
such that V/k has points everywhere locally.

Conjecture 2 (Refined anti-Hasse Principle)
Under the hypotheses of Conjecture 1, 4 coly
many k/Q of degree my,. such that C,; violates
the Hasse principle.

Proposition: If m(C) > m;,.(C), C is PHPV.
Theorem 3 Forany E/@, there exist C/@, with

Jacobian E, such that C violates the Hasse
principle over a quadratic field.



Remark: Actually have more results on curves
of genus one (period-index problem, large | | |),
but let’'s move on to curves of higher genus.

§9:. Applications to Shimura curves

Idea: find examples of anti-Hasse Principle “in

nature.”

Many of the most studied algebraic curves over
Q have *“trivial” Q-rational points, e.g. the
Fermat curves Iy have (1 :0:1) and classical
modular curves Xg(N),... have cusps.

Shimura curves: Let D be a squarefree pos-
itive integer. There is a curve X}?@, given over
C as the quotient of H by a Fuchsian group
constructed from the positive norm units of a
maximal order in the quaternion algebra B/@
of discriminant D.



Shimura constructed a canonical Q-rational model.
There is a moduli interpretation: roughly, xPD
IS @ moduli space for abelian surfaces admit-
ting B as an algebra of endomorphisms.

As in the classical case (which we can view as
D = 1), there are modular coverings X&(N),
XP(N).

We'll assume: N squarefree and prime to D.
Theorem (Shimura): XP(R) = 0.

Some curves have genus zero, e.g. X°, Xx10 x22.
of course our conjecture does not apply to

these. g(X& (N)) approaches oo with min(D, N).

Theorem 4 For all D > 546, 4 m such that
X D violates the Hasse Principle.



Theorem 5 There exists a constant C' such
that: if D-N > C', there exist number fields k =
k(D,N) and | = I(D,N) such that X§(N)
and X{)(N)/l violate the Hasse principle.

Theorem 6 Maintain the notation of the pre-
vious theorem; assume D - N > C.

a) We may choose k such that [k : Q] | 4.

b) The degree [l : Q] necessarily tends to oo
with N (uniformly in D).

Remark: Jordan (~ 1985) showed X39/@(\/_—23)
violated the Hasse principle. Skorobogatov-
Yafaev (2004) used descent theory to produce
HPV's for X(?(N)/@(W). Their method re-
quires conditions on class numbers, so seems
very hard to get coly many examples their way.



Some ingredients of the proof:

Definition: The gonality d(C) of an algebraic
curve C/k IS the least degree of a k-morphism
C — Pl

Theorem 7 Let C), be an algebraic curve de-
fined over a number field. Suppose:

a) C(k) =0.

b) d(C) > 2m > 2 for a multiple m of m;,.(C).
Then there exist coly many extensions l/k with
[l : k] = m such that C), violates the Hasse
principle.

The proof uses work of G. Frey and, especially,
G. Faltings’ enormous theorem on subvari-
eties of abelian varieties.

Remark: For a general curve, d(C) ~ ¢g(C).
More essential is m;,.(C) <« g(C); it’s not clear
how common this condition is in general.



Theorem 8 (Ogg) The gonality of X§(N) g
approaches infinity with min(D, N).

Ogg proves the result by reducing modulo p
(for suitable p) and counting points!

For the X?(N) case, I used a much stronger
gonality theorem of Abramovich: for all Shimura
curves X, de(X) > £5(g(X) — 1). This uses
serious differential geometry.

Theorem 9 a)V D, my,.(XP) = 2.
b) V D and N, my,.(XF(N)) is either 2 or 4.

This, of course, exploits the geometry of Shimura
curves; essentially new only at p | N.

The case of X (N) follows from XF(N) es-
sentially for free (because X (N) — X (N) is
“not too ramified" ).



Remark: Note that we have made an end-run
around the computation of m(X#(N)). Many
fascinating questions about quadratic points
on XF(N) remain.

(Sample conjecture: for min(D,N) > 0, all
quadratic points on X (N) are CM points.)

Theorem 10 For all D, the curve XP+ = XP /wp
has points everywhere locally.

Conjecture 3 For D > 0, the XP+(Q) con-
sists only of CM points.

The conjecture implies that for ocoly many D,
Xﬁ@’" violates the Hasse principle.

Generalizations: (1) OK for Shimura curves
over totally real fields. (2) Can also apply



Theorem 11 Let {X,}>2 ; be a sequence of
curves over Q with g(Xn) > 1. Suppose:

b) X, has semistable reduction. .

d) 3 A e Zt such thatV places v and all n, the
Galois action on the irreducible components of
the special fiber (Xn)/kv of the minimal model
trivializes over an extension of degree A.
Thenn>0— X,, iIs PHPV.

Next up: Study the case of y2 = P,(z) (genus
one, index 2).

Challenge problem:
C=X"Y:(2°-13)24+734+2¢°2=0.

Not hard to see that C/\/ﬁ has points every-
where locally < m <0, (m,7) = 1; this set
has density % Show: global points only occur
with density O.



